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My research activities concern the feedback control of nonlinear systems, with a parti-
cular interest in the sub-class of “critical systems” and the applications in mechanics. By
“critical system” I mean a control system, in its more general form

ẋ = X(x, u) (1)

which is controllable in a reasonable sense (like STLC), but such that the linearized systems
at equilibrium points are not asymptotically stabilizable (and thus, not controllable). In
this framework, the problem that I (and many other people) try to address, is the design
of feedback laws capable of stabilizing “reference trajectories”, i.e., curves t 7−→ xr(t) in
the state space, solutions to (1) for some “reference input” ur. A specificity of my research
is the attention paid to robustness issues. Robustness is the main motivation for using
feedback control (by opposition to open-loop control), and the “linear systems community”
has devoted much effort to the development of robust control approaches. Robustness
issues are still more important for nonlinear systems, and above all for critical systems. An
important part of my research has been devoted to the search for feedback control solutions
with good performance and robustness properties. Another objective of this research is
to achieve a good balance between theoretical developments and applications. From a
theoretical standpoint, it is important to develop solutions as general as possible. But it is
also important to keep in mind potential applications. In this respect, I’ve had the chance to
work in a team driven by robotic applications. Having said this, my research activities has
essentially focused (to simplify) on the control of nonholonomic systems, and the control
of underactuated systems.

1 Control of nonholonomic systems

Kinematic equations of nonholonomic mechanical systems are given by driftless control
systems of the form

ẋ =
m
∑

i=1

uiXi(x) (2)

with x belonging to a n-dimensional manifold M , X1, . . . , Xm the system’s control vector
fields (v.f.) representing admissible directions compatible with the nonholonomic constraints,
and u1, . . . , um the control inputs. The system’s nonholonomy is characterized by the fact



that m < n = dim(x). Any point x0 is an equilibrium point of System (2), associated
with the input u = (u1, . . . , um) = 0, and the linearized system at any equilibrium is not
controllable nor asymptotically stabilizable due to that m < n. Thus, all these systems
are critical. The celebrated Brockett’s theorem (Brockett 83) implies, in addition, that if
X1(x0), . . . , Xm(x0) are independent vectors, then x0 cannot be asymptotically stabilized
by smooth pure-state feedback u(x). To achieve asymptotic stabilization of such an equili-
brium point, other types of feedback laws have to be used. As shown in (Samson 90) for a
wheeled robot example, and generalized in (Coron 92) for arbitrary controllable systems of
the form (2), smooth time-varying (time-periodic) feedback is a possible solution to achieve
asymptotic stabilization. At the end of the 1990s, I have worked a lot on this type of feed-
back, and more specifically on the sub-class of (degree-zero) homogeneous feedbacks which
allow to achieve exponential convergence rate.

1.1 Exponential stabilization of equilibrium points by time-varying ho-

mogeneous feedback

Homogeneity of vector fields (w.r.t. families of dilations) is a concept that has been used
for a long time in nonlinear control theory. It is an essential ingredient of controllability
analyses (Sussmann 83; Sussmann 87; Kawski 90a), but it is also useful for asymptotic
stabilization studies (Hermes 91; Kawski 90b). For example, given an autonomous system
ẋ = X(x)+R(x) with an equilibrium point at x0, the asymptotic stability of x0 is equivalent
to its exponential stability1 whenever X is a vector field “homogeneous of degree zero”
(w.r.t. a family of dilations), and R is homogeneous of higher-order. This generalizes the
classical “linear-like” case ẋ = Ax + o(x), i.e., X(x) = Ax,R(x) = o(x). Understandably,
this is an interesting property. (M’Closkey 93) is one of the first paper in which time-
varying homogeneous feedback is used to exponentially stabilize the pose (i.e. position
and orientation) of a nonholonomic mobile robot. Previous methods such as (Samson 90;
Pomet 92; Teel 92), based on the use of smooth time-varying feedback, did not allow to
achieve exponential convergence rates. In (Morin 99a), we have proposed a method for
the design of asymptotically stabilizing continuous and homogeneous feedback laws, which
applies to any controllable system (2). The asymptotic (and thus exponential) stability
is only local in the general case, but it is global when the closed-loop system is itself
homogeneous. This method makes use of the open-loop control algorithm developed in
(Sussmann 91; Liu 97), and in fact it shows how the open-loop control there obtained can
be transformed into asymptotically stabilizing feedbacks. While this method is general, its
complexity increases rapidly with the size of the system (more precisely, with the length
of the Lie brackets of the control v.f. necessary to generate n independent directions at
the considered equilibrium). For this reason, we have also developed other methods for
the design of stabilizing homogeneous time-varying feedbacks (Morin 97a; Morin 00), less
general, but providing much simpler solutions and better results in practice for standard
wheeled vehicles like unicycles or car-like vehicles.

1w.r.t. a homogeneous norm.



1.2 Robustness to unmodeled dynamics and hybrid feedback

The homogeneous feedback laws evoked above for the asymptotic stabilization of non-
holonomic systems have a disadvantage. They are not “robust w.r.t. unmodeled dynamics”.
To make this statement more precise, let us consider the following“perturbation”of System
(2) :

ẋ =
m
∑

i=1

ui(Xi(x) + εiYi(x)) (3)

with ε1, . . . , εm denoting “small constants”, and Y1, . . . , Ym denoting smooth v.f. The terms
εiYi(x) can represent for example, in the case of a car-like robot, modeling errors in the
vehicle’s geometry. Now the question is : given a feedback law designed for System (2) to
achieve some property, will it still achieve the same property for System (3) with the Yi’s
being arbitrary and the εi’s small enough ? When the property at stake is the asymptotic
stability of the equilibrium point, we have shown in (Lizárraga 99) that the answer to this
question is no, whatever the used homogeneous feedback law. In practice, this means that
there are always some Yi’s such that, for arbitrarily small (but nonzero of course) εi’s, the
system’s state will keep on oscillating around the equilibrium point. This is clearly not
satisfactory in practice for a mechanical system. This has led us to look for other control
solutions, more robust to this type of errors. In (Maini 99), we had shown that for uni-
cycle and car-like vehicles, robustness to unmodeled dynamics could be obtained, but with
smooth feedbacks, thus yielding slow convergence (i.e. not exponential). Another approach
had been proposed in (Bennani 95), with the additional benefit of exponential convergence
rates. It is based on what is commonly called hybrid feedback, which consists essentially in
iterating open-loop control laws, i.e. u = u(x(kT ), t), k ∈ N, t ∈ [kT, (k + 1)T ), with T

an “updating-period”, which must not be confused with the sampling period of low-level
numerical controllers. In (Morin 99b), we have generalized (and in some sense clarified)
the result of (Bennani 95), by providing a control design method of hybrid feedback laws
that applies to any controllable system (2). We have also proved that these control laws
are robust to unmodeled dynamics : whatever the v.f. Yi, exponential convergence to the
equilibrium is preserved for small enough values of the εi’s.

1.3 Practical stabilization and transverse functions : another perspective

1.3.1 Motivation and theoretical foundations

Although we have devoted a lot of time and energy to the search for robust exponential
stabilizers of equilibrium points, we have not been able to obtain completely satisfactory
solutions. The hybrid control solutions described in the previous section are robust w.r.t.
unmodeled dynamics, and thus better than homogeneous feedbacks in this respect, but they
suffer from other robustness problems. For example, variations of the “updating-period”T ,
even very small, can destroy the property of convergence to the equilibrium, leading once
again to oscillations around the equilibrium point. Achieving simultaneously fast (exponen-
tial) convergence and robustness seems unrealistic in practice. For this reason (and others
that will become clear below), we have been developing a feedback control approach that



relies on an objective of practical stabilization, instead of the usual asymptotic stabilization
objective. The foundation of this so-called “transverse function approach” is a non-trivial
result that we have published in (Morin 01). It says that the two following properties are
equivalent :

1. System (2) is locally controllable around a point x0, i.e., it satisfies the Lie Algebra
Rank Condition at this point.

2. There exists n̄ ∈ N and a family of smooth functions (fε)ε>0, with fε : T
n̄−m −→

B(x0, ε), such that for any α ∈ T
n̄−m, the vectors

X1(fε(α)), . . . , Xm(fε(α)),
∂fε

∂α1
(α), . . . ,

∂fε

∂αn̄−m
(α)

span the tangent space at fε(α). Here T
n̄−m denotes the torus of dimension n̄ −m,

and B(x0, ε) the ball of radius ε centered at x0. Functions fε satisfying this property
are called “transverse functions”.

The way this result can be used to control System (2) is as follows : instead of trying to
stabilize the state x to x0, one tries to stabilize x to the image set fε(T

n̄−m) ⊂ B(x0, ε).
This becomes (at least locally) a trivial task because, around this set, one disposes of n
independent degrees of freedom to move“in the direction of the set” : the directions tangent
to the set itself, and the control directions. This is in this way that practical stabilization
is obtained, with the control parameter ε used to monitor the stabilization precision.

1.3.2 The Lie group framework

The proof that we had given in (Morin 01) was constructive but relatively elaborate.
Furthermore the value of n̄ provided by this algorithm was not always optimal. Finally, the
paper did not provide much insight concerning the applications of the concept of transverse
functions to the control design and to applications. All these issues have been clarified in
(Morin 03) by considering the framework of invariant systems on a Lie group. To avoid
confusion in the notation, I use the standard notation g for an element of a Lie group G,
and rewrite System (2) as

ġ =
m
∑

i=1

uiXi(g) (4)

where the Xi’s are now assumed to be left-invariant vector fields on G, meaning that
dLg1(g2)Xi(g2) = Xi(g1g2) ∀i, where g1g2 is the group product of g1 and g2, Lg1 is the
left-translation by g1, and d stands for the operator of differentiation. For more details on
Lie groups see e.g. (Varadarajan 84; Warner 83). Before describing some of the results that
we have obtained, let me provide two reasons why this framework is important and not so
restrictive as it may first seem.

1. First, there are many nonholonomic systems which can be modeled by System (4).
The simplest examples are unicycle-type wheeled robots, much used in robotics. Al-
though they are not systems on Lie groups, other wheeled vehicles like cars, possibly
with trailers, can be “semi-globally”modeled by the celebrated chained-form systems



(Murray 91; Sørdalen 93), which are systems on Lie groups. Other robotic systems,
like e.g. the rolling sphere (Bicchi 97; Halme 96), are also systems on a Lie group.
As a matter of fact, the importance of this concept for robotic applications has long
been recognized (Brockett 84; Leonard 95b; Murray 94).

2. Second, from a local point of view, the properties of System (2) are essentially deter-
mined by the properties of an adequate “homogeneous approximation”, i.e., a system

ẏ =
m
∑

i=1

uiYi(y) (5)

where each Yi is an homogeneous v.f. which approximates Xi. Due to the nilpotence
of the Lie algebra generated by the family {Y1, . . . , Ym}, either System (5) is a system
on a Lie group, or it can be “lifted” to a system on a Lie group (see (Morin 03) for
more details).

Let me now return to what is shown in (Morin 03). First, we assert that for systems on a
Lie group, n̄ is the smallest possible value, i.e. n̄ = n. Then, we provide a formula for the
calculation of transverse functions, which can be defined as the group product of n − m

functions of one variable, i.e.

fε(α) = fε,n−m(αn−m)fε,n−m−1(αn−m−1) · · · fε,1(α1)

with α = (α1, . . . , αn−m). Finally, we derive, from a transverse function, feedback laws
that yield practical stabilization of any reference trajectory gr, i.e. any smooth curve t 7−→
gr(t) ∈ G. The simplicity of such a derivation allows to expose it here. Given a reference
trajectory gr, the “tracking-error” is naturally defined in the Lie group sense as g̃ = g−1r g.
Using standard differentiation rules in Lie groups, one obtains

˙̃g =

m
∑

i=1

uiXi(g̃) + P (g̃, gr)ġr , with P (g̃, gr) = −dRg̃(e)dLg−1
r

(gr)

Here Rg is the right-translation by g, e the group’s unit element, and L and d are defined
as above. Now, let z = g̃fε(α)

−1 with fε a transverse function defined on T
n−m. Then,

ż = dRfε(α)−1(g̃)dLz(fε(α))

(

m
∑

i=1

uiXi(fε(α))− dfε(α)α̇+ dLz−1(g̃)P (g̃, gr)ġr

)

Due to the invertibility of the operators dLg and dRg (for any g), and the property of
transversality of fε, it is possible (and straightforward) to determine u and α̇ so that
ż = Z(z) with Z an arbitrary vector field. Choosing this vector field such that e is an
asymptotically stable equilibrium of ż = Z(z) yields the asymptotic convergence of the
tracking error g̃ to the image set fε(T

n−m). Among the important properties thus obtained
let us mention the following ones.

1. The obtained control laws are smooth. This accounts for much stronger robustness
properties than previous methods (trying to achieve exponential stabilization) when
the reference trajectory is a fixed point.



2. The upper-bound of the ultimate tracking error, ε, is independent of the reference
trajectory.

3. No assumption is made on gr (except of course differentiability). This is a very impor-
tant property for applications. First, the same controller can be used for any reference
trajectory. By contrast, it has been shown in (Lizárraga 04a) that achieving asympto-
tic stabilization of arbitrary admissible trajectories with a unique controller is usually
not possible for nonholonomic systems (thus yielding to the necessity of hard to ana-
lyze switching strategies, when the reference trajectory is not known in advance).
Then, the controller can also be used for nonadmissible trajectories (i.e., which do
not satisfy the nonholonomic constraints of the system). One can easily imagine how
this can be used for motion algorithms in cluttered environments.

1.3.3 Applications

The domain of application of this approach is large. While the above description pro-
vides the general framework, further work can be necessary to refine the method and im-
prove the performances, either from a general viewpoint, or in relation with applications.
Let me just mention some applications on which we have concentrated so far.

1. Unicycles : this case has been investigated in detail in the Ph.D. thesis of (Artus 05),
with very good experimental results on our mobile platform ANIS equipped with
a camera for the pose reconstruction. In these experiments, the vehicle was able to
track an omnidirectionnal moving target based on the measurements provided by the
camera. This system has also been studied in the Ph.D. thesis of (Maya-Mendez 07),
with the objective of characterizing the robustness of the approach to pose estimation
errors.

2. Cars : although this system is not an invariant system on a Lie group, the approach
can be easily applied to this case. We have obtained very good simulation results in
this case, but currently we do not dispose of an operational vehicle for experiments.

3. Nonholonomic mobile manipulators : this class of systems, composed of a manipulator
arm mounted on a nonholonomic platform, has been studied in the Ph.D. thesis of
(Fruchard 05). Based on the transverse function approach, we have developed two
methods for the coordinated control of these systems. One of them has been published
in (Fruchard 06).

4. Rolling spheres : this example presents very original features w.r.t. standard wheeled
robots. We have recently started to work on this system (Morin 08), and plan to
pursue this study.



2 Control of underactuated systems

The class of underactuated systems contains a large number of examples with diverse
properties, and the difficulties associated with their control can be quite different. From a
mechanical viewpoint, one can roughly define under-actuation as follows : the number of
independent force and torque inputs is strictly smaller that the dimension of the velocity
space. From a control viewpoint, it is important in the first place to distinguish between
critical underactuated systems, and non-critical ones.

2.1 Control of Euler-Poincaré equations

Critical underactuated systems are especially difficult to control because, contrary to
nonholonomic systems, their main nonlinearities are at the dynamical level. Therefore, one
has to study them at this level, in the framework of systems with drift. For nonlinear
systems with drift there remains many open questions like, to begin with, the complete
characterization of controllability. In mechanics, an important class of systems can be
modeled by the so-called “ Euler-Poincaré equations” (Marsden 99), given by :























ġ =

n
∑

i=1

viXi(g)

v̇ = Q(v) +

m
∑

i=1

uibi

(6)

Like in Eq. (4), g denotes the element of a n-dimensional Lie group G, the Xi’s are left-
invariant (and independent) vector fields on G, and v = (v1, . . . , vn) is the velocity vector.
At the dynamical level, Q denotes a vector-valued quadratic form in v, the bi’s are inde-
pendent “control directions”, and the ui’s are the control inputs, with m < n due to the
system’s underactuation. System (6) represents the dynamics of rigid bodies, in the ab-
sence of external forces (e.g. gravity), like underactuated spacecrafts, “hovercrafts”, blimps,
underwater vehicles, etc. Even for this well delimited and structured class, fundamental
questions remain open despite many research efforts (Bullo 05). Concerning the control
of these systems, methods based on “periodic forcing” (i.e. periodic control inputs), pos-
sibly iterated to yield hybrid feedback in the sense of Section 1.2, have been proposed
(Leonard 95a; Bullo 00; Lizárraga 04b). My work on the stabilization of this class of sys-
tems concerns the two following problems : asymptotic stabilization of fixed points, and
practical stabilization of reference trajectories based on the transverse function approach.

2.1.1 Asymptotic stabilization of fixed points

Like nonholonomic systems, critical underactuated systems are very difficult to control
around fixed points, and even more because of the system’s drift. At the beginning of the
1990’s no solution had been proposed for these systems to asymptotically stabilize fixed
points. The underactuated spacecraft (rotation dynamics of a rigid body with two torque
control) is the archetype of this class of system. In (Morin 95), we have proposed a smooth



time-varying feedback to asymptotically stabilize this system at a desired orientation. Lat-
ter, we have proposed other solutions for this system (Morin 97b) and other underactuated
systems (M’Closkey 98), based on the use of homogeneous feedback. Like for nonholono-
mic systems, this allows in theory to achieve exponential convergence rates. But the same
robustness problems occur in this case, suggesting that asymptotic stabilization is also a
too strong objective in practice for these systems.

2.1.2 Practical stabilization of reference trajectories based on the transverse

function approach

The transverse function approach can also be applied to underactuated systems, with
the objective of stabilizing reference trajectories in the configuration space, i.e. smooth
curves t 7−→ gr(t) ∈ G. Like in the case of nonholonomic systems, it allows to stabilize g in
a neighborhood of the reference trajectory gr, with the size of this neighborhood determined
by the parameter ε of the transverse function. We have published two results on this topic
(Morin 05; Morin 06), with the latter generalizing the former. An alternative approach, also
based on the transverse function approach, has been proposed in (Lizárraga 05). In the case
of three dimensional Lie groups, our method is completely general in the sense that it can
be applied to any controllable system in the classical (STLC) sense. This includes the 3-d
second-order chained system, the underactuated PPR manipulator, the planar rigid body
(also called “hovercraft” or “slider”), and the underactuated spacecraft. We also show in
(Morin 06) that the method applies to the rigid body in SE(3) with mass matrix (allowing
to model added mass effects) with only three control inputs (one force and two torques).
This is to my knowledge the most challenging example of mechanical system in the class
of Euler-Poincaré equations. From a theoretical viewpoint, it would be very satisfactory to
have a method applicable to any controllable system (6). But we know that this is a very
difficult problem since, to begin with, a necessary and sufficient controllability condition (in
term of the system’s control Lie algebra) is not yet available for these systems (Lewis 97).

2.2 Control of noncritical underactuated systems

While many mechanical systems are underactuated, they are not all critical. This is due
to external forces, like gravity, which can modify the system’s dynamics. While the trans-
verse function approach can also be applied in this case, simpler control methods can usually
be used to design stabilizing feedback laws. Recently, we have proposed a control method
for what we call “thrust-propelled vehicles” (Hua 07; Hua 08), i.e., noncritical vehicles with
one thrust force in a body-fixed direction and full torque actuation. This is a typical ac-
tuation structure for aircrafts, VTOL vehicles (i.e., Vertical Take-Off and Landing), etc.
Besides the large spectrum of possible applications, one of the motivations of this study is
related to robustness issues (but in a sense different from the one evoked in Section 1.2 since
we are here interested in noncritical systems). Indeed, there has been an increasing interest
in recent years in small or light vehicles, like VTOL’s (Hamel 02; Lipera 01; Pflimlin 07) or
airships (Azinheira 06). These systems can be very sensitive to wind-induced perturbations
and can operate in a very wide range of angles of attack. It is thus unrealistic to dispose
of precise models. Therefore, it is most important to dispose of very robust controllers for



these systems. In this respect, the method that we propose in (Hua 07; Hua 08) present
original features like the compensation of constant bias (related e.g. to modeling errors or
wind-induced perturbations) via nonlinear integral-type control terms, and (proven) large
domains of stability. This property is achieved by a combination of factors, like for example
by exploiting the dissipativity of aerodynamic forces (this is of course not a new idea, but
by contrast with other methods we also show how these forces can help to stabilize non-
stationary reference trajectories). Simulations on a realistic model of a small VTOL (the
“HoverEye” of the french company Bertin Technologies) have shown very good robustness
properties of these controllers, and we plan to experiment this method on the physical
system.
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