
FunLoft

Frédéric Boussinot
MIMOSA Project, EMP/INRIA Sophia-Antipolis, France

ANR-2008-DEFI-PARTOUT

January 9, 2009

1

Plan

1. Mixing preemption & cooperation: the FairThreads model

2. Safe reactive programming: the FunLoft language

3. Colliding particles example

4. Implementation on multicore architectures

5. RGC

6. Conclusion

2

FairThreads

Model of threads with shared memory

• Threads linked to a scheduler are run cooperatively and share
the same instants. Synchronisation and communication
through broadcast signals

• Several schedulers run asynchronously. Thread migration

• Unlinked threads run in a preemptive way

3

FairThreads - 2

• Implementations: Java (restriction to a unique scheduler,
2002), Scheme (with specialised service threads, 2004), library
of FairThreads in C (2005), LOFT (2006)

• Graphical simulations (cellular automata)

Positive points

• Absence of data-races between threads linked to the same
scheduler (data-race = interference = lack of atomicity, ex:
!x+!x 6= 2*!x)

• Semantics of cooperation is simpler and clearer than semantics
of preemption: the more atomicity is preserved, the less
interleavings of instructions have to be considered

• Schedulers and unlinked threads can be run in parallel, on a
multicore machine

4

Many Problems...

• Data-races still possible between:

– linked and unlinked threads

– threads linked to different schedulers

– unlinked threads

• Lack of reactivity: non-cooperative thread linked to a scheduler

• Possibility of memory leaks:

– data with uncontrolled growing size

– uncontrolled creation of new threads

Actually, all are standard problems in concurrency and
resource control

5

Plan

1. Mixing preemption & cooperation: the FairThreads model

2. Safe reactive programming: the FunLoft language

3. Colliding particles example

4. Implementation on multicore architectures

5. RGC

6. Conclusion

6

FunLoft

• Inductive data types - First order functions

– detection of non-terminating (recursive) functions and of
instantaneous loops. Consequence: termination of instants
(“reactivity”)

• Restriction on the flow of data carried by references and events
(stratification). Consequence: bounded system size ⇒ absence
of memory leaks

• Separation of references (using a type and effect system):

– schedulers own references shared by threads linked to them

– threads own private references only accessible by them

– consequence: atomicity of the cooperative model extended
to unlinked threads and to multi-schedulers ⇒ absence of
data-races

7

FunLoft Basic Syntax

p ::= x | C(p, . . . , p)

e ::= x | C(e, . . . , e) | match x with p − > e | . . . | p − > e

| f(e, . . . , e) | let x = e in e | ref e | !e | e:=e

| cooperate | thread f(e, . . . , e) | join e | unlink e | link s do e

| event | generate e with e | await e | get all values e in e

| loop e | while e do e

• Distinction function/module

– functions always terminate instantly; not mandatory for
modules

– functions can be recursively defined, modules cannot

• Schedulers, functions, and modules defined at top-level only

8

Static Analyses: Separation of the Memory

• Status public/private associated to references

– τ refs : type of a public reference created in scheduler s

– τ ref : type of a private reference

• Memory separation property:

– A public reference created in the scheduler s can only be
accessed by the threads linked to s

– A private reference can only be accessed by one unique
thread

• Access effect = set of scheduler names

Γ`e:τ refs,F
Γ`!e:τ,F∪{s}

Γ`e:τ ref ,F
Γ`!e:τ,F

9

Separation of the Memory - 2

• Checks:

1. When linked to a scheduler, a thread should not access a
public reference of an other scheduler

2. When unlinked a thread should not access a public reference

• Forbidden situations:

Γ`e:F F⊆{s}
Γ`link s do e:∅

Γ`e:∅
Γ`unlink e:∅

10

Separation of the Memory - 3

• One must also prevent a thread to access a private reference of
another thread

• Check 3: parameters of a new thread should not be private

f :τ→()/F Γ`ei:τi,Fi τi=τ ′
irefαi

⇒αi 6=
Γ`thread f(e):∪Fi

• Forbidden: private reference pointed to by a public reference

11

Separation of the Memory - 4

• Check 4: a reference and its initializing value should have same
status

Γ`e:τ,F τ=τ ′refα⇒α 6=
Γ`refse:τ refs,F

Γ`e:τ,F τ=τ ′refα⇒α=
Γ`ref e:τ ref ,F

• Proof: Memory separation is preserved by rewriting in the
formal operational semantics (extended with explicit ownership
of private references)

12

Static Analyses: Memory Leaks

References should not be used as “accumulators”

let r = ref Nil_list

let f () = !r

let module m () =

loop begin r := Cons_list (0,f()); cooperate end

• Stratification of references : region associated to each reference
creation r : ‘a list refk

• Types with read/write effect:
f : unit→ ‘a list [read : k,write :]

• e1 := e2 adds the arrow k1 ← k2 in the information flow graph,
for all k1 written by e1 and all k2 read by e2.

• Absence of cycles in the graph is checked; in m, k ← k

13

Inference with Constraints

Types with effects and constraints

let f (r1,r2) = r1:=!r2

• f : ‘a refk ∗ ‘b refl → unit [read : ‘b refl, write : ‘a refk]
(‘a refk ← ‘b refl)

let nok () = let r = ref Nil list in f (r,r)

• ‘a list refk ← ‘a list refk ⇒ k ← k ⇒ error

let ok () = let r = ref 0 in f (r,r)

• int refk ← int refk ⇒ ok

Constraints are collected during the construction of the most
general unifier, and checked when complete

14

Termination of Recursive Functions

type ‘a list = Nil list | Cons list of ‘a ∗ ‘a list

• Strict sub-term order: Cons list (head, tail) � tail

• Lexicographic extension:
f (a,Cons list (h, tail), t) � f (a, tail, Cons list (h, t))

• Analyses of chains of calls for arguments of inductive types

let process all collisions (me, list) =
match list with

Nil list − > ()
| Cons list (other, tail) − >

begin collision (me, other); process all collisions (me, tail) end

end

list = Cons list(other, tail)⇒ list � tail⇒ (me, list) � (me, tail)

15

Several other Static Analyses

• No instantaneous loops

• No uncontrolled thread creation in loops
loop begin thread m (); cooperate end

• No thread creation while unlinked (unlink thread m ())

• Events used in correct context

– Generated values should also be stratified

– No reference embedded in generated value

– No event shared by distinct schedulers

– No use of events while unlinked

Result: a well-typed program runs in bounded memory,
without data-races, and instants always terminate

16

References

Basic reactive model:

• A Synchronous pi-Calculus, R. Amadio, Journal of Information
and Computation 205, 9 (2007) 1470-1490.

Memory separation only, 1 scheduler, no events:

• Cooperative Threads and Preemptive Computations, Dabrowski,
F. and Boussinot, F., Proceedings of TV’06, Seattle, 2006.

Model without distinction module/function nor join (memory
separation proved) + polynomial resource control:

• Programmation Réactive Synchrone, Langage et Contrôle des
Ressources, F. Dabrowski’s Thesis, Paris 7, June 2007.

Ongoing work:

• Formalisation of FunLoft, F. Boussinot, I. Castellani, F.
Dabrowski.

17

Plan

1. Mixing preemption & cooperation: the FairThreads model

2. Safe reactive programming: the FunLoft language

3. Colliding particles example

4. Implementation on multicore architectures

5. RGC

6. Conclusion

18

Example of Code: Colliding Particles

Type of particles:

type particle_t = Particle of

float ref * // x coord

float ref * // y coord

float ref * // x speed

float ref * // y speed

color_t // color

Module defining the particle behaviour:

let module particle_behavior (collide_event,color) =

let s = new_particle (color) in

begin

thread bounce_behavior (s);

thread collide_behavior (s,collide_event);

thread draw_behavior (s);

end

Particle s is shared by the three threads

19

Collision Behaviour

type ‘a list = Nil_list | Cons_list of ‘a * ‘a list

let process_all_collisions (me,list) =

match list with

Nil_list -> ()

| Cons_list (other,tail) ->

begin collision (me,other); process_all_collisions (me,tail) end

end

let module collide_behavior (me,collide_event) =

let r = ref Nil_list in

loop begin

generate collide_event with particle2coord (me);

get_all_values collide_event in r;

process_all_collisions (me,!r);

inertia (me);

end

Function process all collisions proved to terminate. The
loop in collide behavior proved to be not instantaneous

20

Global System

let module main () =

let draw_event = event in

let collide_event = event in

begin

thread graphics (maxx,maxy,BLACK);

thread draw_processor (draw_event,size);

repeat particle_number do

thread particle_behavior (collide_event,draw_event,GREEN);

end

The program is ok: no possibility of data-races because
shared particle data structures are only accessed by
threads linked to the same scheduler

21

Plan

1. Mixing preemption & cooperation: the FairThreads model

2. Safe reactive programming: the FunLoft language

3. Implementation on multicore architectures

4. RGC

5. Conclusion

22

Multicore Programming

• How can a single application benefit from a multicore
architecture? Answer: multithreading!

• General problem: how to get maximum of concurrency +
absence of data-races + maximum of parallelism

• Specific problem: how to adapt the colliding particles
simulation to multicore machines?

Idea: 2 schedulers, each one simulating half of the particles

• Problem 1: strong synchronisation between schedulers needed
(to animate particles uniformly).

• Problem 2: collide event shared between the 2 schedulers
(forbidden because the schedulers are asynchronous).

23

Proposal: Synchronised Schedulers

• Strong synchronisation between schedulers (common ends of
instants), but parallelism during instants

• No sharing of memory (to avoid data races)

• Events shared among synchronised schedulers

24

Multithreaded Colliding Particles

let s1 = scheduler and s2 = scheduler

let module main () =

let draw event = event in

let collide event = event in

begin

link s1 do begin

thread graphics (maxx,maxy,BLACK);

thread draw processor (draw event,size);

repeat particle number/2 do

thread particle behavior (collide event,draw event,GREEN);

end;

link s2 do

repeat particle number/2 do

thread particle behavior (collide event,draw event,RED);

end

25

Demo

• CPU usage (left: 1 scheduler, right: 2 schedulers)

100% CPU 150% CPU

• Time to simulate 500 particles during 100 instants
1 sched 2 scheds

real 0m21.832s 0m14.189s

user 0m21.102s 0m21.369s

sys 0m0.220s 0m0.379s

26

Plan

1. Mixing preemption & cooperation: the FairThreads model

2. Safe reactive programming: the FunLoft language

3. Implementation on multicore architectures

4. RGC

5. Conclusion

27

Reactive GC (basic ideas)

• Main objective: responsiveness

• Based on the notion of instant

• Concurrent, parallel, on-the-fly, generational

• No “stop-the-world” phase (as with tracing-based GCs)

• Unable to handle general cyclic data structures

28

RGC Algorithm

• References have a status protected/unprotected (initially
unprotected)

• Turns protected when needs to survive at the next instant (ex:
created by a thread)

• Unprotected objects can be safely collected at the end of the
current instant (ex: created by function) by the scheduler to
which they belong

• Protection level associated to protected objects. Collection
when the protection level falls to 0 (as with reference counting
based GCs)

29

RGC Algorithm

• Generational aspect: short-living = unprotected = one instant,
long-living = protected = several instants

• Concurrent: collection by one scheduler, allocation by another

• Parallel: collection in real parallelism by 2 schedulers run on 2
different cores (protection needs locks, in the general case)

• On-the-fly: does not require full halt of the system
(“stop-the-scheduler” instead of “stop-the-world”)

30

Conclusion

FunLoft is experimental!

• Lack of realistic bounds (polynomial?)

• Over-restricted detection of termination of functions

• No distribution, no objects, etc...

FunLoft provides:

• Concurrent programming with clear semantics

• Static analyses to prevent data-races and memory leaks, and to
ensure reactivity

• Efficient implementation: large number of components

• Support for multithreaded applications on multicore machines

Compiler available at www.inria.fr/mimosa/rp/FunLoft

31

