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Abstract

We propose a novel, operational framework to formally descr
the semantics of concurrent programs running within theesan

of a relaxed memory model. Our framework features a “tempo-
rary store” where the memory operations issued by the tkrass
recorded, in program order. A memory model then specifies the
conditions under which a pending operation from this seqgeés
allowed to be globally performed, possibly out of order. Tiem-

ory model also involves a “write grain,” accounting for ateh-
tures where a thread may read a write that is not yet globaly v
ible. We illustrate our approach by way of examples, andugisc
some extensions. We have build a software simulator alipwis

to run litmus tests in our semantics.

1. Introduction

The hardware evolution towards multicore architectureama¢hat
the most significant future performance gains will rely omngs
concurrent programming techniques at the applicationl.|&vds
is currently supported by some general purpose programlaing
guages, such alvA or C/C++ (using a Pthread library). The se-
mantics that is assumed by the application programmer ssioly
a concurrent language is the standmmtgrleavingsemantics, also
known assequential consistend{C, [22]). This is also the se-
mantics assumed by most verification methods. Howevemiels
known [3] that this semantics it the one we observe when run-
ning concurrent programs in optimizing execution envirents,
i.e. compilers and harware architectures, which are dedigmrun
sequential programs as fast as possible. For instance, ¢ensider
the program
= tt; = tt;

f“)()::!q ” zl::!p @
where we use ML's notatiohp for dereferencing the pointer — or
reference, in MLs jargon #. If the initial state is such that the val-
ues ofp andq are bothff, we cannot get, by the standard interleav-
ing semantics, a state where the value of bgthndr; is ff. Still,
running this program may, on most multiprocessor archites,
produce this outcome. This is the case for instance of a TSO ma
chine [3] where the writeg := ¢t andq := ¢t are put in (distinct)
buffers attached with the processors, and thus delayedestiect
to the reads ¢ and! p respectively, which get their value from the
(not yet updated) main memory. In effect, the readsracedered
with respect to the writes. Other reordering optimizatjomkich
may also be introduced by compilers, yield similar failuoése-
guential consistency (see the survey [3]), yet sequertdiaistency
is generally considered as a suitable abstraction at thiccappn
programming level.

Then a question is: how to ensure that concurrent programs ru
ning in a given optimized execution environment appeamftbe
programmer’s point of view, to be sequentially consistbahaving
as in the interleaving semantics? A classical answer igrthgram
should not give rise to data races in its sequentially ctersihe-
havior, keeping apart some specific synchronization veasatike
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locks. This is known as the “DRF (Data Race Free) guarantest,”
was first stated in [4, 18], and has been widely advocatee sivem
(see[2, 6, 28]). An attractive feature of the DRF guarardgehbat it
allows the programmer to reason in terms of the standardeate
ing semantics alone. However, there are still some issutsthis
property. First, one would sometimes like to know what raay p
grams do, for safety reasons aslixvA for instance, or for debug-
ging purposes, or else for the purpose of establishing tiityeof
program transformations in a relaxed memory model. (A way th
has been explored [26, 29] is to associate exceptions witbsra
but in this approach optimizing code transformations isrigted
to specific regions, and concurrent programming is comstthto
observe a strict discipline, to avoid too many exceptioSggond,
the DRF guarantee is more an axiom, or a contract, than amguara
tee: once stated that racy programs have undefined semédtics
do we indeed guarantee that a particular implementatioviges
sequentially consistent semantics for race free programs?
Clearly, to address such a question, there is a preliminaty-p
lem to solve, namely: how do we describe the actual behayior o
concurrent programs running in a relaxed execution enwient?
This is known to be a difficult problem. For instance, to thetbe
of our knowledge, thelAvA Memory Model (JMM) [28] is still
not completely fixed [32]. Moreover, its current formal dege
tion is fairly complex. To our view, this is true also regarglithe
formalization of the C++ primitives for concurrent prognaring
[5, 6], or the formalization of the PowerPC memory model [31]
Our intention here isot to describe a specific memory model, be
it a hardware, low-level one, or the memory model for a higyel
concurrent programming language, likavA or C++. Our aim is
rather to design a semantical framework that would be

o flexible enough to allow for the description of a wide range of
memory models;

e simple enough to support the intuition of the programmer and
the implementer;

e precise enough to support formal analysis of programs.

(Since we are talking about programs, there will be a prognarg
language, but the particular choice we make is not esseat@ir
work.)

To address the problem stated above, we adopbpleeational
style advocated in [7, 33], which, besides beingdely accessi-
ble to working programmetd33], allows us to use standard tech-
niques to analyse and verify programs, proving properties $1s
the DRF guarantee [7] for instance. In [7, 33], write buffers ex-
plicitly introduced in the semantic framework, and theihaeor
accounts for some of the reorderings mentioned above. Tlieimo
we propose goes beyond the simple operational model foe writ
buffering, by introducing into the semantic framework defiént
intermediate structure, between the shared memory antrieds.
Theideais to record in this structure the memory operatiaesads
and write, or loads and stores, in low level's terminologyattare



issued by the threads, in program order. We call the sequaince
pending operations issued by the threadsraporary storeThen
these operations may be delayed, and finally performed, nsith
gard to the global shared memory, out of order. To be glolpdly
formed, an operation from the temporary store must be atiawe
overtake the operations that were previously issued, shéte op-
erations that precede it in the temporary store. Then a lgredti-
ent in our model is theommutability predicatethat characterizes,
for a given memory model, the conditions under which an dpsra
from the temporary store may be performed early. This adsdan
particular for the usual relaxations of the program orded also
for the semantics of synchronization constructs, likeibesr

In some relaxed memory models, some fairly complex behav-
iors arise that cannot be fully explained by relaxationshef pro-
gram order. These behaviors are caused by the failure o€ writ
atomicity [3]. To deal with this feature, we introduce aratlkey
ingredient to characterize a memory model. In our framewoith
each pending write is associatedisibility, that is the set of threads
that can see it, and can therefore read the written valueem:p
ing on the memory model, and more specifically on the (altrac
communicating network topology between threads (or parss,
not any set of threads is allowed to be a legitimate visipiltor
instance, the Sequential Consistency model [22] only alltive
empty set, and the singletons to be visibility sets, meattiagonly
the thread issuing a write can see it before it is globallyqrared.
Then the definition of a memory model involves, besides time-co
mutability predicate, &write grain,” which specifies which visibil-
ity a write is allowed to acquire. This accounts for the faetttsome
threads can read others’ writes early [3]. Our model theilyeas
plains, in operational terms, the behavior of a series U#rtests,”
such as IRIW, WRC, RWC and CC discussed in [6] for instance,
and the tests from [31], designed to investigate the Powerek-
tecture. Regarding this particular memory model, we founty o
three cases where our formalization of the main PowerPQ-barr
ers is more strict than the one of [31]. However, these arescas
where the behavior that our model forbids was never obsetued
ing the extensive experiments on real machines done by Sérka
al. (and reported in files available on the web as a suppletoent
their paper), and therefore our model is not invalidated Hasé
experimental results. Needless to say, the experimergaktete
provided by Sarkar & al. was invaluable for us to see which be-
haviors the model should explain. These litmus tests weneng
others, run in a software simulator that we have build to rpent
with our semantics.

Compared to other formalizations of relaxed semantics,
model is truly operational. This means in particular thattdmpo-
rary store is not considered modulo rewriting, as in [10k@lcon-
trarily to [8] for instance, our model preserves a notiocadisality

our

a read can only return a value that is present in the shared mem

ory, or that is previoulsy written by some thread. Our notain

a temporary store is quite similar to the “reorder box” of ][30
but formulated in the standard framework of programming lan
guage semantics. Regarding the relaxation of write atdynitie
only work we know that proposes an operational formulatibn o
this feature is [31]. We think however that our formalizatidy
means of write visibility, is much simpler than the one sugjgé

in this paper. Moreover, by relying on a concrete notion afest
our model should be more amenable to standard programnming la
guages proof techniques, like for establishing that progranly
exhibit sequentially consistent behavior [7], or more gatg to
achieve mathematical analysis and verification of programs

2. The Core Language

Our language is a higher-order, imperative and concuresmflage
ala ML, that is a call-by-valua-calculus extended with constructs
to deal with a mutable store, to dynamically spawn threadstan
synchronize their actions. (This choice of a functionalectam-
guage is largely a matter of taste.) In order to simplify sdewh-
nical developments, the syntax is given in administratigenral
form [16]. In this way, only one construction, namely the lagp
tion of a function to an argument, is responsible for intrdg an
evaluation order (the program order). Assuming given &’setof
variables, ranged over by, y, = ..., the syntax is as follows:

v u= x| Aze | tt|fF|0 values
b € Bar barriers
ec Ll v | (ve) | (ifvthenegelsee;) expressions

(refv) | (tv) | (vo :=w1)
(thread e) | (joinv)
(withvdoe) | b

As usual, the variable is bound in an expressiokze, and we
consider expressions up deconversion, that is up to the renaming
of bound variables. The capture-avoiding substitution edlaev
for the free occurrences afin e is denoted{z —wv}e. We shall use
some standard abbreviations liket = = eq in e1) for (Azeieo),
which is also denoted, ; e; wheneverr does not occur free iay .
We shall sometimes (in the examples) write expressionsimdsird
syntax, which is easily converted to administrative forike lfor
instance convertingeoe:) into (let f = eg in (fe1)), or (v :=e)
into (letx = ein (v := x)).

The barrier constructs are “no-ops” in the abstract (ietar
ing) semantics of the language. Such synchronization nostst
are often considered low-level, and inserted at compile §tr8,
21, 23, 24, 34]. However, we believe they can also be usefal in
high-level concurrent programming language, for “relaxeeim-
ory aware” programming (see [6]). We do not focus on a pafticu
lar setBar here, so the language should actually®b@ar), but
in the following we shall give some examples of useful basiie
and see how to formalize their semantics. The thread spawnin
construct(thread e), as well as thejoin v) construct, are stan-
dard. In(with v do e) the valuev is intended to denote a ref-
erence. The intuitive meaning is that this expression aeguif
possible, the pointer denoted byfor exclusive use ire, and re-
leases it upon termination. That is, in our language synchadion
is only concerned with memory operations, and in particaar
quiring/releasing pointers, not locks. We must point owtt tbur
semantical framework is not tied to this particular formatKing,
and that other choices could be supported as well. For iostdine
more sophisticated “load-reserve/store conditionaltriretion of
PowerPC should be amenable to a similar treatment.

As usual, to formalize the operational semantics of the lan-
guage, we have to extend it, introducing some run-time gaie
assume given a s@ef of referencesranged over by, ¢ ... and
a set7id of thread indentifiersranged over by. These are the
values returned by reference and thread creation respctihen
the language is extended as follows:

veVal == ---|p]|t run-time values
eel u= v -
ec&xpr == e | (ve) | (\p) run-time expressions

The expressiofie\p) represents the prograéirunning with an ex-
clusive access to the pointerwhich has been previously acquired.
If we were focusing on low-level memory models, we should dis
tinguish registersform references. In this case, a write:= !p
wherer is such a register is ad of p, whereas a&toreis just a
write p := v wherep is a reference. This distinction is then useful
in discussing reorderings and barriers, since a load isllysuat



(5,0, E[(Azev)) [ T) — (5,0, E[{z—v}e]) [| T)
(S, 0, E[(if tt theneg else e1)]) | T) — (5,0, (t,Eleo]) || T)
(S,0, (t, E[(if ff thenegelsee))) | T) — (S,0,(t, Ele1]) |T)
(S,0,(t, Elref0)) | T) — (SU{p—v},O,(¢EP)IT) if p€ Ref —dom(S)
S0, LEUpDIT) — (S0, ER)T) if S(p)=v
(5,0, El(p=v)DIT) — (Slp:=2],0,EE]])T)
(S,0, (t,E[(thread e)]) | T) — (S, 0, E[])) (¢, e) || T) if ¢ & dom(T)
(S,0,(t, E[Goint" ) IT) — (S,0,E)|T) if T(t') € Val
(S,0,(t,E[(withpdoe)) |T) — (S,0,( Ele])||T) if p€dom(0)& O(p) =t
(5,0, El(withpdoe)) [|T) — (S,0U{p—1}),E[(e\p))IIT) if p¢&dom(O)
(S0, E[(\pDT) — (S,0\p, & E[]) | T)
(5,0, EBDIIT) — (S,0,&EQ)IT)

considered as a write. In the examples we shall examine aimes
r; suggest that such a reference should actually be regardad as
register, which is not shared with other threads.

We still usee to range not only over expressions of the source
language’, but also over expressions built with run-time values,
possibly involving references anAd thread identifiers. tiothow-
ever that these expressionase L do not contain the construct
(\p). A step in the semantics consists in evaluating a redexensid
anevaluation contexfThe syntax of the latter is as follows:

E | E[F] evaluation contexts

F ) I (I\»)

As usual, we denote bl[e] the run-time expression obtained by
filling the hole inE by e. This is defined by

el
E[F][e]

frames

E[F[é]]

(el (ve)
(I\p)le] (e\p)

The semantics is specified as small step transitons— C’
between configuration§’, C’ of the form (S, O, T) where S,
O andT are respectively thatore the ownershipmapping and
the thread systemThe storeS, also called here thenemory is

a mapping from a finite setom(.S) of references to values. The
thread systenT” is a mapping from a finite setom(7") of thread
identifiers, subset offid, to run-time expressions, an@ is a
mapping from a finite setdom(O) of references, contained in
dom(S), intodom(T). If dom(T) = {t1,...,tn} andT(¢;) = &;
we also writeT” as

where

(tr,e) |-+ l(tn, n)

We say that a pointep such thatp € dom(O) andO(p) = tis
ownedby thread:.

The reference operational semantics is given in Figure &revh
S[p := v}, in the rule for reducingdp := v), means updating
in the storeS with valuev, and, in the rule for reducinguv\p),
O\p meansO restricted todom(O) — {p}. One can see from
the semantics ofwith p do e) that a pointep can be temporarily
acquired as a private reference by a thread, provided tignibt
already owned by a different thread. Then a threas blocked
when it tries to acquire, by executirigiith p do €), an exclusive
access to a referengethat is currently private to another thread —
i.e.p € dom(O) with ¢ # O(p). That is, reducingwith p do €)
is a synchronization operation. Obviously, for this comstrto
be really useful, the programmer is supposed to adhere to the
intended discipline, that is, when a reference is used withi
locking construct in a piece of code, it should be used inwayg
in all the threads of the program. Checking that such a diseip
is enforced has been studied by many authors (see for imstanc
[1, 9, 14, 19]), and this is a topic that we don't have to adslres
here.

Figure 1: Reference Operational Semantics

3. Relaxed Computations
3.1 Preliminary Definitions

The relaxed operational semantics is formalized by measmafl
steps transitions

RC — RC’
M

between relaxed configuratio®' and RC'. The M parameter is
thememory modelLet us first describe the relaxed configurations.
For this we need to introduce some technical ingredientshén
relaxed semantics a read can be issued by a thread, evglaatin
subexpressiorf! p), while not immediately returning a value. In
this way the read can be overtaken by a subsequent operation.
model this, we shall dynamically assign to each read omerai
unique identifier, returned as the value read. That is, wenekt
the language with names, a@rentifiers to point to future values.
These names are similar to the “placeholder variables” 5f §hd
the “prophecy variables” of [27]. The s&tent of identifiers is
assumed to be disjoint froiar URef, and is ranged over by We
shall usep to range oveRef UZdent. The identifiers € Zdent are
valuesin the extended language, still denoteddyyout notice that
Val denotes the set of (not relaxed) values, that do not contsin a
identifier.. We shall require that only true values, not relaxed ones,
can be stored. It should be clear that substituting a relsakv

for an identifier. in an expressiomr results in a valid expression,
denoted{: —uv}e.

Our next technical ingredient is the s#ttop(L£) of memory
operationsin the languagel. These represent the instructions
that are issued by the threads, but are not necessarily irateld
performed. The seMop(L) of memory operations comprises the
barriersh € Bar, theacquireoperationg’ of acquiring a reference
p, and the correspondingleaseoperationsp, theread andwrite
operations, respectively denotet), , andwry ;" wherep € Ref U
Zdent, + € Zdent, W C Tid is a set of thread names, and
I C Zdent is a set of identifiers. We call the s&t in wr};'
the visibility of the write, wheread is the set of identifiers that
have been bound to the written valuewhen performing a read
(we comment on these components below). We also include in
Mop(L) thespawningandjoining operations, respectively written
spw, . andjoin,. Finally, we introduce operations of the fon,
that we call aead mark meaning that a read has occurred, where
¢ serves as identifying the corresponding write. That is sthrgax
of memory operations is as follows:

&€ Mop(L) = rdg, | rd, | wrg‘f;f | ¢ memory operations
¢ € Sync

= spwy . | joing synchronization operations
&% A

| plp|b

We can now define eelaxed configuratiolRC' as a tuple

RC = (S,0,0,T)



(5,0,0,(t, B[(Azev))) | T) — (S,0,0,(t,E[{z—v}e]) | T)
(S,0,0,(t,E[(if tt theneg else e1)]) | T) — (S,0,0,(t, Eleo]) || T)
(S,0,0,(t, E[(if ff theneg elsee)]) |T) — (S,0,0,(t, Ele1]) || T)
(S,0,0, (L E[(ref)) [ T) < (S,0,0- (t,wrp3), (4 E[p)) | T)  where pis fresh
(S,0,0, &L, E[lDIIT) — (S,0,0-(t,rdo.), (&, E[])||T) where ¢ is fresh
(5,0,0, (L El(e:=v)) I T) (5,00 (t.wrgy). (t.B[0]) | T)
(8,0,0,(t, E[(threade))) | T) — (S,0,0-(t,spwy ), (t, E[t]) |T) wheret’ g dom(T')
(S,0,0,(t, E[joint" ) |T) — (S,0,0-(t,joing),t, E[Q)||T) ifT(') € Val
(S,0,0, (t, E[(withpdoe)) || T) — (S,0,0, (t,Ele])||T) if pe [E]
(S,0,0, (t,E[(withpdoe)) || T) — (S,0,0-(t, E), (t,E[(e\p)]) || T) otherwise
(S,0,0,(LE[@\P) | T) = (S,0,0-(t, D), (t, ER) | T)

(5,0,0,(LEP) [ T) —  (S,0,0-(tb), (& E]]) [ T)

Figure 2: M-Relaxed Operational Semantics (Threads)

whereS, © andT are as above, andis a sequence of pai(s, &), an operation like(new p), to be performed later. This might be
wheret € Tid is a thread name an§l € Mop(L) a memory closer to an implementation, but this complicates the fraonk
operation. The meaning df, ¢) in a sequence is that¢ is a with no obvious benefit. Reducin@vith p do ¢) or (v\p) has

memory operation issued by threadrhe sequence then records a similar effect of appending acquire or release instrustias
the pending memory operations issued by the threads, whith w pending operations. Reducing a dereferencing operétiohdoes
not necessarily be performed (on the shared memory) in theror  not immediately return a proper value (read from the stdre),

in which they appear inr. We shall call such & a temporary creates and returns a fresh identifiex Zdent, which has not yet a
store We denote by~ the set7id x Mop(L), so that the set definite value, while appending a corresponding read ojper&d
of temporary stores &7, the set of finite sequences ovEl.. the temporary store. A barrier just appends itself at theddritie
We denote by the empty sequence, and we write o’ for the temporary store.
concatenation of the two sequeneeands’. We say that a relaxed A relaxed configuratior(S, O, o, T) can also perform actions
configuration(S, O, ¢, T) is normal wheneverc = ¢, and no that originate from the temporary stote These steps are per-
expression occurring in the configuration (that is, in tharestS formed independently from the evaluation of threads, in ama
or the thread podI') contains an identifier. chronous way. To define these transitions, we need to say a bit
. more about the memory moddh. We shall not focus here on a
3.2 The Relaxed Semantics particular memory model, since our purpose is to design argén
We present the relaxed semantics in two parts: the first one de framework for describing the semantics of concurrent @ogyin
scribes the evaluation of the threads, that is, the conioibwf the a relaxed setting. However, we shall make some minimal gsot
T component in the semantics, and the second one explains howses about théA parameter. But let us first say wh&d consists of.
the memory operations from the temporary sterare performed. We assume that this is a pait = (1, W) made of acommutability
(A similar approach is used in [12].) One could say that the in predicatel and a fwrite grain” W. These two components provide
structions executed by the threads are “locally perforinetile a formalization of the approach of Adve and Gharachrolo@jn [
the operations executed from the temporary store will betyally who distinguish these two key features as the basis for oeizgg
performed,” as their effect is made visible to the otherdldse The memory models.
particular memory modeM is irrelevant to the local evaluation of The commutability predicate delineates the relaxationthef
threads, and therefore in Figure 2, which presents thisiatiah, program order that are allowed in the weak semantics under co

i ; ; sideration, and provides semantics for barriers. This diostpo-
we simplify — into <. In the rules for reducingref v) and(! o), nent of a memgry model is a subsetB: x Xz, thatis a binpary
“p fresh” and % fresh” mean thap and. do not occur in the con-  predicate relating temporary storese X7 with issued operations
figuration. Regarding the reduction @fith p do ¢), we denote by (t,€) € X. This predicate is expressing which operations issued
[E] the set of reference names held in the evaluation cofiext by some thread are allowed to be performed early, that ispbut
that is the set of referencessuch thai([]\p) occurs inE. order in th/e relaxed semantics. Indeed, if the temporamesto
Notice that the threads are always executed in program order o (¢, &) o with o 1 (¢,£), then the operatiog from threadt may
and that nothing can prevent a reducible expression to heceed o€ globally performed, as if it were the first one, and remdvexh
except for(join t), which is blocking, waiting for the termination g:(.eate;ﬂg\?vrsa(rg/ gs)t(igeb(\aNSerr?:rdr:eg’\%\)/eagégﬂrgn)em:g gr\wl(zr;?tl;r?\r‘satis
of the threadt to join. The relaxed semantics dn‘f_ers from the fied by any m7emory model, that the first operation in a temporar
reference semantics in several ways. The main differentieats

° . . store is always allowed to execute, that is, for grgndt:
the effect on the memory — if any — of evaluating the code is @t (E)
delayed. Namely, instead of updating the memory, the effiéct e 1 (1) . -
evaluating(p := v), or more generallyp := v) where the exact ~ 1he)Y component of a memory model is a set of subsetZidf
reference to update may still be undetermined, consiseziording comprising the set of the aIIowed_wr:/t;elv_|3|b|||t|es_. In tredaxed
the write operation, with a default empty visibility, at teaed of semantics, with each write operatiam, ;" is associated a visibil-
the sequence of pending memory operations. Creating &refer ity W, which is a (possibly empty) set of thread identifiers. The

. default visibility of a write when it is issued, as prescuha Fig-
_reducm_g(ref v), has the same effect, onc_e a new referenc% name o 2, isl, so we assume that for any memory model this is an
is obtained. Notice that we could also issue, before vﬂn%m,



(Sv 0,0, T) W (S’ 0, {L ’_)'U}(O-O *01, T)) R1 (read)
' if o=o00(trdp,) o1& 0o 9 (trdp.) & S(p) =v
(8,0,0,7T) T (S, 0,{t—v}(oo - (t/,wrg‘fq’JIU{L}) o1 - (t,rd,) - 02,T)) R2 (read early
’ if a:ao-(t’,wr‘;’/{,[)-al-(t,rdQ?L)-ag&tGW&
o1 9 (t,rdy,.) & 00 a5 (t,rdo,.)
(S8,0,0,T) P (S8,0,00-01,T) R3 (read)
’ if o=o00-(trd,) o1 &00 (trd,)or
o9 = g - (t’,wrzig’luh}) <01 & o (t’,wrZﬁ"IU{L})
(S8,0,0,T) P (S[p:=v],0,00 - 01,T) R4 (write)
’ if a:ao-(t,wrg‘{b[)-al&ao"I(t,erf{,I)&vGVal
(5.0,0.T) - (5,0,00-(, wrlVo ) oy, T) R5 (write early)
it o=00- (t,wrpa) o1 &teW eW&W CW' eWw
(S,0,0,T) e (S,0U{pw+ t},o0-01,T) R6 (acquire)
if o=00-(t,p) 01&009(t,p) & p¢&dom(O)
(S,0,0,T) P (S,0\p,00 - 01,T) RT (releasg
if o=00-(t7P) 01&00 (D)
(S8,0,0,T) P (S,0,00-01,T) RS (barrier)
’ if o=o00-(t0b) o1& 00 (tb)
(S,O,U, T) W (570700 'Ulv(tv 6) HT) R9 (span')
’ if o=o00-(t spw;,) o1& a0 (', spw, )
(S,0,0,T) P (S,0,00-01,T) R10 (join)

if o=o0-(¢joing) o1& oo (¢, joingy)

allowed visibility, that is) € W. The visibility of a write may dy-
namically evolve (within/V), but we shall assume that it can only
grow. The threads iV see the write, while in the temporary store,
and these threads can therefore read the correspondirg yals-
sibly before it is globally visible (in that case tiecomponent of
the write is extended). Thi/ component allows us to deal with
write atomicity or, more generally, with the extent to which the
threads are allowed to read each others writes. In a hardweinée
tecture, this is determined by a particular topology anchiui of
the interconnection network. In particular, the semarpieserves
the atomicity of writes whenever thd) component satisfies the
following coherenceaxiom:

YW eW.Vtt' e Tid. t #' & {t,'}CW =W =Tid (C)
We can now formulate the rules for th/(\e4—> transitions as regards
the memory. These are given in Figure 3, with ) = M. In the
rule R2 we use a restricted commutability predicaten® (¢, £),

ignoring the operations from that are not synchronization opera-
tions, that is:

09 (t,€) Sdaer o [ Sync A (t,€)
whereo | Sync is the restriction of the sequenegdo the setSync,

that is the subsequence @fcontaining only the issued operations
in Sync.

Figure 3: M-Relaxed Operational Semantics (Memory)

R2, the read operations should not be blocked by synchrooizati
operations (such as a barrier or an acquire) previousledssuit
not yet globally performed. This is expressedsasi® (t,rdo,.).

In the case of an early read, the read operation does not etehpl
vanish, but is transformed in a read matk, where. identifies
the matching write. Such a read mark, which is only useful in
relation with barriers (as discussed below), can be elitathérom
the temporary store as specified B3. Notice that when we say
that a readt, rd,,.) can be “moved,” this is only an image: there
is no transformation of the temporary store, but only a ctoorwli

on it, namely, inR1, oo 9 (¢,rdp,.). In the rulesk1 and R2 for
read operations, there is a global replacement of the fikmti
associated with the read by the actual valubat is read: in these
rules{:+—v}(o, T) stands for such a replacement, which does not
affect thel component in the writes. (Recall that we required that
an identifier cannot appear in the store.) Similarly, a wojteration
wry;! from the temporary store, - (¢, wry ;') - o1 may update the
memory (ruleR4) when g is a referencep, v is in Val and the
write is allowed to commute with the preceding operatiohat ts

oo 9 (t,wry;h). An early write action inR5 has only the effect
of modifying the temporary store, by extending the vistiilof

the write to more threads. In this rule, we should also assihaie

We now comment the rules. In all cases but the early ones W’ C dom(T') or W' = Tid, in order to restrict its application to

(R2 and R5), performing an operation from the temporary store

o consists in checking that the operation can be moved, up to

9, at the head of, and then in removing the operation from
while possibly performing some effect. Namely, such anatffe

finitely many cases.
Notice that, although the first operation in the temporaoyest
is always allowed to be executed, by axiom (E), in the caseavhe

this operation is an acquie the conditiorp ¢ dom(O) might not

is produced when the performed operation is a read, a wiite, a hold. In such a case, a deadlock might occur, and the conpuitat
acquire or a release, and the reference that is concernetleby t might be stuck. As usual, our abstract semantics does narsay
effect must be known in these cases. A read may return a valuething about such errors — think 6ft()) for instance —, whereas an

if it can be moved next to the head of the temporary store (rule implementation generally tries to recover from them. Wedlsiee
R1), or to a corresponding, visible writeRQ). In the case of



later that some other kinds of errors may arise when extgritiie
framework with speculation. Then we will consider as valithat
is, non erroneous — only the relaxed computations that ervdtlp
an empty temporary store, i.e. where the resulting conftgunrés
normal.

An obvious remark about the relaxed semantics is that it con-
tains in a sense the interleaving semantics: one can mintieksi-
tion of the latter either by one local step, or by a local stepiedi-
ately followed by a global action. One can also immediateb/that
if W = {0}, then the ruleR5 cannot be used, and consequently no
early read can take place. If, in addition(tp)V only contains the
singletons{t} for ¢ € Tid, the read early rulé?2 is restricted to
the “read-own-write-early” capability [3]. Obviously, @rmemory
model is coherent in that case, that is, it satisfies axioml(Che
write early ruleR4, the requirement € W’ means that we do not
consider memory models where the “read-others’-writdy&an-
pability would be enabled, but not the “read-own-writehgaone
(again, see [3]).

3.3 Memory Models: Requirements

In the next section we illustrate the expressive power offiaume-
work for relaxed computations, by showing programs eximigit
behaviors that areot allowed by the reference semantics. Many of
these examples are standard “litmus tests” found in theatiiee
about memory models, that reveal in particular the conserpse
of relaxing in various ways the normal order of evaluationmost
cases, the relaxations of program order can be specified iag/b
relation onX . It is actually more convenient to use the converse
relation, which can usually be more concisely described.céle
this aprecedenceelation. Given such a binary relatig? on pairs

(t, &) € 3., the commutability relation is supposed to satisfy

(W’g),])(wlvg/) = VU’ o _'(U : (W,f) Xl (w/’g/))
That is, an operation in a temporary store is prevented frem b

ing globally performed by another, previously issued ohat has
precedence over it. A more positive formulation of this @ndp is:
o (&) 0 (€)= (WP (W,E)) (Ap)

Before examining various relaxations of the program orolgrvay

of examples, we discuss some precedence pairs that are fnost o
ten assumed in memory models. For instance, if we do not a&ssum
any constraint as regards the commutability of writes, ftoenpro-
gram

(p:=1tt); (p:= 1)
we could get as a possible outcome a state where the vajueof
the memory istt, by commuting the second write before the first.
This is clearly unacceptable, because this violates thestos of
sequential programs. Then we should assume that two wrnites o
the same reference issued by the same thread cannot be permut
Similarly, a write should not be overtaken by a read on theesam
reference issued by the same thread, and conversely, dtledive
semantics of the sequential programs

(p:=1tt); (r:=1p)
(r:="!p); (p:=tt)

would be violated. We shall then require that any memory rhode
satisfies axiom (4) where « is the minimal precedence relation
enjoying the following properties, where the free symbaoks ien-
plicitly universally quantified:

} -
vel = (twry) (¥, rdy)
o€ {0} UZdent (t,rdo,.) (8, Wrg‘,/:i)

0 € {0} UZdent &} N
t' e WuU{t}

o€ {0} UTdent & (t,wrps ) 4 (' rdy ) &

teWu{tlorI£D#T w'

w, 1 Id
(t’WrQﬂ’l ) < (t/’WrQ/ﬂ;/ )
=
=

w, 1 w' I
(twrps') € (¢ wrp o)

(t,p) 4 (t,rd,,) € (t, D) &

0 € {p} UZdent = { ~ A
(t,p) «(t,wryy') «(t,D)

and

(t,p) «(t,p) & (t, D) < (t,D)

(tijint’) < (t7 é) < (t7 spwt’,e)

(t,€) 4 (t,joiny)

The first group of properties ensures in particular that theee
dence relations discussed above are enforced: among treiope
of a given thread, one cannot commute for instance a read and a
write on the same reference. Notice however that it is natireq
that the program order is maintained as regards two readkeon t
same reference. Therefore, from the program

'p;
Ip
ifinitially S(p) = ff, we could end up in a state where the value of

r1 IS ff, while the one for is t¢. If one wishes to preclude such a
behavior, one can simply add

0 € {p} UZdent = (t,rdp,.)P (t,rdp /)
to the precedence relation. Widnwe also assume that accesses to

a referencey enclosed into acquirg” and releasé actions from
the same thread cannot be moved outside such a criticabsecti
This is needed to preserve the locking discipline enforgedding
the block structured locking constru@tith p do ). For instance,
without these precedence relations, from the program

ro 1=
ry =

pi=tt ||

(with p do p := (not ! p)) || (with pdo p := (not ! p))
starting with a configuration where the valueofn the store is
ff, one could end up in the relaxed semantics with a state where
the value ofp is tt, violating the role of the locking construct.
Finally with « we require that the causality relations associated
with spawning or joining a thread in the interleaving serienare
preserved. For instance, with
p = tt; (thread (r :=!p))
or
(t,p:=tt) || (¢, (joint) ; r:=!p)
it is not possible to get the outcome= ff. The only « prece-
dences that relate two distinct threads @tevry’;’) <« (', rdp..),

(t,wry,) < (t, wrg‘f’/v,) wheret’ € Worl # @ # I, and
(t,€) 4 (t',join,). This means in particular that a threéidsees”
the writes, previously issued by other threads, that ireltidn
their scope, and that the order of writes on a given referemest
be respected if these writes have been read by some thréaéis (t
similar to the “coherence order” of [31]). One should noticatno
specific precedence assumption is made at this point regptiae
barriers. Then our definition of the notion of a memory models
follows:

DEFINITION (MEMORY MODELS) 3.1. A memory modelM for
L is a pair(1, W) wherel) € W, and the commutability predicate
9C % x X satisfies the axiom(&E) and(A ).

As an example memory model, one can defiiee, for Sequential
Consistency, as

SC = ({e} x S, {0} U{{t} |t € Tid})

which obviously satisfies Definition 3.1 (the axiom {Ais vac-
uously true). This model is trivially coherent. All the exples
discussed in the following section hold in the minimal, roost
relaxed memory modelM ((£) = (‘14,277"1), where‘ ¢ is the
largest commutability predicate satisfying 4} 27*¢ is the set of
all subsets offid.

In this work we mainly use commutability properties that are
generated by precedence relations, in the sense of axign). (A
Then one could think of defining a memory model as a pair



(P,W), instead of(9, W). However, we shall see in Section 4.3
a case where this is not general enough. More precisely, alé sh
see a case where we have to say thét 9 (¢,£)), not on the
basis that contains an operation that has precedence @ve,
but because there is a subsequence efhich, as a whole, has
precedence over it.

4. Examples

Now we examine some examples of programs exhibiting behav-
iors that are not allowed by the reference semantics, itidgén
each case the property the memory model is supposed to hele, a
which synchronization construct the language could offexdun-
teract such deviating behaviors. We do not formally defirexsic
memory models here, but only suggest, in each case, whichare
commutability properties or the properties of the writeigrdhat
support some particular behavior. As we said, all theseeptigs
hold in the most relaxed memory modelt (£). In the examples
we use a standard syntax, and follow the usual conventiontabo
the outcome, be it forbidden or allowed in the relaxed opemnat
semantics. That is, an assignment:= e (where most ofter is

! p for somep) is annotated with the value, like for instante)

or (ff), that the reference; is supposed not to have, or to have,
in the final state. Similarly, whenever several assignmémtshe
same reference are present, we decorate Vithul) the one that

is intended to provide the final value (forbidden or allowtm)the
reference. In each case where the specifed outcome candieaibt
in the relaxed semantics, we sketch a corresponding behé#vio
all the examples we assume that the initial values of theentes
are ff. We shall omit the ownership component, which is irrele-
vant here. We also omit the superschiptin (¢, wrgY;f) whenever
W = 0, and similarly forl.

4.1 Simple Relaxations

(1) Let us start with the most common relaxation, the one of the
W—R order [3], supported by simple write buffering [11] as in
TSO machines. Thatis, we are assuming that there is no peced
between(t, wr)";') and(t,rd,,,) if p # g. The litmus test here is
the program (i) given in the Introduction. If we let

T = (to,p:=tt;ro:="'q)|(t1,q:=tt;r1:="p)
o = (to,wrpt) - (fo,rdg,uo) - (b1, Wrg,ue) - (t1,rdp,uy)
we have

(S’E’T) #} (S’ g, (tO’TO = LO) ”(tlvrl = Ll))

Given that the ordeww—R may be relaxed, we have
p#q& } N { (to, wrp,tt) 9 (to,rdg,.0) &

to # t1 (to, wrp,tt) - (t1,wWrq,ee) 9 (t1,rdp,0q)
and therefore

(8,6, T) > (8,0", (to, ro = ) [|(t1, 71 := fF)
wherea’ = (to,wrp i) - (t1, wrg,u). These write operations can
now be executed, and we reach a final stg#é ¢, 7") where
S’ (p) = tt = S'(q) andS’(r0) = ff = S'(11).

To restoreSC' behavior in a relaxed memory model, the lan-
guage must offer some synchronization means. Most oftesethe
arebarriers, that disallow some relaxations, when inserted between
memory operations. For instance, to forbid iMe—R relaxation,

a natural barrier to use iéwr) (write/read), which cannot over-

take a write, and cannot be overtaken by a read from the same

thread. In our framework, the semantics of barriers areifipec
by the commutability predicate: they have no other effeahtpre-
venting some reorderings. In the case(wf), we require that the
commutability predicate satisfies £4,,, ) for a precedence relation
Pwry Such that

(tv W"Z‘,/{;I) P(wr) (tv (WI’)) P(wr) (t7 rdg’,L)

(We do not have to specify thdivr) has precedence oved,,
because, due to the conditionsi2, a read mark is never preceded
by a read barrier in the temporary store.) This ikeal barrier
since it blocks only operations from the thread that isstiethien
for restoring anSC' behavior to the example we are discussing, we
write:

p = tt;

(wyi | s

ro:=1lq ry:i=1Ip
The threads will issuéwr) before the readsl, ., andrd, ., . Given
the precedence relations we just assumed as a semantiggrjor
these reads cannot proceed until the barrier has disapp&are
the temporary store. The rul8 requires, for a barrier to vanish,
that it may be commuted with the previously issued operation
Then in the example above, this can only happen(iar) once
the writeswr,, +» andwrg,;; have been globally performed.

q = tt;

(2) Regarding the relaxation of the ord&/—W, typical of a
PSO architecture, and supported by write buffering witrcKjey-
ing” [11], the litmus test is

p = tt; ” ro :=1q;
q:=1tt ry:=Ip
We have
(S,e,T) #» (S, 00, (to, 0) [|(t1,70 :=1q; r1 :=1p))
ﬁ’LW’ (S,00 - 01, (to, 0) [I(t1, 71 := ¢1))
where
T = (to,(p:=tt);(g:=1tt))[l(ro:="q); (r1:="!p)
oyp = (to,WI’p,m) . (to,WI’q,m)
o1 = (t1,rdg,g) - (b1, Wrrg,o) « (t1,rdp,ey)

Here we assume that there is no precedence bet@een, ,,) and
(t,wrq) if p # g, and therefordto, wrp 1) 7 (to,wrg,st), that
is, we can perform the writéo, wrg 1), and therrd, ., to finally
reach a statéS’, e, 7") whereS’(ro) = tt andS’(r1) = ff.

(3) The same example can be used to illustrate the relaxation of
R—R. As in the case of the first example, to counteractthe:W
andR—R relaxations, the language should offer barriers {iker)
and(rr}, with an obvious semantics in the memory model:

(t7 WrZV’UI) P(ww) (t7 <WW>) P(Ww) (tv Wr‘;‘//,;;/[/)
(t,rdo,.) Pry (t, () Pry (t,rdgr.r)
(tv rdb) P(rr) (tv <I’I’>)

(4) To illustrate the relaxation oR—W, given
W—W is also allowed, we use:

that relaxing

ro :=!p; H ry:=lgq;
q:=tt pi=tt
Then
(S,e,T) # (S, 00, (to, 0) [|(t1,71 :="q; p:=tt))
o0 = (t07 rdp,LQ) . (t07Wr'r‘0,L0) . (tO,qu,M,)
#’ (8,00 01, (to, 0) 1(1,0))
g1 = (t17 rdq,Ll) . (t17wr7‘1,L1) . (tlywrp,tt)
Since

(to,rdp,uo) - (to, Wrrg,ie) T (to, wrg,ee)

(to,rdp,.) - (t0, Wrrg,ug) - (t1,rdg ey ) - (F1,Wrpy,.y) P (t1,wrp,1t)
we conclude as in the previous cases that we can reach a siate w
S/(T()) =ttt = S,(T1).

According to [31], theR—W relaxation is not observed on
machines implementing the PowerPC memory model, though it
should be assumed as part of this model. As in the previowescas
a(rw) barrier is useful to prevent this relaxation, with the olngio
semantics:

(t7 rdQ;L) P(rw) (tv <I’W>) P(rw) (tv WrW,I)

(t, 1)) Prowy (& ()



(5) Our last example for this subsection, which is a simplifiati
of the example in Fig. 2 of [28], shows that there is no valusizg
“out of thin air” in our model. Namely, with

p:=lqllg:="!p

we can only get the outcome where the value of hotimdg is ff,
because identifiers cannot be stored into the memory.

4.2 Early Reads and Writes

(6) The litmus tests that illustrate the rulR2 (in combination
with R5) are less standard. The first one below, which holds in
TSO models, exemplifies thread-own-write-early capability [3],
that is the ability for a thread to read a write that it has fmesly
issued, even if this write is not yet globally performed:

p = tt,; q = tt,;
ro :=!p; ‘ ro :=1lgq;
ry:=lq =1Ip

Let us assume that the write graivi contains two set¥/, andW;
such thaty € W, andt; € Wi. Then it is easy to see that from
this thread system we can, using the write early e reach a
configuration where the temporary storeis- o1 where

W
a0 (t()’er 8) - (to, rdp,.q) - (to, Wrrg,u) - (to, rdg,.; )

(tlvqu i) (b1, rdguy) - (B, Wrrg 1p) - (t1,1rdp .g)
Then by R2 both .o and .2 can take the valuet, whereas, given

that the ordelW —R is relaxed (and that a read mark does not have
precedence over a read), baethand.s take the valugff from the

shared store, before it is updated by performing the Wmé;g,,

and qu 4. We let the reader see where to ins@wt) barriers to
restore ar6C' behavior in this case.

o1

(7) Let us see another example where the read-own-write-early

capability is exercised:
p:i=gq; H ro:=1!q; (tt)
Ip:=tt r1:=!p (ff)

From this program one can reach a configuration where theademp
rary store is

o = (to,wrp,q) - (to,rdp,.) - (to, wr.,tt)
Then, assuming that the write grain contaifissuch that, € W

andt; € W, by R5 and R2 the temporary store can evolve into
where

o' = (to, wrig" ) - (t0,7d,) - (to, wrg,u1)
Assuming theV —W relaxation, we can then reach a configuration

where the temporary store(i, wry. 4 L }) -(to, rd,s), and the store
S’ is such thatS’(q) = tt. Next, the operations from the second
thread are performed, in program order, and we end up withta st
where the storé$” satisfiesS” (o) = ¢t andS” (r1) = ff.

(8) There are several other examples to illustrate the writly ear
rule R5, in combination withR2, in particular to show the ability
for a thread toread-others’-write-early, according to the termi-
nology of [3], and more precisely to break the atomicity oftes.
Such an example is the one in Figure 2(b) in [3], but the besivin

is perhaps IRIW (Independent Reads of Independent Writes):

ro:=1!p; (tt) H ro:=1!q; (tt)
r1:="q (ff r3 :=p (ff)

In our framework, this example is accounted for in the foilogy
way. Let

p::tth::ttH

T =t 0) It 0) 2, (ro = 1) (1 1= 1))
l(ts, (r2 :=t2) ; (r3 :='p))
o = (to,wrp,u) - (t2,rdp,.y) - (t1,wrgu) - (t3,rdg,.p)

Assume thatV contains two setd/, andW; such that{to, t2} C
Wo and{t1,ts} C Wi, with t3 ¢ Wy andt2 ¢ Wi. Then we

have, usingR4 twice:
* ! * / /
(S,e,T) - (S,0,T") ET (8,0, T")

where
W-
o' = (to,wr)9,) - (t2,rdp,g) - (b1, wry"h) - (t3,rdg,0,)

Now since the write op is made visible to threath, the identifier

Lo can take the valuét, and similarly.o takes the valuet, by the
rule R2. Since the writes from, and¢; are not visible fromts
andts respectively, these threads may read the vgfugom the
shared memory for botthandp. One finally reaches a state where
S'(ro) = tt = S'(r2) whereasS’(r1) = ff = S'(rs). Notice
that in this computation we never have to “commute” opereatio
(the precedence relation could be anything here), thatiscom-
putation proceeds in program order, and therefore inggeltical
barriers inty andts would not influence it.

(9) Some other examples that are discussed in [6, 31] can be
explained in a similar way. This is the case for instance ofGVR
(Write-to-Read Causality) — withotince since, as with IRIW, we
follow the program order here:

=1lp; (tt) I ry:=1q; (i)
q—tt ro :=1p (ff)
Here the write(p := ¢t) is issued, and, with some appropriate as-
sumption about the write grain, made visible to the seconeath
(but not to the third), which will then assign the valttgo ro. Then
the write(q := tt) is globally performed, and, before the operation
wr,;; reaches the store, the third thread is executed, reading the
valuestt for g in (r1 := !q) andff for pin (r2 := !p). That is,
the outcomeS’ (o) = tt = S’(r1) and S’ (r2) = ff is allowed.
(10) The argument is the same for RWC (Read-to-Write Causal-
ity):

pi=tt||

T A s
b= 1:*'qﬁ”) ry = 1p (ff)
with the resulting valuest for ro, andff for bothr, andr,.

(11) We let the reader see how to build a computation in program
order for the CC example of [6]:

; q:=tt; ro:=1!p; ()
pi=tt rlzf'q jj‘) Hp::() I r3 :=lp (tt)
with the outcomeS’(ro) = t = S'(rs), S'(r1) = 0 and

S’(r2) = (). Obviously, one has to make some hypotheses about
the write grain to deal with this example. Some hints: thetevri

(p := tt) from the first thread is made available to the second
thread, but not globally performed. The second thread, laewl the
third proceed — the writép := ()) can be performed since it does
not seezvr,?‘f,,,, —, next the fourth executgs, := ! p), reading the
value () for p. Finally, before(rs := ! p) is performed, the write

by to is made available to the fourth thread, either by extending i
visibility or by globally performing it.

4.3 Global Barriers

The behaviors discussed with the series of exam@esl) in the
previous subsection are forbidden in a coherent memory mode
that is one satisfying axiom (C). Here we discuss some larrie
from the PowerPC model, where write atomicity is relaxeat th
are to be used to restore sequential consistency. Cleatheicase

of a non coherent memory model, and more generally a model
that enables the read-others’-write-early capabilitye oeeds in
the language some barrier havinglabal effect on writes, that is,

a barrier that is prevented from vanishing by writes fromefon
threads. The PowerPC architecture offers such a stpmgbar-
rier, which imposes the program order to be preserved betaey
pair of (local) reads and writes. This means that it enjogssime
precedence relations &ar), (ww), (rr) and(rw). The global ef-
fect of sync is the one suggested abowgnc maintains the order
between two writes, the first one being a visible write fronog f
eign thread, and the second being a local write. Since(iive)



(and (rw)) precedences already imply thatync has precedence  are issued in the temporary store, in order. Then the vigibfithe

over a local write, to complete the description of the seimardf write wry, » from the first thread is extended to include the third one

this barrier we just have to add: (but not the others). Then the third thread readsom this write,
Pew = ( t’wrmf) Pagne (¢, sync) and executesrr,, . Thelwsync is still prevented to vanish by the

_ _ write wr’,"}, but it has no precedence ov@p, rd,.., ), which
We can then explain for instance the examplB$W-syncs, can therefore proceeds. The third thread performs ;. Next the

WRC+-sync+ppo and WRC+ppo-+sync from the test suite by - gherations from threads andts are performed (theync is not

Sarkar & al. [31]. Herelppo) is a fictitious barrier, meaning that = pjocked by the write fromto, which it does not see), and finally
the program order among memory operations is supposed to be {19.22)) and(ts, lwsync) are executed
2, .

maintained. (In the simulatdppo) is implemented as a barrier.) pitt
(12) If we introduce thesync barrier in the IRIW example, the ~ (16) Another interesting example WRC+lwsyncs:

(to,wr

unexpected outcome is then forbidden to occur: H ro:="!p; (1) H ry:=1lq; (t)
ro=1p; (tt) ro =g () p:=tt| Ilwsync; Iwsync;
p:=tt H q:=tt || sync; | sync; q:=tt ra:=1p (ff)
r1:=!q (ff) r3 :=p (ff) The unexpected outcome is actually forbidden here, as egrifi

The reason is that the readls, rd, ., ) and(ts, rd,., ) can only be using our simulator. If he/she attempts to get it, the readibsee
performed once the precediegnc operation has vanished, which  that thelwsync from the third thread; is prevented to vanish by a

in turn is only possible if there is no write in the temporatgre read mark that cannot be removed from the temporary staree si

that thesync sees. the corresponding writ(atl,wrg‘f,jf) is prevented to be performed

(13) TheWRC+sync+ppo example is the same as WRC above, by thelwsync of ¢1, which sees the Write/rv‘ft;’ﬂ from to.

but with async barrier inserted in the second thread: In an Appendix we examine in a rather sketchy way another
ro:=1p; () . series of litmus tests, taken from the test suite of Sarkak. §34],

pi=tt H sync; H :1 j: ,q '(ﬁ(cgt) most of them exemplifying the semantics of thesync barrier.

q:=tt 2P In each case, an unexpected outcome is provided, whichhiereit

The outcomeS' (o) = t = S'(r1) and S’ (r2) = ff can still forbidden or allowed by our model. All these tests, as wellhes

be obtained, while performing the operations of the thirgial in previous ones, have been checked using our simulator.

program order. The explanation is as above, except thagadof
globally performing the writdt1, wrq,+), we extend its visibility 5. Speculation

to the third thread. Indeed, there is no condition in the R¥ethat . . . .

prevents this to be done. In the previous sections we have described and illustrafeahee-
work that supports the formal description of “classicaligware)

(14) TheWRC+ppo+syncexample is basically the same, except memory models, as they are presented in the survey of Adve and

that thesync barrier is placed in the third thread instead of the Gharachorloo [3]. Indeed, ouv < (£) model captures the essen-

second: tial features of relaxed memory models such as RCpc [18] er C+
. ry:=1lq; (tt) [5, 6] (regardless of the specific synchronization pringgiveach
pi= it H ro:=!p; () H sync; model may offer), and in particular the relaxation of writeraic-
q=t ro:=!p (ff) ity. With sync andlwsync, it also captures some essential features

. . . -~ of the PowerPC memory model. In this section we furthertithte
and the same outcome is allowed again, while committing the i, fiexibility of our approach, by discussing a feature isatot
second thread in program order. The reasoning is as in thee cas zjways considered part of a memory model, but can easily t@ ac
of WRC (withoutsync) above: thesync issued by the third thread  modated in our framework, namespeculation According to [20],

t2 is not prevented to vanish by the writepgdrom the first thread, speculative techniques are not part of the memory modeltaad
which it does not see. are not explicitly considered in [3]), still some of thesehriques
The PowerPC architecture also provides lasync barrier, are involved in the PowerPC model for instance. The best know
which is weaker tharsync. First, this is a{ww), (rw) and (rr) speculative technique isranch prediction[35]. This consists in
barrier, but it does not order the pairs of writes and reaulpré- guessing a value, true or false, for the predicate in a ciomdit

serve some TSO optimizations. Therefore, we cannot defie th branching construct, and evaluating the correspondingabreOb-

semantics ofwsync by means of a binary precedence relation, as Vviously, the prediction might happen to be wrong, in whickeca
we did up to now. Nevertheless, the following precedencepart rollback mechanism must be used to possibly undo some apesat

of the semantics dfvsync in our framework: and backtrack to the branching point. It is quite easy torektsur

— WoI model of relaxed computations to formalize this kind of spgac

(t,rde) P (¢, Iwsync) - & (¢, rdg,0) Phw (t, Iwsync) Phw (t, wr 7)) tion. In our syntax, a conditional prograif v then e else e;)

t=tort! €W = (t,wrps) P (', lwsync) branches on a value. We do not consider the erroneous cases

- . where this is not a boolean value (or a variable, for onlyetisro-

Next, we have to say thdvsync is a (rr) barrier, even though  grams should be evaluated). Since we have rules for the aéwee
it does not have precedence over reads. Then we assumeehat thy, s 11 or #, the only case where speculation could occur is wihen
commutability predicate satisfies the following: is an identifier. resulting from a read. To speculate the value,of

o =00 (t,lwsync) - o1 & we introduce new memory operatiops= ¢t] and[. = ff]. More

(00 = 80 - (£, rdg,0) - 81 or E— (g, ) generally, we extend the syntax as follows:

00:60~(t,ﬁb)~61) £:| [I/ZbU}L

This completes the definition of the semanticdvafync. Now let wherey € Zdent U {it, ff} andby € {#, [} The index.

us see two examples taken from [31] (or from the supplement to (which s not concerned by a subsfitutign: ~v}) is a pointer to
this paper available on the web), illustrating the semaruicthis Eg?hcggﬁgg?gg%%::%q operation. Then we add the follovires
barrier. '

) ) ) (S, o, (t, EB[(if ¢ then eg else e1)]) || T')
(15) The first one idRIW+Ilwsync+sync, that is the IRIW exam- (S0 (b [ = t B el | T
ple where the barriefisisync andsync are inserted in the third and (S0 - (8, [e = tt].), (¢, B[{e —tt}eo]) | T)
fourth threads respectively. This does not prevent the peeed (S, 0, (t, E[(if t then eg else e1)]) || T)
outcome from occurring, as follows: the operation from tireéds (S, (b [ = F1), (& E[{e—FYei]) | T)



With these rules, the conditional branching construct isnd lof
non deterministic choice. The semantics of the thgs= bv],
is as follows: first a solved tafpv = bv], may vanish from the
temporary store:

oo 9 [bv =bv], = (S,00-(t, [bv =bv],) -01,T) - (S,00-01,T)

Second, we assume that a prediction cannot overtake the-corr
sponding read, and that the write operations cannot ovegaice-
diction from the same thread:

(t,rd,) Pop (t, [bv = bv],)
(t, [v = b)) Pop (£, wrial)

To see an example of an unexpected behavior introduced hglora
speculation, let us consider

(if'pthenr:=!pelse() || p:=t¢

and explain how the valu§ is a possible outcome for. Recall
that in the syntax of our language, one should write

(if ' pthen r :=!pelse ()

as(let z = ! pin (if x then r := ! pelse ())). Then in the program
above the first thread first appendd, . to the temporary store,
and passes asz for the conditional branching. Speculating that
[t = tt]., one can then reapl again and obtain the valyg. The
prediction is finally justified by the writg := ¢t from the second
thread. There are other similar examples, where we do net twav
assume that reads of the same reference from the same thagad m
be commuted. Such an example MP+sync+ctrl” from [31],
which we simplify into:

p = tt,;
q:=1t

With branch prediction, a possible outcome is a configunatio
where the value of is ff, without reordering the writes in the
first thread (one can imagine a barrier in between to ensisg th
and without performing an early read @f The computation is as
follows: the second thread issuek, ., and speculates that= t¢.
Then, given theR—R relaxation, the readlp can be performed,
returning ff. Finally, the first thread proceeds normally, and the
prediction may be justified. In PowerPC there issmc barrier to
prevent such a behavior, by inserting it at the beginnindnetiien
branch. A natural semantics for this barrier is

(t, [v = bv].) Pisync (t,isync) Pisync (t,rd, ,7)

Anather, slightly more complex example FPOCA, again from
[31]:

|| (if ! g then 7 := ! pelse )

(if ' p then ¢ := tt else ());

r = tt; H
ro:=lq;r1:="!r

p:=1tt
The unexpected behavior is as follows: the valtiés speculated
for p in the second thread, the write:= ¢t is issued and made
visible to the thread, and therefotg may returntt, while ! r,
overtaking the rest, returng. The prediction is then justified by
performing the operations of the first thread, in programeord
Notice that besides branch prediction, we assumed simp@ TS
facilities (W—R relaxation and read-own-write-early capability),
andR—R relaxation to exhibit this behavior.

A different, more general approach to speculative comjmurtat
has been proposed in [8]. One should notice that, as opposkist
approach, our model preserves causality. An example, whieh
simplification of the example given in Figure 4 of [28], is:

(if I pthen g := tt else () || (if ! g then p := tt else ()

Since any prediction must be justified by a read from the mgmor
or from a write in the temporary store, we cannot reach from
this program a state where the value of bptland ¢ would be

tt. This example can also be used to illustrate wrong predistio
the tags(to, [to = tt].,) and (¢t1,[tn = tt],,) that the threads
may append to the temporary store will never disappear, laed t
computation will be stuck, failing to flush the temporaryrstoAs
usual, our abstract semantics does not say anything aboltasu

stuck configuration, and in particular it does not specify aay

to get out of such errors, whereas an implementation géyeral
tries to recover from them. However, one should notice #iate
the predictiond. = bv], have precedence over writes, a rollback
mechanism implemented to recover from such a situation does
have to undo speculative writes.

To conclude this section, we observe that branch prediésion
just a particular case eflue predictior{17, 25]. Indeed, one could
remove the two transition rules above for the conditionahiching
construct, once added a more general rule for speculatengalue
returned by a read:

(S,00-(t,rdp,.)-01,T) - (S, 00:-(t, rdp,.)-(t, [t = v],)-{t—v}(o1,T))

This involves a more general form of tags, namlely= v], where

v is any value. The semantics of such tags is the same as in the
case of branch prediction. We do not know any example where
value prediction alone — that is, not resulting in guesshegvalue

of the predicate in a conditional branching — introduces a no
SC behavior. Notice that the exampl8) (that we considered in
the previous section is not altered, since for the compuriatd
succeed, any prediction must be justified by a read from thre st
or a preceding write in the temporary store. With value priaoin,

any program including some reducible read has infinitely ynan
behaviors. Then in a model involving this speculation medra,
value prediction should be restricted to finite sets of value

6. The Simulator

The set of configurations that may be reached by running aamog

in the relaxed semantics can be fairly large, and it is sometidif-
ficult, and error prone, to find a path to some (un)expected fina
state, or to convince oneself that such an outcome is agticaH
bidden, that is, unreachable. Then, to experiment with camé-
work, we found it useful to design and implement a simulatat t
allows us to exhaustively explore all the possible relaxatblviors

of (simple) programs. As usual, we have to face a state explos
problem, which is much worse than with the standard intentea
semantics.

Our simulator is written inJAVA. Its main functionstep com-
putes all the configurations reachable in one step from angive-
figuration. A brute force simulator would then recursiveketuthe
step function, in a depth first manner, in order to compute reach-
able configurations that have an empty temporary store aed a t
minated thread pool, where all the thread expressions duesa
This methodology does not consume much memory space, being
basically proportional to theog of the number of reachable states
or, similarly, to the depth of the tree induced by tesp func-
tion. However, the number of configurations in this tree groary
fast with the size of the expression to analyse. For instanith
the example (1) given in the Introduction, this brute fortategy
has been aborted after generating more tiaxx 10'° configura-
tions and after half a day of computing, even if it is obviobatt
only four differentfinal configurations may be reached. Therefore,
a first improvement is to transform the tree traversal by aatag
struction merging all the same configurations. Less cordiipms
will be constructed and analyzed (ordl§y 588 for the example), but
all these configurations must be simultaneously in memory.

Several other optimizations have been used. In order taceedu
the search space, in the simulator we use a refinedRGlerhere
the visibility setW’ is supposed to be eithéFid or a subset of
live(T') U rdt(o1) where the setdive(T") and rdt(o) of thread
identifiers are defined as follows:

live(@®) = 0
live((t,e) |T) = live(T)U{t]|e¢&Val}
rdt(e) = 0

rdt((¢, &) - o) rdt(o) U{t|3o,t. £ =rdy,. }



We have not presented this formulation in Figure 3 only bseau
it is conceptually a bit more obscure. A more dramatic optani
tion is obtained by introducing a distinction between “stgis,”
that are local to some thread, and shared references. Asstedg
above, the registers are denotedn the examples. Indeed, these
registers are not concerned by early reads from foreigatseand
therefore applications of the rufe5 to them may be drastically re-
stricted. In this way, the number of generated configuratiarthe
case of example (1) decreases froirD68 to 13 356 for instance.
Furthermore, one may observe that, since removing an éperat
from a temporary store never depends on what follows this op-
eration ino, the strategy that consists in applying first the rules of
Figure 2 for evaluating the threads before attempting angtalse
(that is, applying a rule from Figure 3) will never miss anyafin
configuration. This allows us to generate o2l§14 configurations
in the case of example (1) for instance.

However, the optimized search strategy outlined abovdaits
in exploring exhaustively some complex litmus tests. Irhstases,
we make a tradeoff between time and space: for each temporary
store that can be reached by applying the rules of Figure aras f
as possible, we generate the reachable final configuratiahsye
do not share this state space among the various possibletamp
stores. For instance, still regarding the example (1),ettae20
possible “maximal” temporary stores, and running indepetig
the simulator in each case generates an average numi@y obn-
figurations, so that the total of number of generated cordiiums
following this simulation method raises up16 280. Nevertheless
this allowed us to successfully explore a large number afug
tests, and in particular all the ones presented by Sarkar £&]
in their web files, when they can be written in our language.r Ou
simulator is available on the web from the authors.

7. Conclusion

We have introduced a new, operational way to formalize ttzexeel

semantics of concurrent programs. Our model is flexible ghaa

account for a wide variety of weak behaviors, and in paréicthe

odd ones occurring in a memory model that does not preseeve th

atomicity of writes. To our view, our model is also simple egh

to be easily understood by the implementer and the programme

and precise enough to be used in the formal analysis of progra
There are some memory model features that were not consid-

ered here, but deserve to be examined along the lines we have

drawn, such as: read-modify-write operations, C++ atongom-

piler optimizations, as in théAvA Memory Model [28]. We plan

to investigate these topics in future work.
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Appendix

(17) MP+Ilwsyncs:
p = 1t; ro :=lq (tt)
Iwsync; || Iwsync;
q:=1tt r1:="!p(ff)

The unexpected outcome is forbidden, becdusgnc is a (ww)
and (rr) barrier, which is prevented to vanish by the writes it sees,
and by a read mark.

(18) SB+Ilwsyncs:

p = tt; q = tt;
Iwsync; || lwsync;
ro =g (ff) r1:=1!p (ff)

This outcome is allowed, becausesync is not a{wr) barrier, and
therefore one may execute the reads first.

(19) LB+Ilwsyncs:

ro:=!p; (tt) ri=1q; (tt)
lwsync; H lwsync;
q:=1tt p:=tt

The outcome is forbidden, becauseync is a (rw) barrier, and a
global (ww) barrier.

(20) RWCHIwsync+sync:

ro:=!p; (tt) q = tt;
p=tt H lwsync; H sync;
r1:=!q (ff) ro :=1p (ff)
(allowed). This test is similar ttlRIW+lwsync+sync.
(21) ISA2+Iwsyncs:
p = tt; ro :=1!q; (tt) r=1r; ()
Ilwsync; H Ilwsync; H Ilwsync;
q:=tt o=t r2:=!p (ff)

(forbidden). Again, this test illustrates the fact thasync is a
(ww), (rw) and(rr) barrier.

(22) R-+lwsync+sync (R0O1 in [31]):

p = tt; q:=ff; (final)
Ilwsync; H sync;
q:=tt ro :=1p (ff)

In our model this is a “forbid,” whereas the unexpected outeads
allowed by the model of [31]. However, it has not been obstrve
by Sarkar & al. in their experiments on PowerPC machines.

(23) S+lwsyncs:

p:=ff; (final) ro:=1!q; (it)
lwsync; H Iwsync;
q:=1tt pi=tt

(forbid). This is similar toMP+Ilwsyncs.
(24) 24+-2W+lwsyncs:

p:=ff; (final) q:=ff; (final)
Ilwsync; H lwsync;
q:=1t p:=tt

Forbid: lwsync is a(ww) barrier.

(25) WWC+Ilwsyncs:

ro:=!p; (&) ri:=1!q; (tt)
p = tt (final) H Iwsync; H Iwsync;
q:=tt p:=ff

(forbid). This is similar to previous casdsisync is a(rw) barrier,
and a globalww) barrier.

(26) WRW-+2W+lwsyncs:

ro:=1!p; (0) q:=f; (final)
p:= () (final) H stynt(;; H styntct;
q = pi=

(forbid). Again, this example is similar to previous cases.
(27) WRW-+WR++sync+Ilwsync:

ro:=1p; (tt) q:=ff; (final)
pi=tt H sync; H lwsync;
q:=tt r1:=1p (ff)

(allowed). Sincdwsync is not a{wr) barrier, the readd,, ., from
threadt2 may be performed first.
If we considerWRW+WR+Iwsync+sync, replacing the bar-

rier in the third thread by a stronger one, the unexpectedooug

is forbidden in our model, whereas it is allowed in the model o
[31]. This is a second test on which our models differ. Howgve
this is again an outcome that has not been observed whemgunni
the test on PowerPC machines.

(28) WRR+2W+Iwsync+sync:

ro=Ip; (0) , a:=tt
pi= O (ﬁnal) H Iwsync; H sync;
r1:=!q (ff) pi=tt

(allowed). Similar tdRIW+lwsync+sync.

If we consideWRR+-2W+sync+Ilwsync, exchanging the two
barriers, then this outcome is forbidden in our model. Thesthird
test where our model is more strict than the one of [31] (arairg
this behavior has not been observed by Sarkar & al.).

(29) SRSW:

This is a variant of théRIW litmus test, where there is only one
reference which is written and read by the various threads. W
assume here integer values:

ro
r3

ro:=1Ip; (1 I'n: (2

petle =2l 2] | 500

We let the reader see that, if the program order is maintaimed
the third and fourth thread (say by inserting a barrier hgutime
effect of (rr), like lwsync), the outcomeS’(rq) = 1 = S'(r3)
andS’(r1) = 2 = S’(rz) is not possible, thanks to the restriction
aiming at guaranteeing a coherence order on writes inRdle



