
Reactive Garbage
Collector

Frédéric Boussinot
INRIA Méditerranée

http://www-sop.inria.fr/members/Frederic.Boussinot

ANR-08-EMER-010

May 2009

Friday, May 29, 2009

Standard GC
• Tracing / Reference counter based algorithms

• Tracing-based GCs trace the reachable objects through the system
memory and collect unreachable objects

• Reference-counter GCs check the number of references to an object and
collect it as soon as the number falls to zero

• Issues with reference counting:
• Run-time overhead of reference counters management
• Difficulties to handle cyclic data structures

• Issues with tracing:
• Entire system must be suspended: “stop-the-world” phase
• Whole memory may have to be considered

• Tracing usually prefered (Boehm's GC)

Friday, May 29, 2009

memory

Tracing Example

unreachable cycle
to be

collected

thread thread

Friday, May 29, 2009

memory

Tracing Example

unreachable cycle
to be

collected

thread thread

Friday, May 29, 2009

memory

Tracing Example

unreachable cycle
to be

collected

threadthread

Marking of reachable objects
Friday, May 29, 2009

memory

Tracing Example

threadthread

Marking from both threads before collection
Both threads suspended during collection

Friday, May 29, 2009

memory

Ref Counting Example

thread thread

1
1

1

1

Count = number of objects pointing the target

Friday, May 29, 2009

memory

Ref Counting Example

thread thread

1

2 1

2
1

1

Friday, May 29, 2009

memory

Ref Counting Example

thread thread

0

1 1

2
1

1

Collection when ref-counter falls to 0

Friday, May 29, 2009

memory

Ref Counting Example

thread thread

1 1

1
1

1

Friday, May 29, 2009

memory

Ref Counting Example

thread thread

1 1

0
1

1

Transitive collection when counter = 0

Friday, May 29, 2009

memory

Ref Counting Example

thread thread

1 1

0

0

Friday, May 29, 2009

memory

Ref Counting Example

unreachable cycle

thread thread

1 1

Uncollected cyclic structure

Friday, May 29, 2009

Ref Counting Example

thread

1

Overhead of ref-counter managment: useless
operations performed

Friday, May 29, 2009

Ref Counting Example

thread

2

increment the counter

Friday, May 29, 2009

Ref Counting Example

thread

1

decrement the counter: previous increment
was useless

Friday, May 29, 2009

GC Characteristics
• Concurrent: several concurrent mutators (avoid one
big lock...)
• Generational: long living/short living objects processed
differently
• Parallel: several parallel mutators/collectors (avoid
data-races)
• On-the-fly: no “stop-the-world” phase (need to stop all
the cores...)
• Distributed: collection of remote references

Friday, May 29, 2009

Reactive GC

• Main objective: responsiveness
• Based on the notion of instant
• Mix of tracing and reference counting techniques
• Concurrent, parallel, generational
• On-the-fly: no “stop-the-world” phase
• Unable to handle general cyclic data structures

Friday, May 29, 2009

RGC Algorithm
• References have a status protected/unprotected (initially
unprotected)
• Turn protected when need to survive at the next instant (ex:
created by a thread)
• Unprotected objects (ex: created by a function) can be
safely collected at the end of the current instant by the
scheduler to which they belong
• Protection level associated to protected objects. Collection
when the protection level falls to 0 (as in reference counting
based GCs)

Friday, May 29, 2009

scheduler memory

RGC Example

thread

1 1

thread

nNot possible:

unprotected

protected

1
1 2

1

Friday, May 29, 2009

scheduler memory

RGC Example

thread

1 1

thread

nNot possible:

unprotected

protected

1
1 2

1

Friday, May 29, 2009

scheduler memory

RGC Example

thread

1 1

thread

nNot possible:

unprotected

protected

1
1 2

2

Friday, May 29, 2009

scheduler memory

RGC Example

thread

1 1

thread

Collection of unprotected at the end of instant

1
1 2

2

Friday, May 29, 2009

scheduler memory

RGC Example

thread

Collection of protected (with counter = 0) not
before the end of instant

protected

0
1 2

2

1 1

Friday, May 29, 2009

scheduler memory

RGC Example

thread protected

0
1 2

2

1 1

Friday, May 29, 2009

scheduler memory

RGC Example

thread protected

0
1 2

2

1 1

Friday, May 29, 2009

scheduler memory

RGC Example

thread protected

0 2

2

1 1

Friday, May 29, 2009

scheduler memory

RGC Example

thread protected

1

1

1 1

Friday, May 29, 2009

scheduler memory

RGC Example

thread

1 1

thread

1
1 2

1

Transitive protection (may be expensive)

Friday, May 29, 2009

scheduler memory

RGC Example

thread

1 1

thread

1
1 2

1

1

Friday, May 29, 2009

scheduler memory

RGC Example

thread

1 1

thread

1
1 2

1

1
1

Friday, May 29, 2009

scheduler memory

RGC Example

thread

1 1

thread

1
1 3

1

1
1

1

1

Friday, May 29, 2009

RGC Example

scheduler memory

n

scheduler memory

unprotected

• Migration implies protection. Never occur:

• Parallel collections are possible
• Locks must be associated to ref-counters:

collection
phase

2 10

Friday, May 29, 2009

RGC Example

• Parallel collections are possible
• Lock must be associated to ref-counters:

collection
phase

2 00

concurrent access to ref counter 2

scheduler memory

n

scheduler memory

unprotected

• Migration implies protection. Never occur:

Friday, May 29, 2009

RGC Algorithm
• Generational aspect: short-living = unprotected = one instant,
long-living = protected = several instants
• Concurrent: collection by one scheduler, allocation by
another
• Parallel: collection in real parallelism by 2 schedulers run on
2 different cores (protection needs locks, in the general case)
• On-the-fly: does not require full halt of the system (“stop-the-
scheduler” instead of “stop-the-world”)

Friday, May 29, 2009

Conclusion

• RGC used in the FunLoft compiler

• Absence of freezing effects on the simulations used as
benchmarks (collisions of particles, cellular automata,
preys-predators)

• Worst case: ~time*3 compared to Boehm’s GC

• Actually, RGC is encapsulated in Boehm’s GC (for
protected cyclic data) in the FunLoft compiler

Friday, May 29, 2009

