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Abstract— In this paper, we present a generic and
flexible system for vision-based robot control. The system
integrates several research areas (visual matching, visual
tracking and visual servoing) in a unifying framework. In
this framework, the flexibility is obtained using a template
matching algorithm based on an efficient second-order
minimization. Contrarily to feature-based visual servoing
schemes, we avoid the design of feature-dependent visual
tracking algorithms. By integrating the visual tracking
process with the visual servoing techniques, we can more
easily deal with constrained tasks. This reduces the com-
putation cost and improves the precision of the system.
The experimental results prove the efficiency of the unified
system in real conditions.

I. INTRODUCTION

Besides the traditional domain of robotic manipulation
and grasping, the vision-based control offers a wide
spectrum of application possibilities entailing the use of
computer vision and control theories : automatic driv-
ing, long range exploration, observation and surveillance
by aerial robots, medical robotics... The achievement
of such complex applications needs the integration of
several research areas in vision and control such as visual
matching, visual tracking and visual servoing (see for
example Petersson et al. (2002)). A possible approach
to the design of vision-based control schemes is to use,
for special purposes, vision and control methods that
have been conceived separately. With such approach,
system integration can be very difficult due to the high
number of different methods for visual tracking and vi-
sual servoing (many of them are described in Hashimoto
(1993) and in Hutchinson et al. (1996)). Instead of
considering vision and control systems separately, in this
paper we propose to integrate, as far as possible, several
research works in computer vision and robotic control in
a unifying framework. Our objective is to build a generic,
flexible and robust system that can be used for a variety
of robotic applications. A class of vision-based control
techniques having these requirements has been proposed
in Malis & Chaumette (2002). These techniques have

been designed to control a robot with respect to rigid
objects of any shape and without the explicit knowledge
of their CAD model. From the point of view of control
theory, the “model-free” (i.e. object model-free) control
laws proposed in Malis & Chaumette (2002) can deal
with many different applications. In practice, the design
of the visual tracking has made the overall system
application dependent. For example, a complete system
for matching, tracking and servoing has been proposed
in Malis et al. (2003). That system was specifically
designed for positioning a robot with respect to closed
contours. If a closed contour is not available in the im-
age, we need to design again several parts of the system
in order to consider other image features (e.g. interest
points, edges, straight lines...). In addition, feature-based
visual servoing methods need explicit feature detection
and cannot be applied in the case when the control is
performed with respect to an object that does not contain
special sets of features. In this paper, we will show that
a more flexible system can be obtained by integrating
template-based visual tracking algorithms and model-
free vision-based control techniques. The key issues for
the integration of such tracking techniques in a generic
real-time control system are the flexibility, the efficiency,
the precision and the robustness of the tracking algo-
rithm. Indeed, template-based visual tracking algorithms
estimate the deformation parameters of a certain template
between two frames by minimizing an error measure
based on image brightness. The explicit segmentation
of features is not needed and the visual tracking can be
applied to objects of generic shape and texture. Some
methods learn the parameters variation in an off-line
processing stage: difference decomposition in Gleicher
(1997); Jurie & Dhome (2002), active blobs in Sclaroff
& Isidoro (1998), active appearance models in Cootes
et al. (1998). Although these methods work well, they
can not be used in some real-time robotic applications
when the learning step can not be processed on-line.
Alternatively, there are methods that minimize a dis-
similarity measure (e.g. the sum-of-squared-differences
(SSD)) between the reference template and the current
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image using parametric models. Many minimization al-
gorithms could be used to estimate the transformation
parameters. Although Newton-like algorithms (i.e. based
on a SSD second-order Taylor series approximation)
have faster local convergence, most of the approaches
that have been proposed in the literature are based on
first-order approximations (see for example Lucas &
Kanade (1981); Hager & Belhumeur (1998); Shum &
Szeliski (2000); Baker & Matthews (2001)). The main
advantages of a visual tracking approach with a first-
order approximation is its efficiency (i.e. it does not need
the Hessian computation and need only the Jacobian
computation) and its stable behavior when the first-order
approximation is not valid any more. On the contrary,
the main drawbacks of a second-order approximation
visual tracking approach is its high computational cost
and its convergence problems when the second-order
approximation is not valid any more. Recently, an Ef-
ficient Second-order Minimization (ESM) algorithm has
been proposed in Malis (2004) in order to improve the
performances of visual servoing techniques. Thanks to
its generality, the ESM algorithm has been successfully
used to build an efficient visual tracking algorithm in
Benhimane & Malis (2004). The main contribution of
this paper is to integrate into an unifying framework the
ESM visual tracking and the model-free visual servoing
techniques. In order to achieve real-time applications
with non-dedicated hardware several improvements to
the ESM visual tracking are proposed in the paper: an
efficient coarse-to-fine strategy (a multiresolution strat-
egy) and a sub-sampling strategy.

The paper is organized as follows. In Section II, we
give an overview of “model-free” vision-based control
systems. In Section III, we give an overview of the ESM
visual tracking and we describe some improvements of
the algorithm. In Section IV, we propose a new unified
vision-based control system. Finally, in Section V and
Section VI, we describe two experiments which show
the flexibility of the proposed system.

II. VISUAL SERVOING

The starting point of the unified scheme proposed in
this paper is the model-free visual servoing proposed in
Malis & Chaumette (2002). Model-free means that one
does not need an explicit model of the object (e.g. a
CAD model) in order to compute the control law. fig-
ure 1 shows the corresponding block scheme. The main
advantage of model-free visual servoing approaches with
respect to standard approaches (e.g. image-based Es-
piau et al. (1992) and model-based Wilson et al.
(1996) visual servoing) is that they need less “a priori”
knowledge on the observed objects. However, as in

the other visual servoing approaches, the selection of
image features is an important step and it influences the
design of the visual tracking method. Indeed, the “Visual
Tracking” block must be specifically designed for the
selected image features. For example, in Malis et al.
(2003) the selected features were closed contours. The
visual tracking algorithm used in that work is not able
to track different features (e.g. interest points, straight
lines...). In this scheme, the output of the visual tracking
are the current features position. They are used with
the reference features position to compute a projective
transformation from which it is possible to estimate the
Cartesian representation of the state.
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Fig. 1

STANDARD MODEL-FREE VISUAL SERVOING SCHEME WITH

FEATURES SELECTION.

A. Projective Reconstruction

We suppose that we observe a planar object and that
the selected image features are the image coordinates
of some characteristic points. The reference features
corresponding to the frame F

∗ have been selected during
an off-line step. The current features acquired at each
iteration of the control scheme corresponds to frame F .
A 3D point having homogeneous coordinates X projects
to an image point having homogeneous coordinates p∗

in the reference frame F
∗. The same 3D point projects

to an image point p in the current frame F :

p ∝ K
[

R t
]

X

where R ∈ SO(3) and t ∈
3 are respectively the rotation

matrix and the translation vector between the frames
F and F

∗, and the matrix K contains the camera
intrinsic parameters. From the knowledge of several
matched points, it is possible to recover the projective
transformation (in this case a homography) between the
two views without knowing the structure of the object.
Indeed, the image points in the current image are related
to the reference points by the equation:

p ∝ Gp∗
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Knowing the camera intrinsic parameters, we can extract
the camera displacement from the following equation:

R +
t

d∗
n∗> = K−1GK

where n∗ is the unit vector normal to the plane expressed
in F

∗ and d∗ is the distance between the plane and
the center of the frame F

∗. In general, there are two
possible solutions to the homography decomposition
Faugeras & Lustman (1988). In order to distinguish the
right solution, an estimation of the normal n∗ should be
known.

B. Control schemes

In this paper, we will suppose that the Jacobian of the
robot is perfectly known and full rank. However, even in
the presence of small errors in the model of the robot, the
vision feedback will compensate such errors. We suppose
that the camera is mounted on the end-effector of the
robot (an eye-in-hand configuration) and that the control
output is the camera velocity. The velocity is obtained
by regulating to zero a task function (see Samson et al.
(1991)). The class of model-free visual servoing methods
described in Malis & Chaumette (2002) is based on
a reconstruction of the Cartesian representation of the
state from which one can design the following control
schemes:

- Position-based visual servoing: it is a full Cartesian
state feedback. The camera is controlled by performing
an explicit reconstruction of the Cartesian state. This
control law should be used when the initial displacement
is small since there is no control in the image and the
observed object could get out of the image.

- Hybrid visual servoing: the state is a mixture of the
Cartesian representation of the state (the rotation of the
camera) and of measures from the image data. The use
of image measures makes easier to keep the object in the
field of view of the camera when the initial displacement
is very large.

For both methods, an image trajectory planification
step can also be added in order to make sure that the
object stays in the camera field of view during the
servoing (see Mezouar & Chaumette (2002)).

III. VISUAL TRACKING

The model-free visual servoing methods make use of a
given set of image features to estimate the displacement
of the camera. Thus, the next step is to build a visual
tracking algorithm that does not need an explicit feature
selection. The tracking can be achieved by directly esti-
mating the projective transformation between a selected
reference template and the corresponding area in the
current image.

A. ESM Tracking

As already mentioned in the introduction, the core of
the tracking method is the Efficient Second-order Min-
imization (ESM) algorithm proposed in Malis (2004).
The application of the ESM algorithm to visual tracking
allows an efficient real-time homography estimation and
template-based tracking with high inter-frame displace-
ments. The figure 2 gives a general overview of the
method. A detailed description of the tracking method
can be found in Benhimane & Malis (2004). The homog-
raphy matrix G is defined up to a scalar factor. Then,
without loss of generality, it can always be considered
as an element of the SL(3) group (i.e. the group of
unimodular (3×3) matrices). Indeed, if det(G) = 0
then the plane passes through the optical center and all
the points on the plane project on a line. Starting from
an initial prediction of the homography we iteratively
estimate the optimal homography which minimizes the
SSD between a reference pattern T and the current
pattern W reprojected using the current homography
G. If an initial prediction of the homography is not
available we start with G equal to the identity matrix.
Both the image derivatives of the template ∇T and the
image derivatives of the current pattern ∇W are used to
obtain an efficient second-order update. It is an efficient
algorithm since only first derivatives are used and the
Hessians are not explicitly computed thanks to the use
of the average of the image Jacobians.
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Fig. 2

VISUAL TRACKING BASED ON AN EFFICIENT SECOND-ORDER

MINIMIZATION METHOD.

B. Multiresolution ESM Tracking

In order to improve the tracking algorithm, we use a
multiresolution method. A change of the resolution of
the image can be obtained by an affine transformation
and thus by a homography. Let iSj be the homography
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matrix which allows to warp the image from resolution j

to resolution i. When the reference pattern T0 is selected
in the reference image at full resolution, we warp it n

times (using the homographies 1S0, 2S0, ..., nS0) until
we reach a minimum resolution (e.g. the size of the
pattern at resolution n should be greater than 20×20
pixels). We obtain once and for all n + 1 reference
patterns T0, T1,..., Tn. If the homography transforming
an area of the current image in the reference template
at scale j is jG, then the homography transforming that
area of the current image in the reference template at
scale i is:

iG = iSj
jG

The Multiresolution ESM tracking is illustrated in fig-
ure 3. The tracking is started at the scale n using an
initial estimation homography nG (if a prediction is not
available, we set nG equal to the matrix nS0). Once
the ESM algorithm has computed the homography nG,
we simply obtain the homography n−1G by changing
the scale n−1G = n−1Sn

nG. The ESM algorithm is
repeated n + 1 times and at the scale 0, we obtain the
homography 0G. The loop is repeated by rescaling the
homography at the higher scale nG = nS0

0G. The
algorithm can also be stopped at scale k > 0 of the
pyramid (e.g. if the computation time is limited) by
rescaling the homography 0G = 0Sk

kG.
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MULTIRESOLUTION ESM TRACKING

C. Template sampling

In order to speed up the visual tracking, we select
a subset of pixels belonging to the reference template.
For example, we can stop the multiresolution ESM
tracking at scale k > 0 and obtain the homography by
rescaling 0G = 0Sk

kG. By reducing the size of the
reference pattern, we reduce the computational cost of
each iteration. A further improvement of the computation
speed can be obtained by selecting a subset of pixels
in the reference template. Indeed, pixels with a strong
gradient carry more useful information than pixels with
a weak gradient. The simplest method to select the pixels
is to use the image derivatives of the reference pattern.
Since we do not want to choose any particular image
features (e.g interest points or edges), we do not use
Harris & Stephens (1988) or Canny (1986) filters. We
simply threshold the norm of the derivatives ∇T 2

u +∇T 2
v .

Figure 4 shows an example of the pixel selection. The
reference pattern is (300×300) pixels. Selecting only
pixels where the gradient is meaningful allows to speed
up the estimation of the homography. The white points
in figure 4 are the pixels selected by thresholding and
they represent only 10% of the original pattern. Another
method for template sampling is to use both the deriva-
tive of the reference pattern and the current image. This
is more adapted to our minimization method. Indeed, in
our minimization scheme, the meaningful information is
the average of the image Jacobians. If the average is
zero, the image pixels difference does not carry useful
information and can be discarded. Thus, the sampled
pixels are obtained by thresholding the norm of the
average derivatives (∇Tu + ∇Wu)2 + (∇Tv + ∇Wv)

2.
In this case, the selected pixels change at each iteration.

Fig. 4

TEMPLATE SAMPLING BASED ON IMAGE GRADIENTS.
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IV. UNIFYING VISUAL TRACKING AND SERVOING

The ESM tracking algorithm has been the fundamental
step for unifying visual tracking and servoing. Figure 5
shows the block scheme corresponding to the model-free
visual servoing with the template-based tracking. When
compared to figure 1, we can notice the absence of the
blocks corresponding to features selection. The scheme
is considerably simplified since we do not have to select
any kind of feature to track. As a consequence, the pro-
jective transformation (i.e. the homography in the case of
planar objects) is not computed with the current and the
reference image features but it is directly estimated in the
tracking algorithm. The new tracking method is generic
and we only need to find the homography G that links
an area of the current image with the reference pattern.
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Fig. 5

TEMPLATE-BASED VISUAL SERVOING WITH DIRECT ESTIMATION

OF THE PROJECTIVE TRANSFORMATION.

Although the scheme described in the figure 5 is more
flexible than the scheme in the figure 1, many issues
remain unsolved.

- We need to extract the Cartesian representation of
the state from the projective transformation (the ho-
mography) as detailed in section II-A. As we already
mentioned, the homography decomposition is generally
a critical step since there exist two possible solutions.
Generally, having an approximation of n∗ helps to select
the right solution. Unfortunately, due to the unavoidable
image noise, measure errors and estimation uncertainties,
it is very hard to shun switching between the two
solutions especially when the n∗ approximation is un-
reliable. This may cause an undesirable discontinuity in
the control law and may reduce the system performance.

- The projective transformation depends on 8 pa-
rameters: 3 parameters for the rotation, 3 parameters
for the translation (up to the scale factor d∗) and 2
parameters for the normal n∗. Note that the normal in
the reference frame is constant and it is not a part of the
state of the camera (which is fully defined by the other
6 parameters). Since an approximation of the normal
is needed anyway for the homography decomposition,
the 2 extra parameters should be fixed directly in the

ESM tracking reducing the computation time (making
the Jacobian matrices have smaller size).

- Tracking in the projective space makes it difficult to
impose some constraints on the robot motion (which are
generally defined in the Cartesian space). For example,
if the robot is a car moving on a planar surface, the
state is defined by only 3 parameters. Imposing this
constraint can considerably reduce the computations and
improve the results of the tracking algorithm. Similarly,
adding in the projective space “a priori” knowledge on
the observed objects can be possible only in some special
cases. For example, when tracking an object composed
of N planes rigidly attached to each other, we need to
compute N homographies (each plane must be tracked
separately). Thus, 8N parameters are estimated whereas
only 6 parameters vary.

For these reasons, we propose to directly compute
the camera Cartesian position given the reference pattern
and the current image. In fact, the efficient second-order
approximation used in the ESM tracking can be obtained
considering any Lie Group. In the previous scheme, the
output of the ESM tracking was the homography which
belongs to SL(3) group. In the new tracking scheme,
the output is directly the Cartesian representation of the
state (the rotation and the translation of the camera)
which belongs to the SE(3) = SO(3)×3 group. As a
consequence, few modifications have been done to deal
with SE(3) and the output of the ESM tracking has
become the Cartesian representation of the state (see
figure 6).
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Fig. 6

TEMPLATE-BASED VISUAL SERVOING WITH DIRECT ESTIMATION

OF THE CARTESIAN REPRESENTATION OF THE STATE.

Exactly as in the previous scheme, the complete
system (tracking and control) needs an approximation
of the camera intrinsic parameters K, of the normal n∗

and of the distance d∗. However, in the unified approach
proposed in this paper, they are directly used in the
tracking. We are currently studying how to adapt the self-
calibration method described in Malis & Cipolla (2002)
in order to estimate in a joint loop the camera intrinsic
parameters K and the normal vector n∗.
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V. EXPERIMENTAL SETUP

A. The robotic systems

In the experiments, we use two different robotic sys-
tems. The first (called “Arges”) is a 3 d.o.f. robot (see
figure 7(a)). It is a pan-tilt turret mounted on a linear rail
and equipped with a camera. A single computer with a
bi-processor Pentium III 730 MHz is used for the image
capture, the visual tracking process and the robot control.
The second robotic system (called “Cycab”) is an electric
car (see figure 7(b)) equipped with a camera mounted on
a pan-tilt turret situated behind its front windshield. The
“Cycab” is equipped with two computers (Pentium III
700 MHz). One is used for the visual tracking and the
control computation, while the other is devoted for the
low-level control of the “Cycab” velocity and the wheel
steering.

Pan

Tilt

Translation

(a) Arges (b) Cycab

Fig. 7

THE ROBOTIC SYSTEM USED IN OUR EXPERIMENTS.

B. ESM Tracking and Control Software

We have developed a software called “ESM Tracking
and Control Software”. The software provides an inter-
face for template tracking and makes it possible to easily
choose the output of the tracking algorithm depending
on the control scheme and the robotic system. The
software displays the current image seen by the camera
and gives statistical and visual information during the
tracking task in order to supervise the different steps of
the experiments. Screenshots of the current version of
the software can be seen in figure 8.

Fig. 8

ESM TRACKING AND CONTROL SOFTWARE.

VI. EXPERIMENTAL RESULTS

A. 2 1/2 D visual servoing

We use the ESM visual tracking algorithm to build
a semi-automatic method for matching the reference
pattern and the initial image. The method is semi-
automatic since we only need a rough prediction of the
homography matrix. In the experiments, the prediction of
the homography is given by the user that approximatively
selects the center of the template in the initial image.
The figure 9 shows an example of the semi-automatic
matching. A reference image is stored when the robot is
in its goal position (see the figure 9(a)) and a 200x200
pattern of the planar object is chosen (see the figure
9(b)). Then, the robot is displaced to another position
from which the pattern is still in the field of view
of the camera (see the figure 9(c)). In order to guide
the matching process, an approximative position of the
pattern is given (see the magenta square in the figure
9(c) and the corresponding pattern in 9(d)). The patterns
9(b) and 9(d) are different proving that only a rough
approximation has been given.

(a) Reference image (b) Reference template

(c) Initial image (d) Initial template

(e) Matching convergence (f) Final template

Fig. 9

SEMI-AUTOMATIC MATCHING.
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Starting from the approximative position, it is possible
to obtain the homography between the reference and
the current frame by running off-line the visual tracking
method described in paragraph III (see the blue square
in the figure 9(e)). The obtained pattern in figure 9(f) is
very close to the reference pattern 9(b) proving that the
visual matching is accurately performed.

1) 2 1/2 D visual servoing without occlusion: Once
the reference image is learned (see the figure 9(a)), the
robot “Arges” is translated of 58 cm along the linear rail,
and rotated of 20 degrees in the pan and of 12.5 degrees
in the tilt. Then, the robot is controlled in order to
reach the reference position. During this experiment,
the pattern remains entirely visible in the current image
i.e. the pattern is not occluded by an object during the
experiment. The experiment shows that the control law is
stable (see figures 10(a) 10(b)). The task function and the
Cartesian velocity converge exponentially to zero (see
figures 10(c) 10(d)). At the end of the servoing process,
the robot is back to its reference position (see figures
10(e) 10(f)). The translation error is less than 1 mm and
the rotation error is less than 0.2 degrees.
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Fig. 10

THE ROBOT POSITIONING WITHOUT OCCLUSIONS.

Despite the depth change and the image noise, the
tracking algorithm provides a very good approximation
of the homographies along the servoing process. Three
images are extracted from the servoing sequence in
the chronological order and they are shown in the left
columns of figure 11. The red dashed square corresponds
the reference position of the pattern and the blue squares
are its current position. In the right columns of the figure
11, the current pattern warped back using the homogra-
phy estimation is shown. For the different positions, the
current pattern is very close to the reference one (see
the figure 9(b)) proving that the tracking is accurately
performed.

(a) (b)

(c) (d)

(e) (f)

Fig. 11

TRACKING A PATTERN ON A PLANAR OBJECT.

2) 2 1/2 D visual servoing with occlusion: Contrarily
to the first experiment, the tracked pattern is occluded by
a vertical black ruler during the servoing. The ruler is
placed at half distance between the robot and the planar
object (the poster). It occludes from 15 to 20 pixels of the
pattern width depending on the robot position. When the
reference image is learned (see figure 12(a)), the pattern
is not occluded (see figure 12(b)).
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(a) Reference image (b) Reference pattern

Fig. 12

REFERENCE IMAGE AND REFERENCE PATTERN.

The robot is translated of 56 cm, and rotated of 40 de-
grees in the pan and 11 degrees in the tilt. The semi-
automatic matching is performed again. Despite the
partial occlusion, the experiment shows that the control
law is still stable (see figures 13(a) 13(b)), the task
function and the Cartesian velocity converge to zero (see
figures 13(c) 13(d)). At the end of the servoing process,
the robot is back to its reference position (see figures
13(e) 13(f)).
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(c) Task function
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(d) Cartesian velocity
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Fig. 13

THE ROBOT POSITIONING WITH OCCLUSIONS.

The translation error is less than 0.3 mm and the rotation
error is less than 0.05 degrees. However, in the different
curves, we can see some oscillations. These oscillations
are due to the occlusion. In fact, the homographies
estimated are not very accurate when the pattern is
partially occluded. The amplitude of the oscillations
depends on the part occluded of the pattern. In our
case, the ruler that occludes the pattern is dark. If it
occludes a white part of the pattern, the homography is
not estimated very well. For example, the discontinuity
observed in the different curves at the iteration 500 is
due to the occlusion of the vertical blank between the 2
images of the pattern (see the figure 14(d)). The tracking
process remains reliable despite the partial occlusion of
the tracked pattern. In fact, along the servoing process, it
provides a sufficient approximation of the homographies.
In the images extracted from the servoing sequence, the
current pattern (in the right column of the figure 14) is
very close to the reference one (see the figure 12(b)).

(a) (b)

(c) (d)

(e) (f)

Fig. 14

TRACKING A PLANAR PATTERN WITH PRESENCE OF OCCLUSION.
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B. 3D vision-based control of non-holonomic robots

In this experiment, a vision-based car-platooning is
performed in a real outdoor environment. Two electric
vehicles of type “Cycab” (see the figure 7(b)) are used
one as a guider car and the other as a follower car.
A driver guides the first car while the follower car is
controlled by a 3D vision-based control scheme. The
control scheme takes into account that the vehicle is non-
holonomic and tries to keep the distance between the two
vehicles constant and equal to the initial distance. The
relative position is given by a vision-based system. The
pan-tilt turret is controlled in order to keep the guider car
in the field of view of the camera during the experiment.

z
2

x
1

x
2

X

Z

z
1

Guider car

Follower car

Fig. 15

DETAILS OF THE RELATIVE POSITION BETWEEN THE GUIDER CAR

AND THE FOLLOWER CAR

In the starting situation, when the guider car is in front
of the follower car, a window of (100×100) pixels is
selected to be the reference pattern. In order to have
a metric reconstruction, the camera has been roughly
calibrated and the distance between the two cars is given
to the control process. It is the distance between the
camera of the follower car and a poster sticked on
the back windshield of the guider car. Tracking this
reference pattern provides the relative position between
the two vehicles. The two vehicles are supposed to move
on a planar surface. Consequently, the relative position
provided by the tracking algorithm is composed of two
translations along X and along Z and one rotation θ as
shown in the figure 15. In this experiment, the guider
car is driven in a 100 meter long closed loop. The
initial relative X translation is X0 = 0 and the initial
relative rotation is θ0 = 0. The distance between the
two vehicles is Z0 = 3.35m. So the follower car is

controlled to keep the distance constant (i.e. equal to
Z0). The relative translation and rotation are shown in
the figures 16(a) and 16(b). They all variate around the
reference values except when the leader vehicle turns. In
this case, the distance cannot be kept constant due to the
non-holonomy of the robotic system. The follower car
velocity control and wheel steering control are shown in
the figures 16(c) and 16(d). The description of the control
law is out of the scope of this paper. Note however that
the control law is stable proving that the estimation of
the position of the car is good enough to achieve the task.
In the figure 17, images of the experiment sequences are
given. In the left column, the relative position between
the guider car and the follower car can be seen. In
the central column, the respective images grabbed by
the follower car and used as input for the ESM visual
tracking algorithm are shown. The blue square indicates
the tracked region. In the right column, the reprojections
of the tracked region using the estimated homographies
are shown. The first row of the figure 17 corresponds
to the initial position. The tracking algorithm performs
well although the experiment takes place outdoor and
sun reflection on the tracked region occurs. The current
pattern reprojections are very close to the reference one.
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(c) Velocity control
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(d) Wheel steering control

Fig. 16

RELATIVE POSITION PROVIDED BY THE ESM TRACKING

ALGORITHM AND THE CORRESPONDENT CONTROL.
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Fig. 17

IMAGES OF A CAR PLATOONING APPLICATION. THE IMAGES IN THE LEFT COLUMN ARE TAKEN WITH AN EXTERNAL CAMERA. THE

IMAGES IN THE CENTRAL COLUMN ARE TAKEN WITH THE CAMERA ON-BOARD AND SHOW THE CURRENT PATTERN. THE IMAGES IN

THE RIGHT COLUMN SHOW THE REPROJECTION OF THE CURRENT PATTERN IN THE REFERENCE FRAME.
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VII. CONCLUSION AND FUTURE WORK

In this paper, we have presented a complete system
for visual tracking and servoing with respect to planar
objects having any shape and texture. The visual tracking
and servoing are integrated in an unified framework.
This allows to handle more easily constraints on robots
and/or the observed objects. The main advantage of the
system is its flexibility. Indeed, it can be used in many
applications without modifying the low level modules.
Further improvements of the ESM tracking will concern
a robust estimation of the state (e.g. with M-estimators)
for handling occlusions and illumination changes. Fi-
nally, we plan to extend the system for tracking 3D
objects (e.g. supposing that they are piecewise planar).
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