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Abstract— This paper presents a new method for the self-
calibration of the lens distortion of a zooming camera which
appears for short focal lengths. The proposed technique
does not need any special calibration pattern nor any prior
knowledge about the environment. The key idea is to match
points between a distorted image and an undistorted image
taken at different resolutions. A new method for automatically
matching points in the two images is proposed. The scale
factor between the images is not needed for the matching
algorithm. Matched points are used to compute invariants to
the pinhole camera parameters. Then, lens distortion param-
eters are estimated in order to obtain the same invariants
in both images. This approach is well suited to autonomous
robotic vision applications. In fact, the self-calibration of the
camera is done before moving the robot. Experiment with
ground truth and tests on real images provide good results.

I. INTRODUCTION

An important problem when considering autonomous
robotic vision applications is the on-line self-calibration of
the cameras. Consider, for example, the case of a mobile
robot with a zooming camera mounted on-board. Self-
calibration of the lens distortion for short focal length is
necessary to extract geometric information and to control
the movements of the robot. If the robot explores an
unknown environment, standard calibration methods using
known calibration patterns [9] [10] cannot be used. Simi-
larly, if the robot navigates in an unstructured environment
we cannot use methods that require the presence of straight
lines in the scene [5] [1]. In that cases, a possible solution,
proposed in [8], is to self-calibrate the distortion from
point correspondences in multiple views. There are two
major difficulties with this approach when considering
autonomous robotic vision applications. The first problem
is to obtain multiple views of the same scene. When a robot
autonomously navigates in an unknown environment some
obstacles can limit its movements. Thus, it would be prefer-
able to self-calibrate the camera before moving the robot.
The second problem is to obtain point correspondences in
multiple views. Matching points between distorted images
can be extremely difficult in an unstructured environment
especially if geometric matching constraints (fundamental
matrix, trilinear tensor) [11] cannot be used due to the
presence of the distortion. In this paper, we propose a
different solution to the self-calibration of the distortion
which is specially adapted to the case of a zooming camera
moving in unknown and unstructured environments. The
technique proposed in the paper does not need any special
calibration pattern nor the presence of structure in the scene

(like straight lines, for example). It is based on matching
points between only two images at different resolutions.
In this paper, a new matching method is proposed. The
distorted image is taken with an unknown set of cam-
era parameters, while the second one is taken from the
same position with different camera parameters and it is
supposed to be undistorted. One of the advantage of this
method, is that the camera is stationary in the scene and we
do not need to take a risk by moving the robot. Once point
correspondences have been obtained, we use a new dis-
tortion measure based on the computation of invariants to
camera parameters of the standard pinhole camera model.
In the absence of lens distortion, the invariants computed
from the two images should be the same. A difference in
the invariants is observed in the presence of lens distortion.
Thus, we estimate the best distortion parameters such that
the distorted image can be corrected in order to verify a
perspective projection model. The proposed self-calibration
method has been tested on real images providing good
results.

II. THEORETICAL BACKGROUND

A. Pinhole Camera Model

Let us suppose that the absolute frame coincides with
the camera frame F . A 3D point X j is projected to a
virtual point m j = (x j,y j,1) on a plane perpendicular to
the optical axis of the camera:

m j ∝
[

I3×3 03×1

]

X j (1)

The information given by a pinhole camera (which per-
forms a perspective projection of 3D points in an image i)
is not the virtual point m j but an image point pi j =
(ui j,vi j,1):

pi j = Kim j (2)

where matrix Ki contains the pinhole camera parameters:

Ki =





fi fisi u0i
0 firi v0i
0 0 1



 (3)

fi is the focal length in pixel, si is the skew, ri is the aspect
ratio and (u0i,v0i) are the coordinates of the principal point
(in pixels). Note that both intrinsic and extrinsic camera
parameters vary when the camera is zooming [3]. However,
we suppose that the pinhole model is valid for each setting
of Ki and that the scene is far enough to neglect the
variation of the extrinsic parameters.
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B. Lens Distortion Model

In this paper, we consider the standard radial distortion
model [7], but any other parametric distortion model could
be used. Let pci = (uci,vci,1) be the unknown center of
radial distortion of the image i (not necessarily equal to the
principal point), and let ρi j be the distance of a distorted
point pd

i j = (ud
i j,v

d
i j,1) from pci:

ρi j = ‖pd
i j −pci‖ =

√

(ud
i j −uci)

2 +(vd
i j − vci)

2

The undistorted coordinates pi j of an image point can be
computed as:

pi j = pd
i j +(pd

i j −pci)(d1iρ
2
i j +d2iρ

4
i j + ...) (4)

The camera distortion parameters of image i are the center
of radial distortion pci and the vector di = (d1i,d2i, ...).

III. INVARIANTS TO PINHOLE PARAMETERS

We are interested in the calibration of the camera
distortion parameters. Once the lens distortion has been
corrected, the pinhole camera parameters can be computed
with any self-calibration technique. For this reason, we
use measures that are invariants with respect to pinhole
camera parameters Ki under the assumption of perspective
projection [4]. Suppose that at least n > 3 points are present
in the scene. The 3D points project to the virtual points
m j and to the corresponding observed image points pi j.
Consider now the following (3×3) matrices:

Spi =
1
n

n

∑
j=1

pi jp
>
i j and Sm =

1
n

n

∑
j=1

m jm
>
j

Matrix Spi is a positive symmetric matrix which can be
computed from the image points while matrix Sm is also a
positive symmetric matrix but it is not directly measurable.
These positive symmetric matrices can be written using the
Cholesky decomposition:

Spi = TpiT
>
pi and Sm = TmT>

m

where Tm and Tpi are non-singular upper triangular matri-
ces. From equation (2), it follows that the two triangular
matrices are related by:

Tpi = KiTm (5)

where Tm is a triangular matrix not depending of the
pinhole camera parameters Ki. The non-singular (3× 3)
matrix Tpi can be used to define the following projective
transformation:

qi j = T−1
pi pi j (6)

where the transformed points qi j are invariants to pinhole
camera parameters. Indeed, from equations (2), (5) and
(6), we obtain that the pinhole camera parameters Ki are
factored out:

qi j = T−1
m K−1

i Kim j = T−1
m m j

As an example, consider the two images in Figure 1 taken
by a stationary zooming camera but with two different
pinhole camera parameters K1 and K2. These images

will be used as a ground truth in the paper, while real
unstructured images will be used for the experimental
results in section VI-A. In this example, 16 points are
selected in each image. The points p1 j in the first image
are represented by the green circles in Figure 1(a). The
points p2 j in the second image are represented by red
crosses in the Figure 1(b). Note that we do not need to find
correspondences between the points in order to compute
the invariants but we only need the same set of points in
both images. From the two set of points, we compute the
triangular matrices T−1

p1 and T−1
p2 . Thus, the invariants for

the first image are:

q1 j = T−1
p1 p1 j = T−1

m K1
−1K1m j = T−1

m m j

while the invariants for the second image are:

q2 j = T−1
p2 p2 j = T−1

m K2
−1K2m j = T−1

m m j

Thus, it is evident that q1 j = q2 j (∀ j). We can also use
matrices Tp1 and Tp2 to reproject the points of one image
to the scale of the other. For example, matrix Tp1T−1

p2 =

K1K−1
2 can be used to reproject all points from image 2

into the scale of image 1:

p̃1 = Tp1T−1
p2 p2 = K1K−1

2 p2

Figure 1(c) shows that the image 2 is perfectly reprojected
into the scale of image 1, proving that the matrix Tp1T−1

p2
has been correctly estimated (i.e. the invariants q1 j and q2 j
are also correctly estimated). The red crosses extracted in
image 2 are reprojected into the green circles extracted in
image 1. In the presence of lens distortion, the invariant
points q1 j and q2 j will not be the same. This idea is the
basis of our algorithm for the correction of the distortion.

IV. MATCHING AT DIFFERENT RESOLUTIONS

The invariants to camera pinhole parameters can also be
used in order to perform matching between two images
taken with a stationary zooming camera but with two
different sets of pinhole camera parameters. Contrarily
to classical matching algorithms, the method proposed
does not directly carry out a point-to-point matching by
estimating intrinsic and extrinsic parameter variation. It
makes use of the invariants to the camera parameters
in order to discard points that are not present in both
images. Once, a same set of points is extracted from the
two images, the point-to-point matching becomes evident.
Obviously, the lens distortion modifies the invariants and
this must be taken into account in the matching algorithm.

A. Detecting Interest Points

In order to perform the automatic extraction of interests
we use the Harris corner detector [2]. We briefly remind
the bases of the detector since they will be used in the
following. The Harris corner detector uses the following
matrix M(pi j):

M(pi j) = ∑
x∈W (pi j)

g(x)

[

I2
u (x) IuIv(x)

IuIv(x) I2
v (x)

]



where W is a window centered on pi j, I(p) is the intensity
of the pixel p, Iu = ∂ I

∂u , Iv = ∂ I
∂v and g is a Gaussian centered

in pi j. If the eigen values of the matrix M are close λ1 ≈ λ2
and both are higher than a certain threshold then pi j is an
interest point. To avoid the calculus of the eigen values for
each point, we use the following detection score:

s2(pi j) =
det
tr

×
det
tr2 =

(λ1λ2)
2

(λ1 +λ2)
3 (7)

where det and tr are determinant and the trace of the matrix
M. If the score of a point pi j is higher than a certain
threshold (generally taken equal to 10% of the maximum
of the highest score over all image points) then this point
is detected as an interest point. The detector has selected
422 points in the first image (see Figure 2(a)) and 433
points in the second image (see Figure 2(b)). Obviously,
we cannot use all extracted points to calculate the invariants
defined in the previous section. Figure 2(c) shows that
in this case, the reprojection of image 2 to the scale of
image 1 is not possible. Indeed, we do not have the same
points extracted from both images. However, many points
are repeated in the two images. Consequently, pairs of
correspondent points are closer to each other and points
that are not present in both images are isolated. The next
step of our matching algorithm is to eliminate unrepeated
points and to find a set of points present in both images.

B. Eliminating Unrepeated Points

The goal of the elimination algorithm is to discard
points that are not present in both images. Two criteria are
used to discard points. First of all, if the selected points
are present in both images, then the reprojection of the
points from one image to the other should be the same (as
shown in the previous section). Secondly, corresponding
points should have similar photometric properties. To each
point pi j, we associate 3 photometric descriptors:

• s1(pi j) the mean of grey level values of a window
centered on pi j (a (3×3) window for example).

• s2(pi j) the Harris detection score given in (7).

• s3(pi j) a scale invariant descriptor.

We use a particular case of one of the scale invariant de-
scriptors proposed in [6]. The descriptor can be computed
using the gradient ∇I and the Laplacian ∆I of the image. In
order to have a continuous function everywhere, we define
the invariant descriptor as follows:

s3(pi j) = 0 if ‖ ∇I(pi j) ‖
2= 0

s3(pi j) =
‖∇I(pi j)‖

2

|∆I(pi j)|
if ‖∇I(pi j)‖

2 < |∆I(pi j)|

s3(pi j) =
|∆I(pi j)|

‖∇I(pi j)‖
2 if ‖∇I(pi j)‖

2 > |∆I(pi j)|

Let us suppose that the Harris detector selected n
points p1k (k ∈ {1, ...,n}) in the image 1 and m points

p2 j ( j ∈ {1, ...,m}) in the image 2. If many points are
present in both images, the reprojections of points p2 j into
image 1 are close to their corresponding points as shown
in image 2(c). Isolated points are less likely to have a
corresponding point and can be eliminated as follows:

Step 1 : Compute the matrix Tp1 using the set of points
p1k and the matrix Tp2 using the set of points p2 j. Then,
compute the reprojection of the points p2 j into the image
1: p̃1 j = Tp1T−1

p2 p2 j.

Step 2 : Eliminate p1k (∀k ∈ {1, ...,n}) if @ j ∈ {1, ...,m}
such that:

1) ‖ p1k − p̃1 j ‖< ν ;

2) | s1(p1k)− s1(p2 j) |< τ1.

3)
min{s2(p1k),s2(p2 j)}

max{s2(p2 j),s2(p1k)}
> τ2 ;

4)
min{s3(p1k),s3(p2 j)}

max{s3(p2 j),s3(p1k)}
> τ3 ;

where ν is a variable threshold which defines the distance
from which the point p1k is considered as an isolated
point (at the first iteration of the algorithm ν is fixed to
νmax), and τ1, τ2 and τ3 are thresholds fixed such that
τ1 ∈ [0,255], τ2 ∈ [0,1] and τ3 ∈ [0,1]. The threshold
τ1 fixes a maximum difference between the grey level
values of two corresponding points. The threshold τ2
sets the closeness of the scores of the Harris detector.
The threshold τ3 sets the closeness of the scale invariant
descriptor. Similarly, ∀ j ∈ {1, ...,m}, eliminate p2 j if
@k ∈ {1, ...,n} such that the conditions (1), (2), (3) and
(4) are verified. If at least one point is eliminated then go
to Step 2. Else, continue.

Step 3 : If ν < νmin, then stop. Else, reduce ν with a
factor γ (0 < γ < 1) and go to Step 1.

At each iteration, some isolated points are discarded. Thus,
we obtain better estimates of matrices Tp1 and Tp2 and the
reprojections of points p2 j into image 1 become closer to
their corresponding points. The thresholds used to find the
matching in Figure 3 are: νmax = 100, νmin = 25, τ1 = 64,
τ2 = τ3 = 0.5, γ = 0.9.

C. Final Matching

At the end of the elimination algorithm, we use only
points that do not present any ambiguity in order to obtain
the final best transformations Tp1 and Tp2. With these two
matrices, we are able to compute the best reprojection
p̃1 j. Finally, a point p1k is matched to p2 j, if p1k is the
closest point to p̃1 j. Figure 3 shows the results obtained
with our matching algorithm. In Figure 3(a) and (b) are
plotted the 289 points matched in the two images, while
Figure3(c) shows that the second image can be perfectly
reprojected into the first one. If we compare Figure2(c) and



Figure 3(c), we can notice that several isolated points have
been eliminated.

D. Matching in presence of distortion

In the presence of lens distortion, the matching algorithm
still provides good results. However, less strict thresholds
must be used since it is not possible any more to compute
exact invariants to pinhole camera parameters. As a con-
sequence less corresponding points are found. Figure 4(a)
shows an artificial distortion of the image in Figure 3(a).
This distorted image will be used as ground truth in
the experimental results. The 247 correspondences found
by the algorithm are plotted in Figure 4(a) and (b). As
expected, due to the distortion the reprojections plotted in
Figure 4(c) are not as accurate as the reprojections plotted
in Figure 3(c). On the other hand, the correspondences are
correct and can be used to self-calibrate the lens distortion
parameters as proposed in the next section.

V. CORRECTING THE DISTORTION

If the projection model is perfectly perspective, the in-
variants computed in the first and the second images should
be exactly the same q2 j = q1 j. Due to image distortion
in one of the images, there is a difference between the
invariants. We suppose that the lens distortion of a zooming
camera appears only for short focal lengths and can be
neglected for long focal lengths. We will consider in our
examples that only one image is distorted. The undistorted
image coordinates can be computed from a parametric
model of the distortion. For simplicity, we consider here
only the radial distortion model described in section II-
B . Let pc1 and d1 be respectively the center and the
coefficients of distortion for the image 1. The undistorted
points in image 1 are a function of pc1 and d1 (see
equation (4)):

p1 j = f (pd
1 j,pc1,d1)

After computing the matrices Tp1 and Tp2, we obtain the
invariants to pinhole camera parameters:

q1 j = T−1
p1 p1 j = q1 j(pc1,d1)

and:
q2 j = T−1

p2 p2 j

Thus, we can define a cost function which depends on the
difference between the invariants computed from the two
images:

C (pc1,d1) =
n

∑
i=1

‖q2 j −q1 j(pc1,d1)‖
2

The distortion parameters can be found with a nonlinear
optimization method by minimizing the cost function:

min C (pc1,d1)

Experimental results show that the proposed cost function
has a large convergence range. In particular, very rough
guesses of the center of distortion are needed.

VI. EXPERIMENTAL RESULTS

A. Experiment with Ground Truth

Consider the images in Figure 5 (b) and Figure 5 (c). In
order to have a ground truth, we have artificially distorted
the image 2 in Figure 5 (c) and obtained the image
in Figure 5 (a). The center of distortion is the center
of the image pc = (384,288,1). It does not necessarily
correspond to the principal point. We distort the image
such that the distorted image can be corrected using only
one coefficient d1 = (d11) where d11 = +6 10−7. The
corresponding distorted image is given in Figure 5 (a). The
green circles in Figure 5 (a) and the red crosses in Figure 5
(b) are the correspondences obtained by our automatic
matching algorithm. Once the correspondences have been

(a) Distorted image 1 (b) Image 2

(c) Undistorted image 1 (d) Corrected image 1

Fig. 5. Correction of lens distortion with ground truth.

obtained, the distortion parameters can be estimated as
described in section V. In this experiment, the unknown
distortion parameters are the center of radial distortion pc =
(uc,vc,1) and the distortion coefficient d11. Theoretically,
we could consider more than one distortion coefficient, but
we would obtain only small improvements in the correction
of the distortion. The starting points for the optimization
algorithm are pc(0) = (434,208,1) and d11 = 0.

true values measured values

uc 384 385.5
vc 288 289.0
d11 +6.00 10−7 +5.25 10−7

TABLE I

SELF-CALIBRATION RESULTS FOR THE LENS DISTORTION

PARAMETERS ARTIFICIALLY ADDED TO THE IMAGE.

Despite the initial center of distortion is guessed very
far from the true one, Table I shows that the distortion
parameters are accurately estimated. In fact, the measured



(a) (b) (c)

Fig. 1. Interest points manually extracted from two images with different resolutions taken by a zooming camera.

(a) (b) (c)

Fig. 2. Two different set of points are extracted using a Harris corner detector. The second image cannot be reprojected to the scale of the first one.

(a) (b) (c)

Fig. 3. The final set of points matched between the two images.

(a) (b) (c)

Fig. 4. Matching in the presence of distortion.



values of the distortion parameters are very close to the
true values. Using these parameters to correct the distorted
image, we obtain the image in Figure 5 (d).

B. Experiment without Ground Truth

In the experiments without ground truth, we use images
taken in an unknown and unstructured environment. An
image of flowers is taken with a short focal length (see
Figure 6(a)) and one image of the same scene is taken at
higher resolution (see Figure 6(b)). It is not evident at all
to see the effects of the lens distortion in the image in
Figure 6(a) since there are not straight lines in it. In order
to prove that the image is indeed distorted, we have taken
another image with the same set of camera parameters.
Figure 7(a) shows the effects of lens distortion on the
borders of the poster (which should be straight lines).
The matching algorithm proposed in section IV finds 109
correspondences which are plotted in Figure 6(a) and (b).
The distortion parameters estimated with our algorithm
using the images of the flowers are uc = 319, vc = 242
and d = 3.6 10−7. They are used to correct the image of
the poster. The corrected image in Figure 7(b) proves that
the distortion parameters were accurately estimated since
the borders of the poster are now straight lines.

(a) Distorted image 1 (b) Undistorted image 2

Fig. 6. Correction of the radial distortion using unstructured images.

(a) Distorted image (b) Corrected image

Fig. 7. Correction of the radial distortion using unstructured images and
verification using a structured image with straight lines.

VII. CONCLUSIONS

A simple method for self-calibration has been proposed
in the paper. The method does not need any special
calibration pattern nor the presence of special structures
(e.g. straight lines) in the environment. Our goal is to
self-calibrate a zooming camera mounted on a robot ex-
ploring an unknown and unstructured environment. With
our method, the robot does not need to move during
the self-calibration of the distortion. Only two images of
a stationary zooming camera are needed. By matching
a distorted image with an undistorted one at different
resolutions, it is possible to correct the distorted image.
The matching and the self-calibration algorithm make use
of invariants to pinhole camera parameters. The method
could be improved by also using multiple views taken from
different positions.
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