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Standard GC
• Tracing / Reference counter based algorithms

• Tracing-based GCs trace the reachable objects through the system 
memory and collect unreachable objects

• Reference-counter GCs check the number of references to an object and 
collect it as soon as the number falls to zero

• Issues with reference counting:
•  Run-time overhead of reference counters management
•  Difficulties to handle cyclic data structures

• Issues with tracing:
• Entire system must be suspended: “stop-the-world” phase
• Whole memory may have to be considered

• Tracing usually prefered (Boehm's GC)
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Tracing Example
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Marking of reachable objects
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Tracing Example

threadthread

Marking from both threads before collection
Both threads suspended during collection
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Ref Counting Example

thread thread
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Count = number of objects pointing the target
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Ref Counting Example
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Collection when ref-counter falls to 0
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Ref Counting Example
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Transitive collection when counter = 0
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Ref Counting Example
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Ref Counting Example

unreachable cycle

thread thread

1 1

Uncollected cyclic structure
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Ref Counting Example

thread

1

Overhead of ref-counter managment: useless 
operations performed
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Ref Counting Example

thread

2

increment the counter
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Ref Counting Example

thread

1

decrement the counter: previous increment 
was useless
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GC Characteristics
• Concurrent: several concurrent mutators (avoid one 
big lock...)
• Generational: long living/short living objects processed 
differently
• Parallel: several parallel mutators/collectors (avoid 
data-races)
• On-the-fly: no “stop-the-world” phase (need to stop all 
the cores...)
• Distributed: collection of remote references
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Reactive GC

• Main objective: responsiveness
• Based on the notion of instant
• Mix of tracing and reference counting techniques
• Concurrent, parallel, generational
• On-the-fly: no “stop-the-world” phase
• Unable to handle general cyclic data structures
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RGC Algorithm
• References have a status protected/unprotected (initially 
unprotected)
• Turn protected when need to survive at the next instant (ex: 
created by a thread)
• Unprotected objects (ex: created by a function) can be 
safely collected at the end of the current instant  by the 
scheduler to which they belong
• Protection level associated to protected objects. Collection 
when the protection level falls to 0 (as in reference counting 
based GCs)
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RGC Example
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RGC Example
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RGC Example

thread

1 1

thread

Collection of unprotected at the end of instant

1
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scheduler memory

RGC Example

thread

Collection of protected (with counter = 0) not 
before the end of instant

protected

0
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RGC Example

thread protected
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RGC Example
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RGC Example

thread protected
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RGC Example

thread protected
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RGC Example

thread
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Transitive protection (may be expensive)
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RGC Example
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RGC Example

scheduler memory

n

scheduler memory

unprotected

• Migration implies protection. Never occur: 

• Parallel collections are possible
• Locks must be associated to ref-counters:

collection 
phase

2 10
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RGC Example

• Parallel collections are possible
• Lock must be associated to ref-counters:

collection 
phase

2 00

concurrent access to ref counter 2

scheduler memory

n

scheduler memory

unprotected

• Migration implies protection. Never occur: 
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RGC Algorithm
• Generational aspect: short-living = unprotected = one instant, 
long-living = protected = several instants
• Concurrent: collection by one scheduler, allocation by 
another
• Parallel: collection in real parallelism by 2 schedulers run on 
2 different cores (protection needs locks, in the general case)
• On-the-fly: does not require full halt of the system (“stop-the-
scheduler” instead of “stop-the-world”)
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Conclusion

• RGC used in the FunLoft compiler

• Absence of freezing effects on the simulations used as 
benchmarks (collisions of particles, cellular automata, 
preys-predators)

• Worst case: ~time*3 compared to Boehm’s GC

• Actually, RGC is encapsulated in Boehm’s GC (for 
protected cyclic data) in the FunLoft compiler
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