
Dynamic Synchronous
Language
Frédéric Boussinot

INRIA Méditerranée
http://www-sop.inria.fr/members/Frederic.Boussinot

ANR-08-EMER-010

January 2010

Jean-Ferdy Susini
CNAM - Cédric

Introduction
• How to preserve compile-time checked safety while
allowing dynamic features, such that program
interpretation (scripting) ?
• How dynamic features can be introduced in
FunLoft ?

• Basic model considered
• Description of the instructions
• Issue of memory isolation
• Implementation
• Related work

Plan

Basic Model
• Systems are composed of
several sites. Sites define:
- events
- functions and wrappers
- tasks

fi
ei

ti
wi

• Events are used to trigger execution (basically,
they are generated and awaited)

e1 e2

f1 f2 fk

...
...

t1 t2 tp...
... wnw1 w2

• Events are dynamically created and different on each
site

Basic Model - 2

• All sites define the same functions, tasks, and
wrappers which are implemented by the programmer

• Wrappers are special functions returning a value
(int or bool)

• Each site executes an instruction
(a tree)

e1 e2

f1 f2 fk

...
...

t1 t2 tp...
... wnw1 w2• Instructions can be dynamically

added to sites

• Functions and wrappers are atomic and terminate
immediately, tasks are not

Basic Model - 2

• All sites define the same functions, tasks, and
wrappers which are implemented by the programmer

• Wrappers are special functions returning a value
(int or bool)

• Each site executes an instruction
(a tree)

• Instructions can be dynamically
added to sites

• Functions and wrappers are atomic and terminate
immediately, tasks are not

Scripts
• nothing
• fun (params)
• launch task (params)
• s1; s2
• s1 || s2
• if bw (params) then s1 else s2 end
• repeat iw (params) do s end
• while bw (params) do s end
• cooperate
• generate e
• await e
• do s watching e
• drop s in site

Cooperative
parallelism

+
round-robin

Synchronous
parallelism
(instants)

Asynchronous
parallelism

while const_true () do
 await go; print ("ok");
 cooperate
end

• while const_true () do i end executes i forever

Prints a message each
time “go” is generated

Infinite Loops

• The body of a loop should not terminate instantly; if it
is the case, a cooperate is automatically introduced by
the system (at run-time)

• do i watching e forces the termination of the
execution of i when e is generated

Preemption

• Preemption is “weak”
generate e;
do print ("ok") watching e ok is printed

• Preemption is never immediate
generate e;
do nothing watching e;
print ("ok")

ok is printed
at next instant

• No “causality error”
do generate e watching e

Migration
• drop i in s drops i in the site s, and terminates

drop

Site s

i

Migration

• Synchronous execution of i on the remote site s:
 drop i; generate done in s || await done

• To generate an event in the remote site s:
drop generate e in s

• To call a function of the remote site s:
drop f (...) in s

nothing

Site s

i

• drop i in s drops i in the site s, and terminates

Tasks
• Task are used when atomicity and instantaneity
cannot be assumed:
- use of blocking functions
- need of migration

let getchar_result = ref ' 'let module getchar () =
 let loc = local ref ' ' in
 begin
 unlink

 loc := fl_getchar ();
 link main_scheduler do
 getchar_result := !loc;
 end

let module task (fun,params) =
 if fun = "getchar" then
 run getchar ()
 ...

• Example: getting a character from the keyboard

Memory Isolation
• Memory is accessed by calls, tasks, and wrappers

• The language definition demands that the memory
of one site cannot be accessed concurrently by the
functions, tasks, and wrappers run on an other site

Cons(0,
Nil)

Cons(1,)

e1 e2

f1 f2 fk

...
...

t1 t2 tp...
... wnw1 w2

Memory Isolation
• Memory is accessed by calls, tasks, and wrappers

• The language definition demands that the memory
of one site cannot be accessed concurrently by the
functions, tasks, and wrappers run on an other site

Cons(0,
Nil)

Cons(1,)

Memory Isolation
• Memory is accessed by calls, tasks, and wrappers

• The language definition demands that the memory
of one site cannot be accessed concurrently by the
functions, tasks, and wrappers run on an other site

Cons(0,
Nil)

Cons(1,)

Memory Isolation - 2
• Consider a reference used in the following way:

there is a type error: r could be accessed
concurrently by two distinct sites

let module int_wrapper (fun,res) =
 if fun = "r_read" then res := !r
 ...

let r = ref 0
let call_dispatch (fun,params) =
 if fun = "r_write" then r := 1
 ...

let module int_wrapper (fun,res) =
 if fun = "r_read" then

 link s do res := !r
 ...

let module task_dispatch (fun,params) =
 if fun = "r_write" then

 link s do r := 1
 ...

• Possible solution: link to the same site

Lacks
• let event e in i end declares an event e local to the
instruction i
• Valued events
• Suspend/resume instructions
• Interface with the network
• Interpretor of scripts
• ...

Programming
1. Include the definition of instructions, evaluation, etc.
2. Define the sites
3. Define the calls, tasks, and wrappers needed

- adapt the dispatchers for functions, tasks, and
wrappers, to call them

4. Compile the whole system with FunLoft
5. Run the executable code produced

• All the sites share the same calls, tasks, and wrappers
• Sites cannot be dynamically created

Strong Limitations

Implementation
• Coded in FunLoft with finite memory checks
switched-off (recursive modules and thread creation
in loops allowed)
• Program of ~ 800 lines of code
• Micro-steps based execution, threads used to
evaluate instructions, termination of instructions
signaled by events
• Site = scheduler

• Code production in SugarCubes

Related Work
• SugarCubes/Jr/ReactiveMachines
• Reactive Scripts (over Tcl/Tk)
• ReactiveML

Conclusion
• Synchronous language with dynamic features
• A kind of "orchestration language"
• Mixing of cooperative/preemptive approaches
• Safety coming from FunLoft (memory protection)
• Mapping of sites on multicore architectures

Future Work:

• Distribution over the network
• Interpretor

Draft paper

Summary

type instruction_t =
 Nothing
 | Cooperate
 | Print of string
 | Call of string * string list
 | Launch of string * string list
 | Seq of instruction_t * instruction_t
 * ref bool * ref thread_t
 | If of bool_wrapper_t * instruction_t * instruction_t
 * ref bool * ref thread_t
 | Par of instruction_t * instruction_t
 * ref thread_t * ref thread_t
 | Loop of instruction_t
 * ref thread_t
 | Repeat of int_wrapper_t * instruction_t
 * ref thread_t
 | Generate of string
 | Await of string
 | Watching of string * instruction_t
 * ref thread_t * ref thread_t
 | Drop of ref site_r * instruction_t

type bool_wrapper_t =
 True
 | False
 | BoolWrapper of string * string list

type int_wrapper_t =
 IntConstWrapper of int
 | IntWrapper of string * string list

