
Distributed
Programming with

FunLoft
Frédéric Boussinot

INRIA Méditerranée
http://www-sop.inria.fr/members/Frederic.Boussinot

ANR-08-EMER-010

March 2009

Multiprocess Model

send "remote" 1 "evt" val

machine 0 / process 0

sched 1

sched n

generate evt val

remote / process 1

initial scheduler

...

...

network

• Asynchronous execution of the processes
• Execution of send is not instantaneous
• Marshalling/unmarshalling of val
• Possible unknown events (run-time error)
• Possible ill-typed values (run-time error)

Multiprocess Model - 2
• Send can take time or fail: static analysis to check that it is

always called while unlinked

• Elimination of data races: val should not be mutable (or
embed a ref or an array; enforced via effects in the type
system)

• Val should be defined consistently in both sites: signatures
of types are associated to transmitted values

• Implementation using basic RPC (with XDR for
marshalling/unmarshalling values)

Type Signatures
• Objective: detect errors due to re-compilation of

a process with different type definitions (safety
concern). Not for detecting cheating attempts!

• Very primitive solution: signature = definition

• type t = Nil | Cons of int * t
type t1 = U | T1 of t

Produces:

char* t_signature = "tNilConsintt";
char* t1_signature = "t1UT1tNilConsintt";

bool

Pingpong
• Two symmetric processes exchanging a ball in turn

through the network

• The simple solution doesn’t work:

loop
 begin
 await ball;
 trace ();
 unlink send (target,"ball",())
 end

The ball can be lost, because of asynchrony

Pingpong - 2

let module main (argv) =
 let msg = !argv[0] in
 let target = !argv[1] in
 let num = string2int (!argv[2]) in
 thread play (msg,target,num)

let module play (msg,target,num) =
 let i = ref 0 in
 begin
 await ball;
 loop
 join
 begin
 thread send_ball (target,num);
 await ball;
 i++;
 trace (msg,!i);
 cooperate;
 end
 end

let ball = event

let trace (s,i) =
 begin
 print_string (s);
 print_int (i);
 print_string (" ! ");
 flush ();
 end

let module send_ball (target,num) =
 unlink
 send (target,num,"ball",())

Solution: launch the ball at the next instant

Pingpong - 3
• No deadlock, no lost of balls

• Correct even with a unique process

• No memory leak

Conclusion
• Efficiency of transfers of signatures ?

• Detection of cheating attempts ?

• Interfacing with SugarCubes, ReactiveML,
and HOP ?

FunLoft

HOP RML

SC

