
Relaxed Semantics of Concurrent Programming Languages

Gérard Boudol, Bernard Serpette
INRIA Sophia Antipolis

{Gerard.Boudol,Bernard.Serpette}@inria.fr

Gustavo Petri
Purdue University
gpetri@gmail.com

Abstract
We propose a novel, operational framework to formally describe
the semantics of concurrent programs running within the context
of a relaxed memory model. Our framework features a “tempo-
rary store” where the memory operations issued by the threads are
recorded, in program order. A memory model then specifies the
conditions under which a pending operation from this sequence is
allowed to be globally performed, possibly out of order. Themem-
ory model also involves a “write grain,” accounting for architec-
tures where a thread may read a write that is not yet globally vis-
ible. We illustrate our approach by way of examples, and discuss
some extensions. We have build a software simulator allowing us
to run litmus tests in our semantics.

1. Introduction
The hardware evolution towards multicore architectures means that
the most significant future performance gains will rely on using
concurrent programming techniques at the application level. This
is currently supported by some general purpose programminglan-
guages, such asJAVA or C/C++ (using a Pthread library). The se-
mantics that is assumed by the application programmer usingsuch
a concurrent language is the standardinterleavingsemantics, also
known assequential consistency(SC, [22]). This is also the se-
mantics assumed by most verification methods. However, it iswell-
known [3] that this semantics isnot the one we observe when run-
ning concurrent programs in optimizing execution environments,
i.e. compilers and harware architectures, which are designed to run
sequential programs as fast as possible. For instance, let us consider
the program

p := tt ;
r0 := ! q

‚‚ q := tt;
r1 := ! p

(1)

where we use ML’s notation! p for dereferencing the pointer – or
reference, in ML’s jargon –p. If the initial state is such that the val-
ues ofp andq are bothff , we cannot get, by the standard interleav-
ing semantics, a state where the value of bothr0 andr1 is ff . Still,
running this program may, on most multiprocessor architectures,
produce this outcome. This is the case for instance of a TSO ma-
chine [3] where the writesp := tt andq := tt are put in (distinct)
buffers attached with the processors, and thus delayed withrespect
to the reads! q and! p respectively, which get their value from the
(not yet updated) main memory. In effect, the reads arereordered
with respect to the writes. Other reordering optimizations, which
may also be introduced by compilers, yield similar failuresof se-
quential consistency (see the survey [3]), yet sequential consistency
is generally considered as a suitable abstraction at the application
programming level.

Then a question is: how to ensure that concurrent programs run-
ning in a given optimized execution environment appear, from the
programmer’s point of view, to be sequentially consistent,behaving
as in the interleaving semantics? A classical answer is: theprogram
should not give rise to data races in its sequentially consistent be-
havior, keeping apart some specific synchronization variables, like

locks. This is known as the “DRF (Data Race Free) guarantee,”that
was first stated in [4, 18], and has been widely advocated since then
(see [2, 6, 28]). An attractive feature of the DRF guarantee is that it
allows the programmer to reason in terms of the standard interleav-
ing semantics alone. However, there are still some issues with this
property. First, one would sometimes like to know what racy pro-
grams do, for safety reasons as inJAVA for instance, or for debug-
ging purposes, or else for the purpose of establishing the validity of
program transformations in a relaxed memory model. (A way that
has been explored [26, 29] is to associate exceptions with races,
but in this approach optimizing code transformations is restricted
to specific regions, and concurrent programming is constrained to
observe a strict discipline, to avoid too many exceptions.)Second,
the DRF guarantee is more an axiom, or a contract, than a guaran-
tee: once stated that racy programs have undefined semantics, how
do we indeed guarantee that a particular implementation provides
sequentially consistent semantics for race free programs?

Clearly, to address such a question, there is a preliminary prob-
lem to solve, namely: how do we describe the actual behavior of
concurrent programs running in a relaxed execution environment?
This is known to be a difficult problem. For instance, to the best
of our knowledge, theJAVA Memory Model (JMM) [28] is still
not completely fixed [32]. Moreover, its current formal descrip-
tion is fairly complex. To our view, this is true also regarding the
formalization of the C++ primitives for concurrent programming
[5, 6], or the formalization of the PowerPC memory model [31].
Our intention here isnot to describe a specific memory model, be
it a hardware, low-level one, or the memory model for a high-level
concurrent programming language, likeJAVA or C++. Our aim is
rather to design a semantical framework that would be

• flexible enough to allow for the description of a wide range of
memory models;

• simple enough to support the intuition of the programmer and
the implementer;

• precise enough to support formal analysis of programs.

(Since we are talking about programs, there will be a programming
language, but the particular choice we make is not essentialto our
work.)

To address the problem stated above, we adopt theoperational
style advocated in [7, 33], which, besides being “widely accessi-
ble to working programmers” [33], allows us to use standard tech-
niques to analyse and verify programs, proving properties such as
the DRF guarantee [7] for instance. In [7, 33], write buffersare ex-
plicitly introduced in the semantic framework, and their behavior
accounts for some of the reorderings mentioned above. The model
we propose goes beyond the simple operational model for write
buffering, by introducing into the semantic framework a different
intermediate structure, between the shared memory and the threads.
The idea is to record in this structure the memory operations– reads
and write, or loads and stores, in low level’s terminology – that are

issued by the threads, in program order. We call the sequenceof
pending operations issued by the threads atemporary store. Then
these operations may be delayed, and finally performed, withre-
gard to the global shared memory, out of order. To be globallyper-
formed, an operation from the temporary store must be allowed to
overtake the operations that were previously issued, that is, the op-
erations that precede it in the temporary store. Then a key ingredi-
ent in our model is thecommutability predicate, that characterizes,
for a given memory model, the conditions under which an operation
from the temporary store may be performed early. This accounts in
particular for the usual relaxations of the program order, and also
for the semantics of synchronization constructs, like barriers.

In some relaxed memory models, some fairly complex behav-
iors arise that cannot be fully explained by relaxations of the pro-
gram order. These behaviors are caused by the failure of write
atomicity [3]. To deal with this feature, we introduce another key
ingredient to characterize a memory model. In our framework, with
each pending write is associated avisibility, that is the set of threads
that can see it, and can therefore read the written value. Depend-
ing on the memory model, and more specifically on the (abstract)
communicating network topology between threads (or processors),
not any set of threads is allowed to be a legitimate visibility. For
instance, the Sequential Consistency model [22] only allows the
empty set, and the singletons to be visibility sets, meaningthat only
the thread issuing a write can see it before it is globally performed.
Then the definition of a memory model involves, besides the com-
mutability predicate, a“write grain,” which specifies which visibil-
ity a write is allowed to acquire. This accounts for the fact that some
threads can read others’ writes early [3]. Our model then easily ex-
plains, in operational terms, the behavior of a series “litmus tests,”
such as IRIW, WRC, RWC and CC discussed in [6] for instance,
and the tests from [31], designed to investigate the PowerPCarchi-
tecture. Regarding this particular memory model, we found only
three cases where our formalization of the main PowerPC barri-
ers is more strict than the one of [31]. However, these are cases
where the behavior that our model forbids was never observeddur-
ing the extensive experiments on real machines done by Sarkar &
al. (and reported in files available on the web as a supplementto
their paper), and therefore our model is not invalidated by these
experimental results. Needless to say, the experimental test suite
provided by Sarkar & al. was invaluable for us to see which be-
haviors the model should explain. These litmus tests were, among
others, run in a software simulator that we have build to experiment
with our semantics.

Compared to other formalizations of relaxed semantics, our
model is truly operational. This means in particular that the tempo-
rary store is not considered modulo rewriting, as in [10]. Also, con-
trarily to [8] for instance, our model preserves a notion ofcausality:
a read can only return a value that is present in the shared mem-
ory, or that is previoulsy written by some thread. Our notionof
a temporary store is quite similar to the “reorder box” of [30],
but formulated in the standard framework of programming lan-
guage semantics. Regarding the relaxation of write atomicity, the
only work we know that proposes an operational formulation of
this feature is [31]. We think however that our formalization, by
means of write visibility, is much simpler than the one suggested
in this paper. Moreover, by relying on a concrete notion of state,
our model should be more amenable to standard programming lan-
guages proof techniques, like for establishing that programs only
exhibit sequentially consistent behavior [7], or more generally to
achieve mathematical analysis and verification of programs.

2. The Core Language
Our language is a higher-order, imperative and concurrent language
à la ML, that is a call-by-valueλ-calculus extended with constructs
to deal with a mutable store, to dynamically spawn threads and to
synchronize their actions. (This choice of a functional core lan-
guage is largely a matter of taste.) In order to simplify sometech-
nical developments, the syntax is given in administrative normal
form [16]. In this way, only one construction, namely the applica-
tion of a function to an argument, is responsible for introducing an
evaluation order (the program order). Assuming given a setVar of
variables, ranged over byx, y, z . . ., the syntax is as follows:

v ::= x | λxe | tt | ff | () values

b ∈ Bar barriers

e ∈ L ::= v | (ve) | (if v then e0 else e1) expressions

| (ref v) | (! v) | (v0 := v1)

| (thread e) | (join v)

| (with v do e) | b

As usual, the variablex is bound in an expressionλxe, and we
consider expressions up toα-conversion, that is up to the renaming
of bound variables. The capture-avoiding substitution of avaluev
for the free occurrences ofx in e is denoted{x 7→v}e. We shall use
some standard abbreviations like(let x = e0 in e1) for (λxe1e0),
which is also denotede0 ; e1 wheneverx does not occur free ine1.
We shall sometimes (in the examples) write expressions in standard
syntax, which is easily converted to administrative form, like for
instance converting(e0e1) into (let f = e0 in (fe1)), or (v := e)
into (let x = e in (v := x)).

The barrier constructs are “no-ops” in the abstract (interleav-
ing) semantics of the language. Such synchronization constructs
are often considered low-level, and inserted at compile time [13,
21, 23, 24, 34]. However, we believe they can also be useful ina
high-level concurrent programming language, for “relaxedmem-
ory aware” programming (see [6]). We do not focus on a particu-
lar setBar here, so the language should actually beL(Bar), but
in the following we shall give some examples of useful barriers,
and see how to formalize their semantics. The thread spawning
construct(thread e), as well as the(join v) construct, are stan-
dard. In (with v do e) the valuev is intended to denote a ref-
erence. The intuitive meaning is that this expression acquires, if
possible, the pointer denoted byv for exclusive use ine, and re-
leases it upon termination. That is, in our language synchronization
is only concerned with memory operations, and in particularac-
quiring/releasing pointers, not locks. We must point out that our
semantical framework is not tied to this particular form of locking,
and that other choices could be supported as well. For instance, the
more sophisticated “load-reserve/store conditional” instruction of
PowerPC should be amenable to a similar treatment.

As usual, to formalize the operational semantics of the lan-
guage, we have to extend it, introducing some run-time values. We
assume given a setRef of references, ranged over byp, q . . . and
a setTid of thread indentifiers, ranged over byt. These are the
values returned by reference and thread creation respectively. Then
the language is extended as follows:

v ∈ Val ::= · · · | p | t run-time values

e ∈ bL ::= v | · · ·

ē ∈ Expr ::= e | (vē) | (ē\p) run-time expressions

The expression(ē\p) represents the program̄e running with an ex-
clusive access to the pointerp, which has been previously acquired.
If we were focusing on low-level memory models, we should dis-
tinguish registersform references. In this case, a writer := ! p
wherer is such a register is aload of p, whereas astore is just a
write p := v wherep is a reference. This distinction is then useful
in discussing reorderings and barriers, since a load is usually not

(S,O, (t, E[(λxev)]) ‖T) → (S,O, (t, E[{x 7→v}e]) ‖T)

(S,O, (t, E[(if tt then e0 else e1)]) ‖T) → (S,O, (t, E[e0]) ‖T)

(S,O, (t, E[(if ff then e0 else e1)]) ‖T) → (S,O, (t, E[e1]) ‖T)

(S,O, (t, E[(ref v)]) ‖T) → (S ∪ {p 7→ v},O, (t, E[p])‖T) if p ∈ Ref − dom(S)

(S,O, (t, E[(! p)]) ‖T) → (S,O, (t, E[v]) ‖T) if S(p) = v

(S,O, (t, E[(p := v)]) ‖T) → (S[p := v],O, (t, E[()]) ‖T)

(S,O, (t, E[(thread e)]) ‖T) → (S,O, (t, E[t′])‖(t′, e) ‖T) if t′ 6∈ dom(T)

(S,O, (t, E[(join t′)]) ‖T) → (S,O, (t, E[()]) ‖T) if T (t′) ∈ Val

(S,O, (t, E[(with p do e)]) ‖T) → (S,O, (t, E[e])‖T) if p ∈ dom(O) & O(p) = t

(S,O, (t, E[(with p do e)]) ‖T) → (S,O ∪ {p 7→ t}), (t, E[(e\p)]) ‖T) if p 6∈ dom(O)

(S,O, (t, E[(v\p)]) ‖T) → (S,O\p, (t, E[v]) ‖T)

(S,O, (t, E[b]) ‖T) → (S,O, (t, E[()]) ‖T)

Figure 1: Reference Operational Semantics

considered as a write. In the examples we shall examine, the names
ri suggest that such a reference should actually be regarded asa
register, which is not shared with other threads.

We still usee to range not only over expressions of the source
languageL, but also over expressions built with run-time values,
possibly involving references and thread identifiers. Notice how-
ever that these expressionse ∈ bL do not contain the construct
(\p). A step in the semantics consists in evaluating a redex inside
anevaluation context. The syntax of the latter is as follows:

E ::= [] | E[F] evaluation contexts

F ::= (v []) | ([]\p) frames

As usual, we denote byE[ē] the run-time expression obtained by
filling the hole inE by ē. This is defined by

[][ē] = ē

E[F][ē] = E[F[ē]] where (v [])[ē] = (vē)

([]\p)[ē] = (ē\p)

The semantics is specified as small step transitionsC → C′

between configurationsC, C′ of the form (S,O, T) where S,
O and T are respectively thestore, the ownershipmapping and
the thread system. The storeS, also called here thememory, is
a mapping from a finite setdom(S) of references to values. The
thread systemT is a mapping from a finite setdom(T) of thread
identifiers, subset ofTid , to run-time expressions, andO is a
mapping from a finite setdom(O) of references, contained in
dom(S), intodom(T). If dom(T) = {t1, . . . , tn} andT (ti) = ēi

we also writeT as
(t1, ē1) ‖ · · · ‖(tn, ēn)

We say that a pointerp such thatp ∈ dom(O) andO(p) = t is
ownedby threadt.

The reference operational semantics is given in Figure 1, where
S[p := v], in the rule for reducing(p := v), means updatingp
in the storeS with valuev, and, in the rule for reducing(v\p),
O\p meansO restricted todom(O) − {p}. One can see from
the semantics of(with p do e) that a pointerp can be temporarily
acquired as a private reference by a thread, provided that itis not
already owned by a different thread. Then a threadt is blocked
when it tries to acquire, by executing(with p do e), an exclusive
access to a referencep that is currently private to another thread –
i.e. p ∈ dom(O) with t 6= O(p). That is, reducing(with p do e)
is a synchronization operation. Obviously, for this construct to
be really useful, the programmer is supposed to adhere to the
intended discipline, that is, when a reference is used within a
locking construct in a piece of code, it should be used in thisway
in all the threads of the program. Checking that such a discipline
is enforced has been studied by many authors (see for instance
[1, 9, 14, 19]), and this is a topic that we don’t have to address
here.

3. Relaxed Computations
3.1 Preliminary Definitions

The relaxed operational semantics is formalized by means ofsmall
steps transitions

RC −−→
M

RC ′

between relaxed configurationsRC andRC ′. TheM parameter is
thememory model. Let us first describe the relaxed configurations.
For this we need to introduce some technical ingredients. Inthe
relaxed semantics a read can be issued by a thread, evaluating a
subexpression(! p), while not immediately returning a value. In
this way the read can be overtaken by a subsequent operation.To
model this, we shall dynamically assign to each read operation a
unique identifier, returned as the value read. That is, we extend
the language with names, oridentifiers, to point to future values.
These names are similar to the “placeholder variables” of [15] and
the “prophecy variables” of [27]. The setIdent of identifiers is
assumed to be disjoint fromVar∪Ref , and is ranged over byι. We
shall use̺ to range overRef ∪Ident . The identifiersι ∈ Ident are
valuesin the extended language, still denoted byv, but notice that
Val denotes the set of (not relaxed) values, that do not contain any
identifierι. We shall require that only true values, not relaxed ones,
can be stored. It should be clear that substituting a relaxedvaluev
for an identifierι in an expressione results in a valid expression,
denoted{ι 7→v}e.

Our next technical ingredient is the setMop(L) of memory
operations in the languageL. These represent the instructions
that are issued by the threads, but are not necessarily immediately
performed. The setMop(L) of memory operations comprises the
barriersb ∈ Bar , theacquireoperations

y

p of acquiring a reference
p, and the correspondingreleaseoperations

x

p , theread andwrite
operations, respectively denotedrd̺,ι andwrW,I

̺,v where̺ ∈ Ref ∪
Ident , ι ∈ Ident , W ⊆ Tid is a set of thread names, and
I ⊆ Ident is a set of identifiers. We call the setW in wrW,I

̺,v

the visibility of the write, whereasI is the set of identifiers that
have been bound to the written valuev when performing a read
(we comment on these components below). We also include in
Mop(L) thespawningandjoining operations, respectively written
spwt,e and joint. Finally, we introduce operations of the formrdι

that we call aread mark, meaning that a read has occurred, where
ι serves as identifying the corresponding write. That is, thesyntax
of memory operations is as follows:

ξ ∈ Mop(L) ::= rd̺,ι | rdι | wr
W,I
̺,v | ζ memory operations

ζ ∈ Sync ::= spwt,e | joint synchronization operations

|
y

p |
x

p | b

We can now define arelaxed configurationRC as a tuple

RC = (S,O, σ, T)

(S,O, σ, (t, E[(λxev)]) ‖T) →֒ (S,O, σ, (t, E[{x 7→v}e]) ‖T)

(S,O, σ, (t, E[(if tt then e0 else e1)]) ‖T) →֒ (S,O, σ, (t, E[e0]) ‖T)

(S,O, σ, (t, E[(if ff then e0 else e1)]) ‖T) →֒ (S,O, σ, (t, E[e1]) ‖T)

(S,O, σ, (t, E[(ref v)]) ‖T) →֒ (S,O, σ · (t, wr
∅,∅
p,v), (t, E[p])‖T) where p is fresh

(S,O, σ, (t, E[(! ̺)]) ‖T) →֒ (S,O, σ · (t, rd̺,ι), (t, E[ι]) ‖T) where ι is fresh

(S,O, σ, (t, E[(̺ := v)]) ‖T) →֒ (S,O, σ · (t, wr
∅,∅
̺,v), (t, E[()]) ‖T)

(S,O, σ, (t, E[(thread e)]) ‖T) →֒ (S,O, σ · (t, spwt′,e), (t, E[t]) ‖T) where t′ 6∈ dom(T)

(S,O, σ, (t, E[(join t′)]) ‖T) →֒ (S,O, σ · (t, joint′), (t, E[()]) ‖T) if T (t′) ∈ Val

(S,O, σ, (t, E[(with p do e)]) ‖T) →֒ (S,O, σ, (t, E[e]) ‖T) if p ∈ ⌈E⌉

(S,O, σ, (t, E[(with p do e)]) ‖T) →֒ (S,O, σ · (t,
y

p), (t, E[(e\p)]) ‖T) otherwise

(S,O, σ, (t, E[(v\p)]) ‖T) →֒ (S,O, σ · (t,
x

p), (t, E[v]) ‖T)

(S,O, σ, (t, E[b]) ‖T) →֒ (S,O, σ · (t, b), (t, E[()]) ‖T)

Figure 2: M-Relaxed Operational Semantics (Threads)

whereS, O andT are as above, andσ is a sequence of pairs(t, ξ),
wheret ∈ Tid is a thread name andξ ∈ Mop(L) a memory
operation. The meaning of(t, ξ) in a sequenceσ is that ξ is a
memory operation issued by threadt. The sequenceσ then records
the pending memory operations issued by the threads, which will
not necessarily be performed (on the shared memory) in the order
in which they appear inσ. We shall call such aσ a temporary
store. We denote byΣL the setTid × Mop(L), so that the set
of temporary stores isΣ∗

L, the set of finite sequences overΣL.
We denote byε the empty sequence, and we writeσ · σ′ for the
concatenation of the two sequencesσ andσ′. We say that a relaxed
configuration(S,O, σ, T) is normal wheneverσ = ε, and no
expression occurring in the configuration (that is, in the store S
or the thread poolT) contains an identifier.

3.2 The Relaxed Semantics

We present the relaxed semantics in two parts: the first one de-
scribes the evaluation of the threads, that is, the contribution of the
T component in the semantics, and the second one explains how
the memory operations from the temporary storeσ are performed.
(A similar approach is used in [12].) One could say that the in-
structions executed by the threads are “locally performed,” while
the operations executed from the temporary store will be “globally
performed,” as their effect is made visible to the other threads. The
particular memory modelM is irrelevant to the local evaluation of
threads, and therefore in Figure 2, which presents this evaluation,
we simplify−−→

M
into →֒. In the rules for reducing(ref v) and(! ̺),

“p fresh” and “ι fresh” mean thatp andι do not occur in the con-
figuration. Regarding the reduction of(with p do e), we denote by
⌈E⌉ the set of reference names held in the evaluation contextE,
that is the set of referencesp such that([]\p) occurs inE.

Notice that the threads are always executed in program order,
and that nothing can prevent a reducible expression to be reduced,
except for(join t), which is blocking, waiting for the termination
of the threadt to join. The relaxed semantics differs from the
reference semantics in several ways. The main difference isthat
the effect on the memory – if any – of evaluating the code is
delayed. Namely, instead of updating the memory, the effectof
evaluating(p := v), or more generally(̺ := v) where the exact
reference to update may still be undetermined, consists in recording
the write operation, with a default empty visibility, at theend of
the sequence of pending memory operations. Creating a reference,
reducing(ref v), has the same effect, once a new reference name
is obtained. Notice that we could also issue, before thewr∅,∅

p,v,

an operation like(new p), to be performed later. This might be
closer to an implementation, but this complicates the framework
with no obvious benefit. Reducing(with p do e) or (v\p) has
a similar effect of appending acquire or release instructions as
pending operations. Reducing a dereferencing operation(! ̺) does
not immediately return a proper value (read from the store),but
creates and returns a fresh identifierι ∈ Ident , which has not yet a
definite value, while appending a corresponding read operation to
the temporary store. A barrier just appends itself at the endof the
temporary store.

A relaxed configuration(S,O, σ, T) can also perform actions
that originate from the temporary storeσ. These steps are per-
formed independently from the evaluation of threads, in an asyn-
chronous way. To define these transitions, we need to say a bit
more about the memory modelM. We shall not focus here on a
particular memory model, since our purpose is to design a general
framework for describing the semantics of concurrent programs in
a relaxed setting. However, we shall make some minimal hypothe-
ses about theM parameter. But let us first say whatM consists of.
We assume that this is a pairM = (�,W) made of acommutability
predicate� and a “write grain” W. These two components provide
a formalization of the approach of Adve and Gharachroloo in [3],
who distinguish these two key features as the basis for categorizing
memory models.

The commutability predicate delineates the relaxations ofthe
program order that are allowed in the weak semantics under con-
sideration, and provides semantics for barriers. This firstcompo-
nent� of a memory model is a subset ofΣ∗

L × ΣL, that is a binary
predicate relating temporary storesσ ∈ Σ∗

L with issued operations
(t, ξ) ∈ ΣL. This predicate is expressing which operations issued
by some thread are allowed to be performed early, that is, outof
order in the relaxed semantics. Indeed, if the temporary store is
σ · (t, ξ) ·σ′ with σ � (t, ξ), then the operationξ from threadt may
be globally performed, as if it were the first one, and removedfrom
the temporary store. We readσ � (t, ξ) as:(t, ξ) may overtakeσ,
or: σ allows(t, ξ) to be performed. We assume, as an axiom satis-
fied by any memory model, that the first operation in a temporary
store is always allowed to execute, that is, for anyξ andt:

ε � (t, ξ) (E)
TheW component of a memory model is a set of subsets ofTid ,
comprising the set of the allowed write visibilities. In therelaxed
semantics, with each write operationwrW,I

̺,v is associated a visibil-
ity W, which is a (possibly empty) set of thread identifiers. The
default visibility of a write when it is issued, as prescribed in Fig-
ure 2, is∅, so we assume that for any memory model this is an

(S,O, σ, T) −−−→
� ,W

(S,O, {ι 7→v}(σ0 · σ1, T)) R1 (read)

if σ = σ0 · (t, rdp,ι) · σ1 & σ0 � (t, rdp,ι) & S(p) = v

(S,O, σ, T) −−−→
� ,W

(S,O, {ι 7→v}(σ0 · (t′,wr
W,I∪{ι}
̺,v) · σ1 · (t, rdι) · σ2, T)) R2 (read early)

if σ = σ0 · (t′,wr
W,I
̺,v) · σ1 · (t, rd̺,ι) · σ2 & t ∈ W &

σ1 � (t, rd̺,ι) & σ0 �S (t, rd̺,ι)

(S,O, σ, T) −−−→
� ,W

(S,O, σ0 · σ1, T) R3 (read)

if σ = σ0 · (t, rdι) · σ1 & σ0 � (t, rdι) or

σ0 = δ0 · (t′,wr
Tid,I∪{ι}
p,v) · δ1 & δ0 � (t′,wr

Tid ,I∪{ι}
p,v)

(S,O, σ, T) −−−→
� ,W

(S[p := v],O, σ0 · σ1, T) R4 (write)

if σ = σ0 · (t, wr
W,I
p,v) · σ1 & σ0 � (t, wr

W,I
p,v) & v ∈ Val

(S,O, σ, T) −−−→
� ,W

(S,O, σ0 · (t, wr
W ′,I
̺,v) · σ1, T) R5 (write early)

if σ = σ0 · (t, wr
W,I
̺,v) · σ1 & t ∈ W ′ ∈ W & W ⊂ W ′ ∈ W

(S,O, σ, T) −−−→
� ,W

(S,O ∪ {p 7→ t}, σ0 · σ1, T) R6 (acquire)

if σ = σ0 · (t,
y

p) · σ1 & σ0 � (t,
y

p) & p 6∈ dom(O)

(S,O, σ, T) −−−→
� ,W

(S,O\p, σ0 · σ1, T) R7 (release)

if σ = σ0 · (t,
x

p) · σ1 & σ0 � (t,
x

p)

(S,O, σ, T) −−−→
� ,W

(S,O, σ0 · σ1, T) R8 (barrier)

if σ = σ0 · (t, b) · σ1 & σ0 � (t, b)

(S,O, σ, T) −−−→
� ,W

(S,O, σ0 · σ1, (t, e) ‖T) R9 (spawn)

if σ = σ0 · (t′, spwt,e) · σ1 & σ0 � (t′, spwt,e)

(S,O, σ, T) −−−→
� ,W

(S,O, σ0 · σ1, T) R10 (join)

if σ = σ0 · (t, joint′) · σ1 & σ0 � (t, joint′)

Figure 3: M-Relaxed Operational Semantics (Memory)

allowed visibility, that is∅ ∈ W. The visibility of a write may dy-
namically evolve (withinW), but we shall assume that it can only
grow. The threads inW see the write, while in the temporary store,
and these threads can therefore read the corresponding value, pos-
sibly before it is globally visible (in that case theI component of
the write is extended). TheW component allows us to deal with
write atomicity, or, more generally, with the extent to which the
threads are allowed to read each others writes. In a hardwarearchi-
tecture, this is determined by a particular topology and behavior of
the interconnection network. In particular, the semanticspreserves
the atomicity of writes whenever theW component satisfies the
following coherenceaxiom:

∀W ∈ W . ∀t, t′ ∈ Tid . t 6= t′ & {t, t′} ⊆ W ⇒ W = Tid (C)
We can now formulate the rules for the−−→

M
transitions as regards

the memory. These are given in Figure 3, with(�,W) = M. In the
rule R2 we use a restricted commutability predicateσ �S (t, ξ),
ignoring the operations fromσ that are not synchronization opera-
tions, that is:

σ �S (t, ξ) ⇔def σ ↾Sync � (t, ξ)

whereσ ↾Sync is the restriction of the sequenceσ to the setSync,
that is the subsequence ofσ containing only the issued operations
in Sync.

We now comment the rules. In all cases but the early ones
(R2 andR5), performing an operation from the temporary store
σ consists in checking that the operation can be moved, up to
�, at the head ofσ, and then in removing the operation fromσ
while possibly performing some effect. Namely, such an effect
is produced when the performed operation is a read, a write, an
acquire or a release, and the reference that is concerned by the
effect must be known in these cases. A read may return a value
if it can be moved next to the head of the temporary store (rule
R1), or to a corresponding, visible write (R2). In the case of

R2, the read operations should not be blocked by synchronization
operations (such as a barrier or an acquire) previously issued but
not yet globally performed. This is expressed asδ0 �S (t, rd̺,ι).
In the case of an early read, the read operation does not completely
vanish, but is transformed in a read markrdι, whereι identifies
the matching write. Such a read mark, which is only useful in
relation with barriers (as discussed below), can be eliminated from
the temporary store as specified byR3. Notice that when we say
that a read(t, rd̺,ι) can be “moved,” this is only an image: there
is no transformation of the temporary store, but only a condition
on it, namely, inR1, σ0 � (t, rdp,ι). In the rulesR1 andR2 for
read operations, there is a global replacement of the identifier ι
associated with the read by the actual valuev that is read: in these
rules{ι 7→v}(σ, T) stands for such a replacement, which does not
affect theI component in the writes. (Recall that we required that
an identifier cannot appear in the store.) Similarly, a writeoperation
wrW,I

̺,v from the temporary storeσ0 · (t, wrW,I
̺,v) ·σ1 may update the

memory (ruleR4) when ̺ is a referencep, v is in Val and the
write is allowed to commute with the preceding operations, that is
σ0 � (t, wrW,I

p,v). An early write action inR5 has only the effect
of modifying the temporary store, by extending the visibility of
the write to more threads. In this rule, we should also assumethat
W ′ ⊆ dom(T) or W ′ = Tid , in order to restrict its application to
finitely many cases.

Notice that, although the first operation in the temporary store
is always allowed to be executed, by axiom (E), in the case where
this operation is an acquire

y

p the conditionp 6∈ dom(O) might not
hold. In such a case, a deadlock might occur, and the computation
might be stuck. As usual, our abstract semantics does not sayany-
thing about such errors – think of(tt()) for instance –, whereas an
implementation generally tries to recover from them. We shall see

later that some other kinds of errors may arise when extending the
framework with speculation. Then we will consider as valid –that
is, non erroneous – only the relaxed computations that end upwith
an empty temporary store, i.e. where the resulting configuration is
normal.

An obvious remark about the relaxed semantics is that it con-
tains in a sense the interleaving semantics: one can mimick atransi-
tion of the latter either by one local step, or by a local step immedi-
ately followed by a global action. One can also immediately see that
if W = {∅}, then the ruleR5 cannot be used, and consequently no
early read can take place. If, in addition to∅, W only contains the
singletons{t} for t ∈ Tid , the read early ruleR2 is restricted to
the “read-own-write-early” capability [3]. Obviously, the memory
model is coherent in that case, that is, it satisfies axiom (C). In the
write early ruleR4, the requirementt ∈ W ′ means that we do not
consider memory models where the “read-others’-write-early” ca-
pability would be enabled, but not the “read-own-write-early” one
(again, see [3]).

3.3 Memory Models: Requirements

In the next section we illustrate the expressive power of ourframe-
work for relaxed computations, by showing programs exhibiting
behaviors that arenot allowed by the reference semantics. Many of
these examples are standard “litmus tests” found in the literature
about memory models, that reveal in particular the consequences
of relaxing in various ways the normal order of evaluation. In most
cases, the relaxations of program order can be specified by a binary
relation onΣL. It is actually more convenient to use the converse
relation, which can usually be more concisely described. Wecall
this aprecedencerelation. Given such a binary relationP on pairs
(t, ξ) ∈ ΣL, the commutability relation is supposed to satisfy

(ω, ξ)P (ω′, ξ′) ⇒ ∀σ, σ′. ¬
`
σ · (ω, ξ) · σ′ � (ω′, ξ′)

´

That is, an operation in a temporary store is prevented from be-
ing globally performed by another, previously issued one, that has
precedence over it. A more positive formulation of this property is:

σ · (ω, ξ) · σ′ � (ω′, ξ′) ⇒ ¬
`
(ω, ξ)P (ω′, ξ′)

´
(AP)

Before examining various relaxations of the program order,by way
of examples, we discuss some precedence pairs that are most of-
ten assumed in memory models. For instance, if we do not assume
any constraint as regards the commutability of writes, fromthe pro-
gram

(p := tt) ; (p := ff)

we could get as a possible outcome a state where the value ofp in
the memory istt , by commuting the second write before the first.
This is clearly unacceptable, because this violates the semantics of
sequential programs. Then we should assume that two writes on
the same reference issued by the same thread cannot be permuted.
Similarly, a write should not be overtaken by a read on the same
reference issued by the same thread, and conversely, otherwise the
semantics of the sequential programs

(p := tt) ; (r := ! p)

(r := ! p) ; (p := tt)

would be violated. We shall then require that any memory model
satisfies axiom (A◭) where◭ is the minimal precedence relation
enjoying the following properties, where the free symbols are im-
plicitly universally quantified:

̺ ∈ {̺′} ∪ Ident &

t′ ∈ W ∪ {t} or I 6= ∅ 6= I′

)
⇒

8
<
:

(t, wr
W,I
̺,v) ◭ (t′, rd̺′,ι) &

(t, wr
W,I
̺,v) ◭ (t′,wr

W ′,I′

̺′,v′)

ι ∈ I ⇒ (t, wr
W,I
p,v) ◭ (t′, rdι)

̺ ∈ {̺′} ∪ Ident ⇒ (t, rd̺,ι) ◭ (t, wr
W,I

̺′,v
)

̺ ∈ {̺′} ∪ Ident &

t′ ∈ W ∪ {t}

ff
⇒ (t, wr

W,I
̺,v) ◭ (t′,wr

W ′,I′

̺′,v′)

̺ ∈ {p} ∪ Ident ⇒

(
(t,

y

p) ◭ (t, rd̺,ι) ◭ (t,
x

p) &

(t,
y

p) ◭ (t, wr
W,I
̺,v) ◭ (t,

x

p)

and
(t,

y

p) ◭ (t,
x

p) & (t,
x

p) ◭ (t,
y

p)

(t, joint′) ◭ (t, ξ) ◭ (t, spwt′,e)

(t, ξ) ◭ (t′, joint)

The first group of properties ensures in particular that the prece-
dence relations discussed above are enforced: among the operations
of a given thread, one cannot commute for instance a read and a
write on the same reference. Notice however that it is not required
that the program order is maintained as regards two reads on the
same reference. Therefore, from the program

p := tt ‖
r0 := !p;
r1 := !p

if initially S(p) = ff , we could end up in a state where the value of
r1 is ff , while the one forr0 is tt . If one wishes to preclude such a
behavior, one can simply add

̺ ∈ {p} ∪ Ident ⇒ (t, rd̺,ι)P (t, rdp,ι′)

to the precedence relation. With◭ we also assume that accesses to
a referencep enclosed into acquire

y

p and release
x

p actions from
the same thread cannot be moved outside such a critical section.
This is needed to preserve the locking discipline enforced by using
the block structured locking construct(with p do e). For instance,
without these precedence relations, from the program

(with p do p := (not ! p)) ‖ (with p do p := (not ! p))

starting with a configuration where the value ofp in the store is
ff , one could end up in the relaxed semantics with a state where
the value ofp is tt , violating the role of the locking construct.
Finally with ◭ we require that the causality relations associated
with spawning or joining a thread in the interleaving semantics are
preserved. For instance, with

p := tt ; (thread (r := ! p))
or

(t, p := tt) ‖ (t′, (join t) ; r := !p)

it is not possible to get the outcomer = ff . The only◭ prece-
dences that relate two distinct threads are(t, wrW,I

̺,v) ◭ (t′, rdp,ι),
(t, wrW̺,v) ◭ (t′, wrW

′

̺′,v′) wheret′ ∈ W or I 6= ∅ 6= I ′, and
(t, ξ) ◭ (t′, joint). This means in particular that a threadt′ “sees”
the writes, previously issued by other threads, that include t′ in
their scope, and that the order of writes on a given referencemust
be respected if these writes have been read by some threads (this is
similar to the “coherence order” of [31]). One should noticethatno
specific precedence assumption is made at this point regarding the
barriers. Then our definition of the notion of a memory model is as
follows:

DEFINITION (MEMORY MODELS) 3.1. A memory modelM for
L is a pair(�,W) where∅ ∈ W, and the commutability predicate
�⊆ Σ∗

L × ΣL satisfies the axioms(E) and(A◭).

As an example memory model, one can defineSC, for Sequential
Consistency, as

SC = ({ε} × ΣL, {∅} ∪ { {t} | t ∈ Tid })

which obviously satisfies Definition 3.1 (the axiom (A◭) is vac-
uously true). This model is trivially coherent. All the examples
discussed in the following section hold in the minimal, ormost
relaxed, memory modelM◭(L) = (�◭ , 2Tid), where�◭ is the
largest commutability predicate satisfying (A◭), 2Tid is the set of
all subsets ofTid .

In this work we mainly use commutability properties that are
generated by precedence relations, in the sense of axiom (AP).
Then one could think of defining a memory model as a pair

(P ,W), instead of(�,W). However, we shall see in Section 4.3
a case where this is not general enough. More precisely, we shall
see a case where we have to say that¬

`
σ � (t, ξ)

´
, not on the

basis thatσ contains an operation that has precedence over(t, ξ),
but because there is a subsequence ofσ which, as a whole, has
precedence over it.

4. Examples
Now we examine some examples of programs exhibiting behav-
iors that are not allowed by the reference semantics, indicating in
each case the property the memory model is supposed to have, and
which synchronization construct the language could offer to coun-
teract such deviating behaviors. We do not formally define specific
memory models here, but only suggest, in each case, which arethe
commutability properties or the properties of the write grain that
support some particular behavior. As we said, all these properties
hold in the most relaxed memory modelM◭(L). In the examples
we use a standard syntax, and follow the usual convention about
the outcome, be it forbidden or allowed in the relaxed operational
semantics. That is, an assignmentri := e (where most oftene is
! p for somep) is annotated with the value, like for instance(tt)
or (ff), that the referenceri is supposed not to have, or to have,
in the final state. Similarly, whenever several assignmentsfor the
same reference are present, we decorate with (final) the one that
is intended to provide the final value (forbidden or allowed)for the
reference. In each case where the specifed outcome can be obtained
in the relaxed semantics, we sketch a corresponding behavior. In
all the examples we assume that the initial values of the references
areff . We shall omit the ownership component, which is irrele-
vant here. We also omit the superscriptW in (t, wrW,I

̺,v) whenever
W = ∅, and similarly forI .

4.1 Simple Relaxations

(1) Let us start with the most common relaxation, the one of the
W→R order [3], supported by simple write buffering [11] as in
TSO machines. That is, we are assuming that there is no precedence
between(t, wrW,I

p,v) and(t, rdq,ι) if p 6= q. The litmus test here is
the program (1) given in the Introduction. If we let

T = (t0, p := tt ; r0 := ! q) ‖(t1, q := tt ; r1 := ! p)

σ = (t0,wrp,tt) · (t0, rdq,ι0) · (t1, wrq,tt) · (t1, rdp,ι1)

we have

(S, ε, T)
∗

−−−→
� ,W

(S, σ, (t0, r0 := ι0) ‖(t1, r1 := ι1))

Given that the orderW→R may be relaxed, we have
p 6= q &

t0 6= t1

ff
⇒


(t0,wrp,tt) � (t0, rdq,ι0) &

(t0,wrp,tt) · (t1, wrq,tt) � (t1, rdp,ι1)

and therefore

(S, ε, T)
∗

−−−→
� ,W

(S, σ′, (t0, r0 := ff) ‖(t1, r1 := ff))

whereσ′ = (t0, wrp,tt) · (t1, wrq,tt). These write operations can
now be executed, and we reach a final state(S′, ε, T ′) where
S′(p) = tt = S′(q) andS′(r0) = ff = S′(r1).

To restoreSC behavior in a relaxed memory model, the lan-
guage must offer some synchronization means. Most often these
arebarriers, that disallow some relaxations, when inserted between
memory operations. For instance, to forbid theW→R relaxation,
a natural barrier to use is〈wr〉 (write/read), which cannot over-
take a write, and cannot be overtaken by a read from the same
thread. In our framework, the semantics of barriers are specified
by the commutability predicate: they have no other effect than pre-
venting some reorderings. In the case of〈wr〉, we require that the
commutability predicate satisfies (AP〈wr〉

) for a precedence relation
P〈wr〉 such that

(t, wrW,I
̺,v)P〈wr〉 (t, 〈wr〉)P〈wr〉 (t, rd̺′,ι)

(We do not have to specify that〈wr〉 has precedence overrdι,
because, due to the conditions inR2, a read mark is never preceded
by a read barrier in the temporary store.) This is alocal barrier
since it blocks only operations from the thread that issued it. Then
for restoring anSC behavior to the example we are discussing, we
write:

p := tt ;
〈wr〉;
r0 := ! q

‚‚‚
q := tt ;
〈wr〉;
r1 := ! p

The threads will issue〈wr〉 before the readsrdq,ι0 andrdp,ι1 . Given
the precedence relations we just assumed as a semantics for〈wr〉,
these reads cannot proceed until the barrier has disappeared from
the temporary store. The ruleR8 requires, for a barrier to vanish,
that it may be commuted with the previously issued operations.
Then in the example above, this can only happen for〈wr〉 once
the writeswrp,tt andwrq,tt have been globally performed.

(2) Regarding the relaxation of the orderW→W, typical of a
PSO architecture, and supported by write buffering with “jockey-
ing” [11], the litmus test is

p := tt;
q := tt

‚‚ r0 := ! q;
r1 := ! p

We have
(S, ε, T)

∗
−−−→
� ,W

(S, σ0, (t0, ()) ‖(t1, r0 := ! q ; r1 := ! p))

∗
−−−→
� ,W

(S, σ0 · σ1, (t0, ()) ‖(t1, r1 := ι1))

where
T = (t0, (p := tt) ; (q := tt)) ‖(r0 := ! q) ; (r1 := ! p)

σ0 = (t0,wrp,tt) · (t0,wrq,tt)

σ1 = (t1, rdq,ι0) · (t1,wrr0,ι0) · (t1, rdp,ι1)

Here we assume that there is no precedence between(t, wrp,v) and
(t, wrq,v′) if p 6= q, and therefore(t0, wrp,tt) � (t0, wrq,tt), that
is, we can perform the write(t0, wrq,tt), and thenrdq,ι0 to finally
reach a state(S′, ε, T ′) whereS′(r0) = tt andS′(r1) = ff .

(3) The same example can be used to illustrate the relaxation of
R→R. As in the case of the first example, to counteract theW→W
andR→R relaxations, the language should offer barriers like〈ww〉
and〈rr〉, with an obvious semantics in the memory model:

(t, wr
W,I
̺,v)P〈ww〉 (t, 〈ww〉)P〈ww〉 (t, wr

W ′,I′

̺′,v′)

(t, rd̺,ι)P〈rr〉 (t, 〈rr〉)P〈rr〉 (t, rd̺′,ι′)

(t, rdι)P〈rr〉 (t, 〈rr〉)

(4) To illustrate the relaxation ofR→W, given that relaxing
W→W is also allowed, we use:

r0 := ! p;
q := tt

‚‚ r1 := ! q;
p := tt

Then
(S, ε, T)

∗
−−−→
P,W

(S, σ0, (t0, ()) ‖(t1, r1 := ! q ; p := tt))

σ0 = (t0, rdp,ι0) · (t0, wrr0,ι0) · (t0,wrq,tt)
∗

−−−→
P,W

(S, σ0 · σ1, (t0, ()) ‖(t1, ()))

σ1 = (t1, rdq,ι1) · (t1, wrr1,ι1) · (t1,wrp,tt)

Since
(t0, rdp,ι0) · (t0, wrr0,ι0) �P (t0,wrq,tt)

(t0, rdp,ι0) · (t0, wrr0,ι0) · (t1, rdq,ι1) · (t1,wrr1,ι1) �P (t1,wrp,tt)

we conclude as in the previous cases that we can reach a state where
S′(r0) = tt = S′(r1).

According to [31], theR→W relaxation is not observed on
machines implementing the PowerPC memory model, though it
should be assumed as part of this model. As in the previous cases,
a 〈rw〉 barrier is useful to prevent this relaxation, with the obvious
semantics:

(t, rd̺,ι)P〈rw〉 (t, 〈rw〉)P〈rw〉 (t, wr
W,I

̺′,v
)

(t, rdι)P〈rw〉 (t, 〈rw〉)

(5) Our last example for this subsection, which is a simplification
of the example in Fig. 2 of [28], shows that there is no value arising
“out of thin air” in our model. Namely, with

p := ! q ‖ q := ! p

we can only get the outcome where the value of bothp andq is ff ,
because identifiers cannot be stored into the memory.

4.2 Early Reads and Writes

(6) The litmus tests that illustrate the ruleR2 (in combination
with R5) are less standard. The first one below, which holds in
TSO models, exemplifies theread-own-write-early capability [3],
that is the ability for a thread to read a write that it has previously
issued, even if this write is not yet globally performed:

p := tt;
r0 := ! p;
r1 := ! q

‚‚‚
q := tt;
r2 := ! q;
r3 := ! p

Let us assume that the write grainW contains two setsW0 andW1

such thatt0 ∈ W0 andt1 ∈ W1. Then it is easy to see that from
this thread system we can, using the write early ruleR4, reach a
configuration where the temporary store isσ0 · σ1 where

σ0 = (t0, wr
W0

p,tt) · (t0, rdp,ι0) · (t0,wrr0,ι0) · (t0, rdq,ι1)

σ1 = (t1, wr
W1

q,tt) · (t1, rdq,ι2) · (t1, wrr2,ι2) · (t1, rdp,ι3)

Then byR2 both ι0 and ι2 can take the valuett , whereas, given
that the orderW→R is relaxed (and that a read mark does not have
precedence over a read), bothι1 andι3 take the valueff from the
shared store, before it is updated by performing the writeswr

W0

p,tt

andwr
W1

q,tt . We let the reader see where to insert〈wr〉 barriers to
restore anSC behavior in this case.

(7) Let us see another example where the read-own-write-early
capability is exercised:

p := q;

! p := tt

‚‚‚
r0 := ! q ; (tt)

r1 := ! p (ff)

From this program one can reach a configuration where the tempo-
rary store is

σ = (t0,wrp,q) · (t0, rdp,ι) · (t0,wrι,tt)

Then, assuming that the write grain containsW such thatt0 ∈ W
andt1 6∈ W , by R5 andR2 the temporary store can evolve intoσ′

where
σ′ = (t0,wr

W,{ι′}
p,q) · (t0, rdι′) · (t0,wrq,tt)

Assuming theW→W relaxation, we can then reach a configuration
where the temporary store is(t0, wr

W,{ι′}
p,q)·(t0, rdι′), and the store

S′ is such thatS′(q) = tt . Next, the operations from the second
thread are performed, in program order, and we end up with a state
where the storeS′′ satisfiesS′′(r0) = tt andS′′(r1) = ff .

(8) There are several other examples to illustrate the write early
rule R5, in combination withR2, in particular to show the ability
for a thread toread-others’-write-early, according to the termi-
nology of [3], and more precisely to break the atomicity of writes.
Such an example is the one in Figure 2(b) in [3], but the best known
is perhaps IRIW (Independent Reads of Independent Writes):

p := tt
‚‚ q := tt

‚‚ r0 := ! p ; (tt)
r1 := ! q (ff)

‚‚ r2 := ! q ; (tt)
r3 := ! p (ff)

In our framework, this example is accounted for in the following
way. Let

T ′ = (t0, ()) ‖(t1, ()) ‖(t2, (r0 := ι0) ; (r1 := ! q))

‖(t3, (r2 := ι2) ; (r3 := ! p))

σ = (t0,wrp,tt) · (t2, rdp,ι0) · (t1, wrq,tt) · (t3, rdq,ι2)

Assume thatW contains two setsW0 andW1 such that{t0, t2} ⊆
W0 and{t1, t3} ⊆ W1, with t3 6∈ W0 and t2 6∈ W1. Then we

have, usingR4 twice:

(S, ε, T)
∗

−−−→
� ,W

(S, σ, T ′)
∗

−−−→
� ,W

(S, σ′, T ′)

where
σ′ = (t0,wr

W0

p,tt) · (t2, rdp,ι0) · (t1, wr
W1

q,tt) · (t3, rdq,ι2)

Now since the write ofp is made visible to threadt2, the identifier
ι0 can take the valuett , and similarlyι2 takes the valuett , by the
rule R2. Since the writes fromt0 and t1 are not visible fromt3
andt2 respectively, these threads may read the valueff from the
shared memory for bothq andp. One finally reaches a state where
S′(r0) = tt = S′(r2) whereasS′(r1) = ff = S′(r3). Notice
that in this computation we never have to “commute” operations
(the precedence relation could be anything here), that is, this com-
putation proceeds in program order, and therefore inserting local
barriers int2 andt3 would not influence it.

(9) Some other examples that are discussed in [6, 31] can be
explained in a similar way. This is the case for instance of WRC
(Write-to-Read Causality) – withoutfence since, as with IRIW, we
follow the program order here:

p := tt
‚‚ r0 := ! p ; (tt)

q := tt

‚‚ r1 := ! q ; (tt)

r2 := ! p (ff)

Here the write(p := tt) is issued, and, with some appropriate as-
sumption about the write grain, made visible to the second thread
(but not to the third), which will then assign the valuett to r0. Then
the write(q := tt) is globally performed, and, before the operation
wr

W,I
p,tt reaches the store, the third thread is executed, reading the

valuestt for q in (r1 := ! q) andff for p in (r2 := ! p). That is,
the outcomeS′(r0) = tt = S′(r1) andS′(r2) = ff is allowed.

(10) The argument is the same for RWC (Read-to-Write Causal-
ity):

p := tt
‚‚ r0 := ! p ; (tt)

r1 := ! q (ff)

‚‚ q := tt ;
r2 := ! p (ff)

with the resulting valuestt for r0, andff for bothr1 andr2.

(11) We let the reader see how to build a computation in program
order for the CC example of [6]:

p := tt
‚‚ r0 := ! p ; (tt)

r1 := ! q (ff)

‚‚ q := tt;
p := ()

‚‚ r2 := ! p ; (())

r3 := ! p (tt)

with the outcomeS′(r0) = tt = S′(r3), S′(r1) = 0 and
S′(r2) = (). Obviously, one has to make some hypotheses about
the write grain to deal with this example. Some hints: the write
(p := tt) from the first thread is made available to the second
thread, but not globally performed. The second thread, and then the
third proceed – the write(p := ()) can be performed since it does
not seewrW

p,tt –, next the fourth executes(r2 := ! p), reading the
value () for p. Finally, before(r3 := ! p) is performed, the write
by t0 is made available to the fourth thread, either by extending its
visibility or by globally performing it.

4.3 Global Barriers

The behaviors discussed with the series of examples (8-11) in the
previous subsection are forbidden in a coherent memory model,
that is one satisfying axiom (C). Here we discuss some barriers
from the PowerPC model, where write atomicity is relaxed, that
are to be used to restore sequential consistency. Clearly, in the case
of a non coherent memory model, and more generally a model
that enables the read-others’-write-early capability, one needs in
the language some barrier having aglobal effect on writes, that is,
a barrier that is prevented from vanishing by writes from foreign
threads. The PowerPC architecture offers such a strongsync bar-
rier, which imposes the program order to be preserved between any
pair of (local) reads and writes. This means that it enjoys the same
precedence relations as〈wr〉, 〈ww〉, 〈rr〉 and〈rw〉. The global ef-
fect of sync is the one suggested above:sync maintains the order
between two writes, the first one being a visible write from a for-
eign thread, and the second being a local write. Since the〈ww〉

(and〈rw〉) precedences already imply that async has precedence
over a local write, to complete the description of the semantics of
this barrier we just have to add:

t′ ∈ W ⇒ (t, wrW,I
̺,v)Psync (t′, sync)

We can then explain for instance the examplesIRIW+syncs,
WRC+sync+ppo and WRC+ppo+sync from the test suite by
Sarkar & al. [31]. Here〈ppo〉 is a fictitious barrier, meaning that
the program order among memory operations is supposed to be
maintained. (In the simulator〈ppo〉 is implemented as a barrier.)

(12) If we introduce thesync barrier in the IRIW example, the
unexpected outcome is then forbidden to occur:

p := tt
‚‚ q := tt

‚‚
r0 := ! p ; (tt)
sync;
r1 := ! q (ff)

‚‚
r2 := ! q ; (tt)
sync;
r3 := ! p (ff)

The reason is that the reads(t2, rdq,ι2) and(t3, rdp,ι3) can only be
performed once the precedingsync operation has vanished, which
in turn is only possible if there is no write in the temporary store
that thesync sees.

(13) TheWRC+sync+ppo example is the same as WRC above,
but with async barrier inserted in the second thread:

p := tt

‚‚‚
r0 := ! p ; (tt)
sync;
q := tt

‚‚‚ r1 := ! q ; (tt)
r2 := ! p (ff)

The outcomeS′(r0) = tt = S′(r1) andS′(r2) = ff can still
be obtained, while performing the operations of the third thread in
program order. The explanation is as above, except that, instead of
globally performing the write(t1, wrq,tt), we extend its visibility
to the third thread. Indeed, there is no condition in the ruleR5 that
prevents this to be done.

(14) TheWRC+ppo+sync example is basically the same, except
that thesync barrier is placed in the third thread instead of the
second:

p := tt

‚‚‚ r0 := ! p ; (tt)
q := tt

‚‚‚
r1 := ! q ; (tt)
sync;
r2 := ! p (ff)

and the same outcome is allowed again, while committing the
second thread in program order. The reasoning is as in the case
of WRC (withoutsync) above: thesync issued by the third thread
t2 is not prevented to vanish by the write top from the first thread,
which it does not see.

The PowerPC architecture also provides anlwsync barrier,
which is weaker thansync. First, this is a〈ww〉, 〈rw〉 and 〈rr〉
barrier, but it does not order the pairs of writes and reads, to pre-
serve some TSO optimizations. Therefore, we cannot define the
semantics oflwsync by means of a binary precedence relation, as
we did up to now. Nevertheless, the following precedences are part
of the semantics oflwsync in our framework:

(t, rdι)Plw (t, lwsync) & (t, rd̺,ι)Plw (t, lwsync)Plw (t, wr
W,I

̺′,v
)

t = t′ or t′ ∈ W ⇒ (t, wr
W,I
̺,v)Plw (t′, lwsync)

Next, we have to say thatlwsync is a 〈rr〉 barrier, even though
it does not have precedence over reads. Then we assume that the
commutability predicate satisfies the following:

σ = σ0 · (t, lwsync) · σ1 &
`
σ0 = δ0 · (t, rd̺,v) · δ1 or

σ0 = δ0 · (t, rdι) · δ1
´

9
>=
>;

⇒ ¬
`
σ �lw (t, rdp,v′)

´

This completes the definition of the semantics oflwsync. Now let
us see two examples taken from [31] (or from the supplement to
this paper available on the web), illustrating the semantics of this
barrier.

(15) The first one isIRIW+lwsync+sync, that is the IRIW exam-
ple where the barrierslwsync andsync are inserted in the third and
fourth threads respectively. This does not prevent the unexpected
outcome from occurring, as follows: the operation from the threads

are issued in the temporary store, in order. Then the visiblity of the
writewrp,tt from the first thread is extended to include the third one
(but not the others). Then the third thread readsp from this write,
and executeswrr0,tt . Thelwsync is still prevented to vanish by the
write wr

{t0,t2}
p,tt , but it has no precedence over(t2, rdq,ι1), which

can therefore proceeds. The third thread performswrr1,tt . Next the
operations from threadst1 and t3 are performed (thesync is not
blocked by the write fromt0, which it does not see), and finally
(t0, wr

{t0,t2}
p,tt) and(t2, lwsync) are executed.

(16) Another interesting example isWRC+lwsyncs:

p := tt

‚‚‚
r0 := ! p ; (tt)
lwsync;
q := tt

‚‚‚
r1 := ! q ; (tt)
lwsync;
r2 := ! p (ff)

The unexpected outcome is actually forbidden here, as verified
using our simulator. If he/she attempts to get it, the readerwill see
that thelwsync from the third threadt2 is prevented to vanish by a
read mark that cannot be removed from the temporary store, since
the corresponding write(t1, wr

W,I
q,tt) is prevented to be performed

by thelwsync of t1, which sees the writewr
W ′,I′

p,tt from t0.
In an Appendix we examine in a rather sketchy way another

series of litmus tests, taken from the test suite of Sarkar & al. [31],
most of them exemplifying the semantics of thelwsync barrier.
In each case, an unexpected outcome is provided, which is either
forbidden or allowed by our model. All these tests, as well asthe
previous ones, have been checked using our simulator.

5. Speculation
In the previous sections we have described and illustrated aframe-
work that supports the formal description of “classical” (hardware)
memory models, as they are presented in the survey of Adve and
Gharachorloo [3]. Indeed, ourM◭(L) model captures the essen-
tial features of relaxed memory models such as RCpc [18] or C++
[5, 6] (regardless of the specific synchronization primitives each
model may offer), and in particular the relaxation of write atomic-
ity. With sync and lwsync, it also captures some essential features
of the PowerPC memory model. In this section we further illustrate
the flexibility of our approach, by discussing a feature thatis not
always considered part of a memory model, but can easily be acco-
modated in our framework, namelyspeculation. According to [20],
speculative techniques are not part of the memory model (andthey
are not explicitly considered in [3]), still some of these techniques
are involved in the PowerPC model for instance. The best known
speculative technique isbranch prediction[35]. This consists in
guessing a value, true or false, for the predicate in a conditional
branching construct, and evaluating the corresponding branch. Ob-
viously, the prediction might happen to be wrong, in which case a
rollback mechanism must be used to possibly undo some operations
and backtrack to the branching point. It is quite easy to extend our
model of relaxed computations to formalize this kind of specula-
tion. In our syntax, a conditional program(if v then e0 else e1)
branches on a valuev. We do not consider the erroneous cases
where this is not a boolean value (or a variable, for only closed pro-
grams should be evaluated). Since we have rules for the caseswhere
v is tt or ff , the only case where speculation could occur is whenv
is an identifierι resulting from a read. To speculate the value ofι,
we introduce new memory operations[ι = tt] and[ι = ff]. More
generally, we extend the syntax as follows:

ξ ::= · · · | [ν = bv]ι

where ν ∈ Ident ∪ {tt ,ff } and bv ∈ {tt ,ff }. The indexι
(which is not concerned by a substitution{ι 7→v}) is a pointer to
the corresponding read operation. Then we add the followingrules
to the ones in Figure 2:

(S, σ, (t, E[(if ι then e0 else e1)]) ‖T)

→֒ (S, σ · (t, [ι = tt]ι), (t, E[{ι 7→tt}e0]) ‖T)

(S, σ, (t, E[(if ι then e0 else e1)]) ‖T)

→֒ (S, σ · (t, [ι = ff]ι), (t, E[{ι 7→ff }e1])‖T)

With these rules, the conditional branching construct is a kind of
non deterministic choice. The semantics of the tags[ν = bv]ι
is as follows: first a solved tag[bv = bv]ι may vanish from the
temporary store:

σ0 � [bv = bv]ι ⇒ (S, σ0 · (t, [bv = bv]ι) ·σ1, T) −−→
M

(S, σ0 ·σ1, T)

Second, we assume that a prediction cannot overtake the corre-
sponding read, and that the write operations cannot overtake a pre-
diction from the same thread:

(t, rdι)Pbp (t, [bv = bv]ι)

(t, [ν = bv]ι)Pbp (t, wr
W,I
̺,v)

To see an example of an unexpected behavior introduced by branch
speculation, let us consider

(if ! p then r := ! p else ()) ‖ p := tt

and explain how the valueff is a possible outcome forr. Recall
that in the syntax of our language, one should write

(if ! p then r := ! p else ())

as(let x = ! p in (if x then r := ! p else ())). Then in the program
above the first thread first append ardp,ι to the temporary store,
and passesι asx for the conditional branching. Speculating that
[ι = tt]ι, one can then readp again and obtain the valueff . The
prediction is finally justified by the writep := tt from the second
thread. There are other similar examples, where we do not have to
assume that reads of the same reference from the same thread may
be commuted. Such an example is “MP+sync+ctrl” from [31],
which we simplify into:

p := tt;
q := tt

‚‚ (if ! q then r := ! p else)

With branch prediction, a possible outcome is a configuration
where the value ofr is ff , without reordering the writes in the
first thread (one can imagine a barrier in between to ensure this),
and without performing an early read ofq. The computation is as
follows: the second thread issuesrdq,ι, and speculates thatι = tt .
Then, given theR→R relaxation, the read! p can be performed,
returningff . Finally, the first thread proceeds normally, and the
prediction may be justified. In PowerPC there is anisync barrier to
prevent such a behavior, by inserting it at the beginning of thethen
branch. A natural semantics for this barrier is

(t, [ν = bv]ι)Pisync (t, isync)Pisync (t, rd̺,ι′)

Another, slightly more complex example isPPOCA, again from
[31]:

r := tt;

p := tt

‚‚‚
(if ! p then q := tt else ());

r0 := ! q ; r1 := ! r

The unexpected behavior is as follows: the valuett is speculated
for p in the second thread, the writeq := tt is issued and made
visible to the thread, and therefore! q may returntt , while ! r,
overtaking the rest, returnsff . The prediction is then justified by
performing the operations of the first thread, in program order.
Notice that besides branch prediction, we assumed simple TSO
facilities (W→R relaxation and read-own-write-early capability),
andR→R relaxation to exhibit this behavior.

A different, more general approach to speculative computations
has been proposed in [8]. One should notice that, as opposed to this
approach, our model preserves causality. An example, whichis a
simplification of the example given in Figure 4 of [28], is:

(if ! p then q := tt else ()) ‖ (if ! q then p := tt else ())

Since any prediction must be justified by a read from the memory,
or from a write in the temporary store, we cannot reach from
this program a state where the value of bothp and q would be
tt . This example can also be used to illustrate wrong predictions:
the tags(t0, [ι0 = tt]ι0) and (t1, [ι1 = tt]ι1) that the threads
may append to the temporary store will never disappear, and the
computation will be stuck, failing to flush the temporary store. As
usual, our abstract semantics does not say anything about such a

stuck configuration, and in particular it does not specify any way
to get out of such errors, whereas an implementation generally
tries to recover from them. However, one should notice that,since
the predictions[ι = bv]ι have precedence over writes, a rollback
mechanism implemented to recover from such a situation doesnot
have to undo speculative writes.

To conclude this section, we observe that branch predictionis
just a particular case ofvalue prediction[17, 25]. Indeed, one could
remove the two transition rules above for the conditional branching
construct, once added a more general rule for speculating the value
returned by a read:

(S, σ0·(t, rdp,ι)·σ1, T) −−→
M

(S, σ0·(t, rdp,ι)·(t, [ι = v]ι)·{ι 7→v}(σ1, T))

This involves a more general form of tags, namely[ν = v]ι where
v is any value. The semantics of such tags is the same as in the
case of branch prediction. We do not know any example where
value prediction alone – that is, not resulting in guessing the value
of the predicate in a conditional branching – introduces a non
SC behavior. Notice that the example (5) that we considered in
the previous section is not altered, since for the computation to
succeed, any prediction must be justified by a read from the store
or a preceding write in the temporary store. With value prediction,
any program including some reducible read has infinitely many
behaviors. Then in a model involving this speculation mechanism,
value prediction should be restricted to finite sets of values.

6. The Simulator
The set of configurations that may be reached by running a program
in the relaxed semantics can be fairly large, and it is sometimes dif-
ficult, and error prone, to find a path to some (un)expected final
state, or to convince oneself that such an outcome is actually for-
bidden, that is, unreachable. Then, to experiment with our frame-
work, we found it useful to design and implement a simulator that
allows us to exhaustively explore all the possible relaxed behaviors
of (simple) programs. As usual, we have to face a state explosion
problem, which is much worse than with the standard interleaving
semantics.

Our simulator is written inJAVA. Its main functionstep com-
putes all the configurations reachable in one step from a given con-
figuration. A brute force simulator would then recursively use the
step function, in a depth first manner, in order to compute reach-
able configurations that have an empty temporary store and a ter-
minated thread pool, where all the thread expressions are values.
This methodology does not consume much memory space, being
basically proportional to thelog of the number of reachable states
or, similarly, to the depth of the tree induced by thestep func-
tion. However, the number of configurations in this tree grows very
fast with the size of the expression to analyse. For instance, with
the example (1) given in the Introduction, this brute force strategy
has been aborted after generating more than20 × 1010 configura-
tions and after half a day of computing, even if it is obvious that
only four differentfinal configurations may be reached. Therefore,
a first improvement is to transform the tree traversal by a dagcon-
struction merging all the same configurations. Less configurations
will be constructed and analyzed (only60 588 for the example), but
all these configurations must be simultaneously in memory.

Several other optimizations have been used. In order to reduce
the search space, in the simulator we use a refined ruleR5 where
the visibility setW ′ is supposed to be eitherTid or a subset of
live(T) ∪ rdt(σ1) where the setslive(T) and rdt(σ) of thread
identifiers are defined as follows:

live(∅) = ∅

live((t, e) ‖T) = live(T) ∪ { t | e 6∈ Val }

rdt(ε) = ∅

rdt((t, ξ) · σ) = rdt(σ) ∪ { t | ∃̺, ι. ξ = rd̺,ι }

We have not presented this formulation in Figure 3 only because
it is conceptually a bit more obscure. A more dramatic optimiza-
tion is obtained by introducing a distinction between “registers,”
that are local to some thread, and shared references. As suggested
above, the registers are denotedri in the examples. Indeed, these
registers are not concerned by early reads from foreign threads, and
therefore applications of the ruleR5 to them may be drastically re-
stricted. In this way, the number of generated configurations in the
case of example (1) decreases from51 068 to 13 356 for instance.
Furthermore, one may observe that, since removing an operation
from a temporary storeσ never depends on what follows this op-
eration inσ, the strategy that consists in applying first the rules of
Figure 2 for evaluating the threads before attempting anything else
(that is, applying a rule from Figure 3) will never miss any final
configuration. This allows us to generate only2 814 configurations
in the case of example (1) for instance.

However, the optimized search strategy outlined above still fails
in exploring exhaustively some complex litmus tests. In such cases,
we make a tradeoff between time and space: for each temporary
store that can be reached by applying the rules of Figure 2 as far
as possible, we generate the reachable final configurations,but we
do not share this state space among the various possible temporary
stores. For instance, still regarding the example (1), there are20
possible “maximal” temporary stores, and running independently
the simulator in each case generates an average number of500 con-
figurations, so that the total of number of generated configurations
following this simulation method raises up to10 280. Nevertheless
this allowed us to successfully explore a large number of litmus
tests, and in particular all the ones presented by Sarkar & al. [31]
in their web files, when they can be written in our language. Our
simulator is available on the web from the authors.

7. Conclusion
We have introduced a new, operational way to formalize the relaxed
semantics of concurrent programs. Our model is flexible enough to
account for a wide variety of weak behaviors, and in particular the
odd ones occurring in a memory model that does not preserve the
atomicity of writes. To our view, our model is also simple enough
to be easily understood by the implementer and the programmer,
and precise enough to be used in the formal analysis of programs.

There are some memory model features that were not consid-
ered here, but deserve to be examined along the lines we have
drawn, such as: read-modify-write operations, C++ atomics, com-
piler optimizations, as in theJAVA Memory Model [28]. We plan
to investigate these topics in future work.

References
[1] M. A BADI , C. FLANAGAN , S. FREUND, Types for safe locking:

static race detection for Java,ACM TOPLAS Vol. 28 No. 2 (2006)
207-255.

[2] S. ADVE, H.-J. BOEHM, Memory models: a case for rethinking
parallel languages and hardware,CACM Vol. 53 No. 8 (2010)
90-101.

[3] S. ADVE, K. GHARACHORLOO, Shared memory consistency
models: a tutorial,IEEE Computer Vol. 29 No. 12 (1996) 66-76.

[4] S. ADVE, M. D. HILL , Weak ordering – A new definition,ISCA’90
(1990) 2-14.

[5] M. BATTY, S. OWENS, S. SARKAR , P. SEWELL, T. WEBER,
Mathematizing C++ concurrency,POPL’11 (2011) 55-66.

[6] H.-J. BOEHM, S. ADVE, Foundations of the C++ concurrency
model,PLDI’08 (2008) 68-78.

[7] G. BOUDOL, G. PETRI, Relaxed memory models: an operational
approach,POPL’09 (2009) 392-403.

[8] G. BOUDOL, G. PETRI, A theory of speculative computations,
ESOP’10, Lecture Notes in Comput. Sci. 6012 (2010) 165-184.

[9] C. BOYAPATI , R. LEE, M. RINARD , Ownership types for safe
programming: preventing data-races and deadlocks,OOPSLA’02
(2002) 211-230.

[10] S. BURCKHARDT, M. MUSUVATHI , V. SINGH, Verifying local
transformations on relaxed memory models,CC’10, Lecture Notes
in Comput. Sci. 6011 (2010) 104-123.

[11] M. DUBOIS, CH. SCHEURICH, F. BRIGGS, Memory access buffer-
ing in multiprocessors,ISCA’86 (1986) 434-442.

[12] L. EFFINGER-DEAN, D. GROSSMAN, Modular metatheory for
memory consistency models,University of Washington, Computer
Science & Engineering Tech. Rep. UW-CSE-11-02-01 (2011).

[13] X. FANG, J. LEE, S. P. MIDKIFF, Automatic fence insertion for
shared memory multiprocessing,ACM ICS’03 (2003) 285-294.

[14] C. FLANAGAN , M. ABADI , Types for safe locking,ESOP’99,
Lecture Notes in Comput. Sci. 1576 (1999) 91-108.

[15] C. FLANAGAN , M. FELLEISEN, The semantics of future and its use
in program optimization,POPL’95 (1995) 209-220.

[16] C. FLANAGAN , A. SABRY, B. F. DUBA , M. FELLEISEN, The
essence of compiling with continuations,PLDI’93 (1993) 237-247.

[17] F. GABBAY, A. MENDELSON, Using value prediction to increase
the power of speculative execution hardware,ACM Trans. on
Computer Systems Vol. 16 No. 3 (1998) 234-270.

[18] K. GHARACHORLOO, D. LENOSKI, J. LAUDON, P. GIBBONS,
A. GUPTA, J. HENNESSY, Memory consistency and event ordering
in scalable shared-memory multiprocessors,ACM SIGARCH
Computer Architecture News Vol. 18 No. 3a (1990) 15-26.

[19] D. GROSSMAN, Type-safe multithreading in Cyclone,TLDI’03
(2003) 13-25.

[20] M. D. HILL , Multiprocessors should support simple memory-
consistency models,IEEE Computer Vol. 31 No. 8 (1998) 28-34.

[21] A. K RISHNAMURTHY, K. YELICK , Optimizing parallel programs
with explicit synchronization,PLDI’95 (1995) 196-204.

[22] L. L AMPORT, How to make a multiprocessor computer that cor-
rectly executes multiprocess programs,IEEE Trans. on Computers
Vol. 28 No. 9 (1979) 690-691.

[23] D. LEA, The JSR-133 cookbook for compiler writers,available
from the author’s web page (2008).

[24] J. LEE, D. A. PADUA , Hiding relaxed memory consistency with a
compiler,IEEE Trans. on Computers Vol. 50 No. 8 (2001) 824-833.

[25] M. H. L IPASTI, C. B. WILKERSON, J. P. SHEN, Value locality and
load value prediction,ASPLOS’96 (1996) 138-147.

[26] B. LUCIA , L. CEZE, K. STRAUSS, S. QADEER, H. BOEHM, Con-
flict exceptions: Providing simple parallel language semantics with
precise hardware exceptions,ISCA’10 (2010).

[27] S. MADOR-HAIM , R. ALUR, M. MARTIN , Generating Litmus tests
for contrasting memory consistency models,Tech. Rep. CIS 934,
University of Pennsylvania (short version in CAV’10) (2010).

[28] J. MANSON, W. PUGH, S. A. ADVE, The Java memory model,
POPL’05 (2005) 378-391.

[29] D. MARINO, A. SINGH, T. MILLSTEIN , M. MUSUVATHI ,
S. NARAYANASAMY , DRFx: A simple and efficient memory model
for concurrent programming languages,PLDI’10 (2010).

[30] S. PARK , D. L. DILL , An executable specification and verifier for
Relaxed Memory Order,IEEE Trans. on Computers, Vol. 48, No. 2
(1999) 227-235.

[31] S. SARKAR , P. SEWELL, J. ALGLAVE , L. MARANGET, D. WILLIAMS ,
Understanding POWER multiprocessors,PLDI’11 (2011) 175-186.

[32] J. S̆EVC̆ÍK , D. ASPINALL, On validity of program transformations
in the JAVA memory model,ECOOP’08, Lecture Notes in Comput.
Sci. 5142 (2008) 27-51.

[33] P. SEWELL, S. SARKAR , S. OWENS, F. ZAPPA NARDELLI ,
M. O. MYREEN, x86-TSO: A rigorous and usable programmer’s
model for x86 multiprocessors,CACM Vol. 53 No. 7 (2010) 89-97.

[34] D. SHASHA, M. SNIR, Efficient and correct execution of parallel
programs that share memory,ACM TOPLAS Vol. 10 No. 2 (1988)
282-312.

[35] J. E. SMITH , A study of branch prediction strategies,ISCA’81
(1981) 135-148.

Appendix
(17) MP+lwsyncs:

p := tt;
lwsync;
q := tt

‚‚
r0 := ! q (tt)
lwsync;
r1 := ! p (ff)

The unexpected outcome is forbidden, becauselwsync is a 〈ww〉
and〈rr〉 barrier, which is prevented to vanish by the writes it sees,
and by a read mark.

(18) SB+lwsyncs:

p := tt;
lwsync;
r0 := ! q (ff)

‚‚
q := tt;
lwsync;
r1 := ! p (ff)

This outcome is allowed, becauselwsync is not a〈wr〉 barrier, and
therefore one may execute the reads first.

(19) LB+lwsyncs:

r0 := ! p ; (tt)
lwsync;
q := tt

‚‚
r1 := ! q ; (tt)
lwsync;
p := tt

The outcome is forbidden, becauselwsync is a 〈rw〉 barrier, and a
global〈ww〉 barrier.

(20) RWC+lwsync+sync:

p := tt

‚‚‚
r0 := ! p ; (tt)
lwsync;
r1 := ! q (ff)

‚‚‚
q := tt;
sync;
r2 := ! p (ff)

(allowed). This test is similar toIRIW+lwsync+sync.

(21) ISA2+lwsyncs:

p := tt ;
lwsync;
q := tt

‚‚‚
r0 := ! q ; (tt)
lwsync;
r := tt

‚‚‚
r1 := ! r ; (tt)
lwsync;
r2 := ! p (ff)

(forbidden). Again, this test illustrates the fact thatlwsync is a
〈ww〉, 〈rw〉 and〈rr〉 barrier.

(22) R+lwsync+sync (R01 in [31]):

p := tt ;
lwsync;
q := tt

‚‚‚
q := ff ; (final)
sync;
r0 := ! p (ff)

In our model this is a “forbid,” whereas the unexpected outcome is
allowed by the model of [31]. However, it has not been observed
by Sarkar & al. in their experiments on PowerPC machines.

(23) S+lwsyncs:

p := ff ; (final)
lwsync;
q := tt

‚‚‚
r0 := ! q ; (tt)
lwsync;
p := tt

(forbid). This is similar toMP+lwsyncs.

(24) 2+2W+lwsyncs:

p := ff ; (final)
lwsync;
q := tt

‚‚‚
q := ff ; (final)
lwsync;
p := tt

Forbid: lwsync is a〈ww〉 barrier.

(25) WWC+lwsyncs:

p := tt (final)
‚‚‚

r0 := ! p ; (tt)
lwsync;
q := tt

‚‚‚
r1 := ! q ; (tt)
lwsync;
p := ff

(forbid). This is similar to previous cases:lwsync is a〈rw〉 barrier,
and a global〈ww〉 barrier.

(26) WRW+2W+lwsyncs:

p := () (final)
‚‚‚

r0 := ! p ; (())
lwsync;
q := tt

‚‚‚
q := ff ; (final)
lwsync;
p := tt

(forbid). Again, this example is similar to previous cases.

(27) WRW+WR+sync+lwsync:

p := tt

‚‚‚
r0 := ! p ; (tt)
sync;
q := tt

‚‚‚
q := ff ; (final)
lwsync;
r1 := ! p (ff)

(allowed). Sincelwsync is not a〈wr〉 barrier, the readrdp,ι1 from
threadt2 may be performed first.

If we considerWRW+WR+lwsync+sync, replacing the bar-
rier in the third thread by a stronger one, the unexpected outcome
is forbidden in our model, whereas it is allowed in the model of
[31]. This is a second test on which our models differ. However,
this is again an outcome that has not been observed when running
the test on PowerPC machines.

(28) WRR+2W+lwsync+sync:

p := () (final)
‚‚‚

r0 := ! p ; (())
lwsync;
r1 := ! q (ff)

‚‚‚
q := tt ;
sync;
p := tt

(allowed). Similar toIRIW+lwsync+sync.
If we considerWRR+2W+sync+lwsync, exchanging the two

barriers, then this outcome is forbidden in our model. This is a third
test where our model is more strict than the one of [31] (and again,
this behavior has not been observed by Sarkar & al.).

(29) SRSW:
This is a variant of theIRIW litmus test, where there is only one
reference which is written and read by the various threads. We
assume here integer values:

p := 1
‚‚ p := 2

‚‚ r0 := ! p ; (1)
r1 := ! p (2)

‚‚‚ r2 := ! p ; (2)
r3 := ! p (1)

We let the reader see that, if the program order is maintainedin
the third and fourth thread (say by inserting a barrier having the
effect of 〈rr〉, like lwsync), the outcomeS′(r0) = 1 = S′(r3)
andS′(r1) = 2 = S′(r2) is not possible, thanks to the restriction
aiming at guaranteeing a coherence order on writes in ruleR4.

