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Abstract— The paper addresses the problem of controlling the
posture of a nonholonomic mobile robot via sensor-based target
tracking. The control technique here considered is adapted from
the Transverse Function approach with sensory signals used
to calculate an estimate of the relative pose of the robot with
respect to the target. An analysis of stability and robustness
w.r.t. pose estimation errors is presented and the overall control
performance is tested via simulation and experimentation on a
unicycle-type mobile robot equipped with a camera.

I. INTRODUCTION

Sensor-based control, which consists essentially in using
exteroceptive measurements in feedback loops, is an important
technique for robotic applications that require the positioning
of the controlled robotic device with respect to (w.r.t.) some
external object/target. It has first been developped for, and
applied to, manipulator arms [1]-[4] in order to perform tasks
such as pick and place, welding, or pointing, by using the
information about the surrounding environment provided by
exteroceptive sensors. Many sensor-based applications have
also emerged from the more recent development of mobile
robotics. For example, visual servoing is used for path follow-
ing, target tracking, or platooning tasks [5], [6]. The present
study is devoted to the sensor-based control of nonholonomic
mobile robots with a focus on robaotic tasks which rely on the
monitoring of both the position and orientation of the robot,
i.e. on the control of the complete posture of the mobile plat-
form. An abundant literature has been devoted to the control of
nonholonomic systems in order to tackle various challenging
issues associated with the problem. Two of the authors of the
present paper have worked on these questions for years and
the reader is referred to [7] where these issues are surveyed
is some detail. Among them, the problem of stabilizing state
trajectories which are not necessarily feasible for the system
has received little attention, whereas we believe that it is
very relevant for a number of applications, an example of
which is treated further. The fact that non-feasible trajectories
cannot, by definition, be asymptotically stabilized, combined
with other difficulties and impossibilities (see [7] and [8],
for instance) related to Brockett’s theorem [9] according to
which asymptotic stabilization of a fixed point is not solvable
by using smooth pure-state feedback, and also the common
experience that infinite precision in the posture monitoring of a
mobile robot is seldom necessary in practice, suggests that, for

nonholonomic systems, the classical objective of asymptotic
stabilization of a desired (reference) state or trajectory is not
best suited to qualify what can be achieved with feedback
control. By contrast, the slightly weaker objective, considered
in [10], of asymptotic stabilization of a set contained in an
arbitrarily small neighborhood of the reference state allows to
avoid all theoretical obstructions associated with the former
objective. Its satisfaction guarantees, for instance, that the
tracking error can be ultimately bounded by a pre-specified
(non-zero) value, whether the reference trajectory is, or is
not, feasible (provided only that it is smooth enough). The
Transverse Function (TF) approach, the basics of which are de-
scribed in [10], provides a way of designing smooth feedback
laws which satisfy this objective. Experimental validations of
this approach for the tracking of an omnidirectional target have
been reported in [11], [12]. The present paper goes in the same
direction, with the complementary preoccupation of studying
the robustness of the control when the target is observed
with sensors whose characteristics are either imperfectly mod-
elled or purposefully simplified. With respect to the standard
classification of sensor-based control methods (see e.g. [4]),
the strategy considered here relies on pose estimation. The
main contribution of the paper is the derivation of sufficient
conditions upon the pose estimation method under which
closed-loop stability is granted. In particular, we prove that
a crude pose estimation obtained by using an estimate of the
sensor’s interaction matrix can yield good tracking precision.
This analysis is illustrated and complemented by simulation
and experimental results. For simplicity, the exposition is
restricted to unicycle-type mobile robots. However, it can
readily be extended to other platforms —car-like vehicles, in
particular— due to the generality of the TF approach.

The paper is organized as follows. The studied control
problem is presented in Section Il. Kynematic models and
basic results about the application of the TF approach to
the design of practical stabilizers are recalled in Section
I1l. Combining sensor-based pose estimation and control is
addressed in Section 1V, along with stability conditions for the
resulting sensor-based controllers. Due to space limitations, the
proofs of the stability results are omitted (they are available
upon request to the authors). The control approach is then
validated, first via simulation results in Section V, then via
experimental results in Section VI.



Il. PROBLEM STATEMENT
Consider the setup depicted on Fig. 1. The unicycle-like

Fig. 1. Mobile robot (l), reference situation (m), and target (r)

robot (on the left-side) is equipped with a sensor (a camera,
for instance) providing information about its relative situation
w.r.t. a moving object, called the target. For simplicity, all
bodies are represented by their projections on the robot’s
plane of motion. A frame F,, = {0, %m,Jm} is attached
to the mobile platform, and g,,,, denotes the situation of this
frame w.r.t. some fixed frame F,. This is an element of the
Special Euclidean group SE(2), itself isomorphic to R? x S!.
Another frame F, = {0,, 75, 72 } is attached to the sensor, and
Jos denotes the situation of this frame w.r.t. Fy. The relative
situation g,,, of the sensor w.r.t. the platform is parameterized
by the pan angle £ which is measured and whose control can be
performed on the basis of the simple kynematic model { = v,
with v the associated velocity control variable. The sensor
delivers a vector-valued signal s € R3 which only depends
on the relative situation g;s of the sensor frame w.r.t. a frame
Fi = {04,7%,7;} attached to the target, i.e. s = ¢(gss). It
is assumed that g;, is uniquely defined by s, at least within
some operating domain. In fact, we will make the stronger
assumption that ¢ is a diffeomorphism from an open domain
of SE(2) to an open domain of R3. The control objective
is to stabilize the platform at a reference situation, depicted
in the middle of the figure, with the relative situation g,
being predefined and constant. This is clearly equivalent to
stabilizing at zero the relative situation ¢ = g,,, between
the frames F,, and F,.. Note that maintaining this “tracking
error” at zero permanently is obviously not possible in all
cases, due to the nonholomic constraint on the robot which
forbids any instantaneous lateral motion. In fact, there are not
many motions of the target for which this is possible. This
is one of the reasons why practical stabilization, allowing for
small tracking errors, is here preferred to the non-attainable
classical objective of asymptotic stabilization which requires
convergence of the error to zero.

I1l. MODELING AND PRELIMINARY RECALLS
A. Group operation in SE(2) and parametrization

Since SE(2) is a Lie group isomorphic to R? x S, one can
identify an element g of this group with a three-dimensional
“vector” (p,0)!, with p = (z,y)’ € R?, § € S!, and the prime
superscript denoting the transpose operation. When using an
element of this group, say gom = (Pl @om)’, t0 Characterize

the situation of a frame, F,,,, with respect to another, F,, the
vector p,.,, is the vector of coordinates of O,, in the frame
F, and 8., is the oriented angle between 7, and 7,,.
SE(2) is endowed with the group operation defined by

+ R(0
(91792) — g192 ‘= (pl 01 +(912)p2) (1)

with R(#) the rotation matrix of angle 6. The unit element e
of this group (such that ge = eg = g) is e = (0,0) and the
inverse g~! of ¢ (such that gg=! = g~ 'g =) is

= () @

From now on, e will also be denoted as 0. It follows from
these relations that the situation g,, of a frame F, w.r.t. a
frame F, satisfies the relation g., = g,.!g.5. Note also that
Gab = Gy ANA Gabgba = O.

A distance between g = (p/,6)" and 0 is given! by |g| =
A/ |Ip||? + 62 with |p| the Euclidean norm of the vector p, and
6 identified with its representative in (—m/2; w/2]. Finally, we
denote by Bg(0) the “ball” in SE(2) of radius ¢ and centered
at 0, i.e. B4(d) = {ge SE(2) : |g| <o}

B. Kynematic models

With gom = ((Tom, Yom)', Bom )’ denoting the situation of
the robot’s frame F,, w.r.t. the fixed (inertial) frame F,, the
well known kynematic equations of a unicycle-type mobile
robot are:

Tom = wv1cO0S0
Yom = V1 sin 0 (3)
eom = V2

or, in a more compact form:

gom = X(gom)cv (4)

with v = (v1,v2)’, v1 and vy denoting the longitudinal and
angular velocities of the mobile robot,

cosf —sinf 0 1 0
X(g)=[sind cosf 0|, C=10 0 (5)
0 0 1 0 1

The generalization of the above model to the situation ¢ :=
grm Detween the robot’s frame and a moving reference frame
with velocity vector ¢,.(t) at time ¢, i.e. such that g,.(t) =
X (gor)er(t), is:

§=X(g) (Cv—Ad* (g "er(t)) (6)
with
a - (70 (%) ™
0 1

the matrix associated with the group adjoint operator.
Important: From now on, to simplify the notation, g will
always stand for g,.,.

with a slight abuse of notation because SF(2) is not a vector space and
thus cannot be endowed with a norm



The relative situation g can be viewed as a “tracking error”
that the control v is in charge of stabilizing at zero. Relation
(6) points out that it is not possible to keep this error equal
to zero when the reference trajectory is not feasible for the
nonholonomic platform, i.e. when the second component of
c-(t) is different from zero. We recall in the next section the
design of practical stabilizers based on the TF approach.

C. Practical stabilization based on the TF approach

The Transverse Function approach provides a general
framework for the practical stabilization of nonholonomic
systems. We recall hereafter some aspects of this approach
applied to the unicycle, and refer the reader to [10] for more
details.

Definition 111.1 A smooth function f : T? — SFE(2), with T?
the p-dimensional torus (i.e. T = S') is called a transverse
function for System (4) if, for any « € TP, the matrix

(xtene L) ®
is of rank three (= dim(SE(2))).

Remark I11.1 Since X (g) is an invertible matrix for any g,
there exists a matrix A(«) such that g—i(a) = X(f(a))A(x).
Then, the matrix (8) is of rank three if and only if the matrix

Cla) =(C = A(a)) ©)

is also of rank three.

Example: One easily verifies that the function f =
(fz, fys fo)' : T — SE(2) defined by
lasina

fle) = < psin 2a (10)

arctan(en cos a)
is a transverse function for any ¢, > 0.

The following result shows that the knowledge of a transverse
function allows to design feedback laws that guarantee a) the
convergence of the tracking error g to a neighborhood of the
origin, and b) the convergence of g to a fixed value when
¢ = 0 (i.e. when the reference trajectory is fixed).

Proposition I11.1 Let f denote a transverse function for Sys-
tem (4), and let z = gf(a)~!. Then,

i) Along the solutions of the tracking error model (6), and for
any smooth curve af.),

5 = XA (£(0)) (C(a)t = Ad¥ (g™ )er (1)

with o = (v/, &)’ and C(«) defined by (9).
ii) The matrix C(«) being of rank three for any «, the change
of variable
v = C(a)" (Ad™ (f(@) ™ )v. + Ad¥ (g7 e (1))
)

with C(a)" a right-inverse of C(«a), transforms System (11)
into 2 = X (2)v,.

(11)

(12)

iii) For any Hurwitz-stable matrix K, and for v, defined by
v, = X(2) 'Kz (13)

a) |lg| is ultimately bounded by €; := max, || f(a)| for any
reference trajectory g,.(.),

b) if ¢, =0, g and g,,,, exponentially tend to fixed points in
SE(2).

Property iii.a) is easily deduced from the (exponential) con-
vergence of z to zero. Property iii.b) also follows from this
convergence property. Indeed, when ¢, = 0, v tends to zero
exponentially, so that g, and g, are bound to converge to
fixed values.

Note that, with this approach, the derivative & of the vector
of variables (reduced to a scalar variable in the case of the
example (10)) on which the transverse function depends plays
the role of a complementary control vector.

IV. COMBINED POSE ESTIMATION AND CONTROL

In order to implement the control (12)-(13) in Prop. 111.1, g
has to be known at each time. In practice however, this infor-
mation is often only available via the measurement provided
by exteroceptive sensors embarked on the robot. Moreover, it
is not completely accurate due to well known reasons such as
imperfect modelling and calibration of the sensors. We now
examine how the replacement, in the control expression, of
g by a pose estimate ¢ calculated from the sensory signal s
modifies the above result.

A. Some techniques for pose estimation

Let us first recall that s = ¢(g:s) and that we have assumed
that ¢ is a (local) diffeomorphism, so that ¢! is also well
defined locally. By the group law, one has g = g.-¢GisGsm, SO
that one can also write

g = grtspil(s)gsm (14)

The calculation of an estimate g of g from sensory measure-
ments corresponds to the classical “pose estimation problem”,
which has been widely studied in the robotics literature. Let us
(without any claim of originality) briefly recall a few possible
approaches. Pose estimation methods are usually termed as
model-based or model-free, depending on the amount of in-
formation about ¢ that is needed to calculate g. For example,
it follows from (14) that s = ©s(9,£) = ©(9trggms). If
s* and £* denote some values associated with the reference
situation, i.e. s* = 4(0,£*), then a model-free estimate
can be obtained from the local approximation s — s* =~

222(0,6%)g + 2£2(0,6*)(6 — %), ie.

— —1 —
N . o 08s 0 emvie e

with %‘(0,5*)1and %:(0,£*) some approximations of
"g‘; (0,£*) and %=(0,£*). When the situation g, of the
sensor w.r.t. the platform is known, and a model of ¢ is avail-

able, Eqg. (14) can be used to derive model-based estimates.




However, it is often difficult in practice to have a very accurate
model of . Furthermore, what is in fact needed for the
calculation of g is !, the inverse of ¢. Having an analytical
expression of ¢ does not imply that an analytical expression
of o1 is available. When it is not, one can compute an
estimate of ¢~!(s) via a gradient search algorithm based
on the use of the Jacobian matrix g—@;. Another possibility
consists in determining a function ¢ which approximates ¢ in
some domain containing the desired situation g}, = ¢=1(s*),
and the inverse of which has an analytical expression. This
yields the estimate ¢ = g,+$~'(s)gsp. Finally, even when
an analytical expression of ©~! is known, one may use a
simplified expression for this function, in order to reduce the
calculation load. This yields an estimate of g of the form

g = grt‘P_l(S)gsp-

B. Sufficient conditions for ultimate boundedness and conver-
gence

Now, let 2 := gf(a)~!. Assuming that the reference veloc-
ity ¢, is unknown (in the contrary case, feedforward control
can of course be used to improve the tracking precision) and
using 2 instead of z in the feedback law (12)-(13) yields the
following control:

7= C(a)TAdX (f(a) )X (2) K2 (16)

The question is now to determine the properties of this control
in terms of stability and convergence. To this purpose, we
assume that g depends only on g, i.e. § = ¥(g). This is a
natural assumption when the sensor is rigidly attached to the
platform (i.e. £ = £*), since s only depends on g in this case.
The extension to the case where £ is actively controlled will
be discussed and illustrated through application examples in
the subsequent sections. Beside the requirement of g being a
function of g, the following assumption is also made.

Assumption IV.1 There exist some constants §; > 0 and
~v1 < 1 such that the estimation error § = gg—! satisfies
the inequality

I3l < lgll, Vg € Bg(61) (17)

Condition (17) means that the relative norm of the estimation
error is less than one in some bounded domain containing
g = 0. This is clearly a weak requirement. Indeed, since g =
1(g) then, provided that ¢(0) = 0 (unbiased estimation at the
desired location), one shows from the group law (1) that

i~ (n-50)

in the neighborhood of g = 0. Therefore, if | I3 — g—w(o)” <1,
Assumption 1V.1 is satisfied in some neighborhoodq of g = 0.
For example, when g is defined according to (15) (with £ =

&%), this relation becomes

(18)

<1

This latter relation is reminiscent of a classical requirement
upon the interaction matrix made in the context of sensor-
based control of manipulator arms.

The following result establishes the ultimate boundedness
of the tracking error g (compare with Property iii.a) in
Proposition 111.1).

Proposition IV.1 Consider the feedback law (16) with K =
—kI3 (k> 0) and f a transverse function. If
I I

I-m
with §; and ~; some constants specified by (17) and
lcrlmax := maxy |c-(t)]], then |lg| is ultimately bounded by
Ef.

lg(0)]| <01 —2e; and &j: <41 (19)

Let us make some comments on this result. First, the choice
of the gain matrix K in the proposition is essentially made in
order to simplify the proof and specify an ultimate bound for
lgl. The ultimate boundedness is also guaranteed for other
Hurwitz stable matrices, like e.g. any matrix of the form

(K, 0
K‘(o —kg)

with K, a 2 x 2 definite positive matrix and kg > 0. Then,
Condition (19) indicates how the “size” of the transverse
function f influences the ultimate bound of ¢ and the set
of initial conditions ¢(0) for which the boundedness can be
proven. Finally, let us insist on the contribution of the present
result: it points out that for any estimation g of ¢ satisfying
(17), the tracking error with respect to any reference trajectory
is ultimately bounded by a value that can be made arbitrarily
small by a proper choice of the control parameters ¢ and k.

We now address the issue of convergence to a fixed situation
when the target is motionless (compare with Property iii.b) in
Proposition I11.1).

Proposition 1V.2 Consider the feedback law (16) with K =
—kI3 (k > 0), and f a transverse function defined by (10).
Let v denote the smallest constant such that
o o
15,03,
There exist two positive numbers ¢; and ¢y such that if i)
¢ = 0, i) (19) is satisfied, and iii)

3 C
¥ = (71 +(n+72) 7 _f,h) (; + 626‘?) <1 (21

O <2lgl, VYgeBg(er/(1—1)) (20)

then Z exponentially converges to zero and g exponentially
converges to a fixed value.

With respect to Proposition 1V.1, the above result involves
the additional condition (21). For ¢ € [0, &], condition (21)
is satisfied if

€ C
(71 + (71 +72) 1 L ) < <1 (22)
-7/ €f



with & = ¢; + c2&*. It is clear that this condition cannot
be satisfied, when ¢ tends to zero, unless v; = 0. This
suggests that very small values of ¢, yielding very precise
tracking, may not allow the robot to converge to a resting
situation when the target is motionless. This is consistent
with the difficulty of achieving both exponential stability of a
fixed situation and robustness of this property w.r.t. modeling
errors in the case of nonholonomic vehicles (see [7] for more
details). Nevertheless, the condition (21) shows also that, for
any value of ¢, exponential convergence occurs if v; and o
are small enough. It follows from (18) that ~; is small in the
neighborhood of g = 0 if the Jacobian of ¢ at this point is
close to the identity. For example, when g is given by (15),
this condition is satisfied if the Jacobian of the function ¢, is
accurately estimated. In this case, if one assumes, to simplify,
that v, = 0, then condition (22) simplifies t0 v2¢1 < 1.
The constant ¢; can be calculated from the parameters of the
transverse function. As for s, it is directly related to second
order terms of the function v and, thus, to second order terms
of the signal function .. For this reason, unless an analytic
model of ¢, is known, it is usually difficult to evaluate ~-.
Let us note, however, that v = 0 when ¢ is a linear mapping.
Finally, let us remark that (21) is only a sufficient condition
for convergence. Simulation and experimental results, like
those presented in the next sections, tend to indicate that it is
quite conservative. In fact, extensive simulations with various
choices of the signal function did not allow us to observe
situations for which the tracking error remained bounded but
did not converge to a fixed value. Whether this property is, or
is not, always satisfied thus remains an open question.

V. SIMULATION RESULTS FOR A VISION-BASED SENSOR

The simulation results presented below have been obtained
with the system depicted on Fig. 2, composed of a unicycle-
like robot equipped with a pan video camera. The target is
materialized by three noncollinear points, labelled as L, M,
and R, which are the vertices of an isosceles triangle of base
2a and height b, with a = b = 0.25. The sensor signal is
s = (I,m,r)’, with L m,r denoting the z-coordinates (in
the camera frame) of the projection of the points L, M, R
on the image plane. For all simulations, g;- = (—2.5,0,0)’
(this corresponds to the platform being aligned with the target
at the reference situation, as shown on the figure), and g,s =
(0.51,0,&)".

Due to space limitations, we only illustrate the use of
the model-free pose estimate defined by (15). This model
requires to estimate the Jacobian matrices %(0,5*) and

ag’g (0,&*). This can be done by generating small displace-
ments Ag(p), A¢(p) (p = 1,...,P) in the neighborhood of
g = 0and ¢ = £*, measuring the associated signals’ variations

A/sip), and ie\tting for instance (among other possibilities)
(% (0,€%) %2(0,€%)) = As A(g, €) with

og 23

As = (As(1)--- As(P)), Ag,€) = ( 2?8;:::2?83 )

Image plane
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Fig. 2. Unicycle-like robot with a vision-based sensor
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Fig. 3. Model-free estimation of g, no pan-control of the camera, fixed target

A. Fixed camera pan angle

We first consider the case when ¢ = £* = (. Then both
s and g depend on g solely, so that the analysis of Section
IV-B applies. The simulation results reported on Fig. 3 have
been obtained with a fixed target. The norms of g and 2 are
displayed on the top sub-figure, and the bottom sub-figure
corresponds to the motion of the origin 0,, of the robot’s
frame in the plane. The actual motion is shown in plain lines
whereas the motion deduced from the pose estimate (15) is
shown in dashed lines. The control law (16) has been applied
with K = —0.513, and with the transverse function defined
by (10) for ¢ = 0.3 and n = 1. Despite the poor quality of the
estimation of g when the robot is far from the desired location,
the controlled variable % converges to zero and the platform
converges to a fixed situation near the desired one.

B. Active control of the camera pan angle

In practice, it is often necessary to control the pan angle £ so
that the target remains inside the field of view of the camera.



-1.100 -0.886 0671 0457 -0.243 -0.029 0186 0.400

Fig. 4. Model-free estimation of g, pan-control of the camera, fixed target

A simple control strategy consists in choosing v¢ (= €) in
order to stabilize m = s to the desired value s¥ = 0 (see
Fig. 2). To this purpose, the following control for the camera:

(ks > 0) (23)

can be used. Fig. 4 illustrates this strategy. The control law (16)
has been applied with the same gain matrix K and transverse
function as in the previous simulation, and with the control
ve defined by (23) for k&, = 3 and s expressed in metric
coordinates. While the estimation of the platform’s situation
is significantly different from the one obtained for the previous
simulation, the actual platform’s motion is not much different
qualitatively.

The same control strategy is illustrated on Fig. 5 in the
case of a moving target. The reference velocity ¢, is defined
as follows:

ve = ks(s2 — s3) — vo

(0,0,0)’ Vi € [0,15) J[75, 90]
(0.2,0,0)  Vte [15,30)

er(t) =4 (0,0.2,0)  Vte [30,45)
(—0.2,0,0)" V¢ e [45,60)
(0,0,0.2)  Vte [60,75)

The motions of the robot (plain lines) and reference frame
(dashed lines) are shown on the lower sub-figure. One can
observe that the robot executes many manceuvres for ¢ €
[30,45). This is related to the fact that the reference trajectory
is not feasible on this time-interval since ¢, # 0. While the
tracking is correctly performed, the tracking error increases
when ¢,.(t) # 0 (as shown on the upper sub-figure). The use
of feedforward control, when ¢,. is known or can be accurately
measured/estimated, improves this point significantly.

VI. EXPERIMENTAL RESULTS

We now present experimental results obtained with ANIS: a
unicycle type mobile platform carrying a 6-DOF manipulator

Fig. 5. Model-free estimation of g, pan-control of the camera, moving target

arm with a video camera mounted at its extremity. More details
on the robot’s architecture can be found on [13]. The robotic
setup is the same as the one described by Fig. 2 and the
geometric parameters which specify the tracking task are also
those considered in the simulations, i.e. g, = (2.5,0,0),
gms = (0.51,0,€)’, and @ = b = 0.25. Since we do not
have sensors measuring the target’s situation w.r.t. an inertial
frame, only experiments with a fixed target are reported here.

The model-free estimation ¢ given by (15) is used in
the control law, with the Jacobian matrices (2=, %2=) being
estimated via the procedure described in Section V, with the
displacements Ag(p) measured by odometry. The components
of the signal vector s are given in pixels. The control law
for the unicycle is given by (16) with K = —0.5I3, and f
defined by (10) with n = 1 and ¢ = 0.3. The control for the

camera pan angle is given by (23) with 1/k, = _0?‘2 (0,0).
In these experiments, a low-pass filter has been applied to the
visual data in order to reduce the measurement noise. The
motion of the robot in the cartesian plane is shown on Fig. 6
(bottom). The “pseudo-true” data corresponds to a geometric
reconstruction of g based on the camera’s intrinsic parameters
and target’s geometry. This data, purposefully not used in the
control law in order to test its robustness w.r.t. large pose
estimation errors, provides a more accurate estimation of the

actual robot’s displacement.
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