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Abstract. This article proposes a hyperelastic 3D deformable template
for the segmentation of soft structures. It relies on a template, which is a
topological, geometrical and material model of the structure to segment.
The template is modeled as an elastic body which is deformed by forces
derived from the image. The proposed model is based on the nonlinear
three-dimensional elasticity problem with a boundary condition of pure
traction. In addition, the applied forces depend on the displacements.
For computations, a convergent algorithm is proposed to minimize the
global energy of template deformation. A discrete algorithm using the
finite element method is presented and illustrated on MR images of mice.

1 Introduction

Most recent medical imaging systems can provide a great amount of data explain-
ing the anatomy and function of a patient’s organs. However, the development of
efficient tools for automatic processing is mandatory to fully exploit the wealth
of information obtained by medical imaging systems and to provide quantified
parameters. The context of this paper is related to the extraction of the heart’s
anatomy and motion from temporal image sequences, more precisely Magnetic
Resonance Imaging (MRI) sequences. Currently, a clinical examination results in
a stack of slices covering the whole heart at successive time points over the car-
diac cycle. These imaging data constitute the input of the segmentation tracking
approach proposed in this paper. The methodology we follow for the segmenta-
tion is based on the deformable model principle and, as such, relies on a a priori
model of the structure to be segmented [10]. In the great variety of deformable
models, our approach uses a volumetric tetrahedral mesh of the heart with elas-
tic properties. We call it Deformable Elastic Template (DET). The linear DET
model has been previously introduced in [12], [13] for the segmentation of the
heart ventricles. In this paper, we introduce the new nonlinear DET model,
which is less sensible to initialization, along with several improvements towards
the automatic segmentation of cardiac structures in MR images.



2 Related work

Segmentation and motion estimation of the cardiac structures is one of the most
popular applications in medical image analysis. Numerous segmentation tech-
niques have been tested in this context from basic thresholding and low-level
methods to more sophisticated modeling and learning approaches [4]. The used
methodology and the results depend on the imaging modalities and the number
of dimensions (2D, 3D, 2D+time, 3D+time). Up to now, Magnetic Resonance
Imaging and Ultrasounds have been mainly addressed for both static and dy-
namic segmentation. However, the inherent difficulties (image artifacts, noise
and motion) are such that no generic method has truly emerged yet for routine
practice. It is clear that prior knowledge needs to be taken into account to bet-
ter constrain the segmentation. Therefore, methods based on a priori models of
the heart geometry, known as deformable models, have retained attention and
obtained a certain success in practice. The final segmentation results from the
minimization of a global energy functional which establishes the balance between
an internal energy, constraining the structure’s shape, and an external energy,
representing the action of image data onto the model. Contour and surface mod-
els have been extensively studied for segmenting soft structures. Their extension
to shape tracking through 2D or 3D image sequences has generally come to the
use of the result at time point t as an initialization for the segmentation at
time point t+ 1 with some temporal smoothness constraints [6]. The extraction
of both endocardial and epicardial cardiac surfaces is considered either as the
coupled segmentation of two surfaces [6] or through the introduction of more
complex volumetric models [12]. These latter models involve a volumetric repre-
sentation of the heart associated to behavioral laws, such as elasticity. Level set
methods, which can be closely linked with the previous deformable models, have
also been investigated in this context [11]. In this particular approach, however,
the shape topology is allowed to change during the optimization process which
is not always desirable. Another popular approach is based on prior learning or
cardiac atlases. The prior model is a summary representation of the manual seg-
mentation of a (great, as big as possible) number of patient data sets. One of the
main difficulties is to be able to establish a unique correspondence between all
the segmentations to build up the model [4, 7]. This statistical model then con-
strains the segmentation of the new data set through active shape (shape only)[5]
or active appearance models (taking into account image Grey levels) [9]. Such
approaches are very interesting but face the problem of representativity of the
database (defined by the number of individuals). It is however clear that prior
models of anatomical structures can greatly improve the segmentation. The volu-
metric deformable model proposed here incorporates both geometry and physics
of the cardiac structures.

3 Hyperelastic model for soft structure segmentation

A geometric template represents the object’s interfaces as well as its interior and
the properties assigned to it. The template is first placed within the image close



to the structure to be extracted. It is then deformed iteratively by applying
a force field so that its edges stick to the borders of the targeted structure.
Segmentation through template deformation is achieved by the minimization
of a global energy (or functional). The global energy is generally composed of
two terms. The first term is computed from the image data. Its role is to guide
the deformation towards the border of the targeted object. The second term
introduces a regularity constraint on the desired deformations. It also ensures
that the problem is expressed in a suitable functional space.

The initial Deformable Elastic Template introduced in [12] relied on lin-
ear elasticity to deform the template. In this article, the regularization term
comes from nonlinear elasticity and allows for large deformations. No part of the
geometrical model is maintained fixed during the deformation process, which
contributes to the better robustness of the segmentation against model initial-
ization. The equivalence between the minimization problem and local elasticity
equations is ensured when the material is hyperelastic and the applied forces are
conservative (i.e. derived from a potential energy) [3].
For the considered applications, Saint-Venant Kirchhoff material is considered
which is hyperelastic and the simplest model among all nonlinear models. The
applied forces are assumed to be conservative. Let Ω be the domain to be de-
formed (a bounded subset of R3), let ν be the unit outward normal to ∂Ω the
boundary of Ω, u : Ω → R3 be the displacement and E be the following strain
tensor

E(u) =
1
2
(∇ut +∇u+∇ut∇u), (1)

A Saint-Venant Kirchhoff material is hyperelastic and homogeneous, thus the
strain energy is independent of a particular point x ∈ Ω̄ and defined by the
relation

W (x,E) = W (E) = λ
2 (TrE)2 + µTrE2 (2)

The internal energy is defined for the reference state Ω by

Eint(u) =
∫

Ω

W (∇(1 + u)(x)) dx (3)

while the external energy is expressed for the deformed state as:

Eext(u) = −
∫

∂Ω

Ĝ(1 + u) dσ (4)

The function Ĝ is the potential of the applied surface forces. When the applied
force field is conservative, the minimization of the global energy

Etotal(u) = Eint(u) + Eext(u) (5)

is ”formally” equivalent to solving the following Euler equations (see [3]):



div
(
(1 +∇u)Σ(

E(u)
))

= 0 in Ω; (6a)

− (1 +∇u)Σ(
E(u)

) · ν + g(u) = 0 on ∂Ω, (6b)

where Σ is a tensor defined by

Σ(E) = λTr(E)1 + 2µE (7)

and g represents the applied surface forces. It can be computed from the norm of
the image gradient, an edge map obtained using a Canny operator [2] smoothed
with a Gaussian filter, or a distance map [1], [15]. The Gradient Vector Flow
algorithm (GVF) introduced in [18] generates a force field by an iterative diffu-
sion process, which is not derived from a potential. Although not conservative,
we observed that the force field obtained by the GVF method conducted to
reasonable numerical results as compared to more conventional gradient based
techniques.

4 Approximation of the model using an incremental
method

The problem (6) can be written as

L(u) = f(u) in Ω × ∂Ω, (8)

where

L(u) =
(

div
(
(1 +∇u)Σ(

E(u)
))

1 +∇u)Σ(
E(u)

) · ν
)
, f(u) =

(
0

g(u)

)
.

To solve problem (8), an incremental method is proposed, which consists in
letting the forces vary by small increments from 0 to their calculated value and
computing corresponding approximate solutions by successive linearizations. For
λ ∈ [0, 1], define u(λ) as the solution to

L(u(λ)) = λf(u(λ)) in Ω × ∂Ω (9)

After differentiating this relation with respect to λ and adding an initial condi-
tion, we obtain

u′(λ) =
(
L′(u(λ))− λf ′(u(λ))

)−1
f(u(λ)), 0 ≤ λ ≤ 1, (10a)

u(0) = 0. (10b)

Note that, if u is a solution of the differential equation (10), by integration of this
equation, u is also solution of equation (9). Therefore, the study of the partial
differential equations (9) reduces to solving the ordinary differential equation
(10). In [14], sufficient conditions for the convergence of the Euler’s algorithm
are given for the problem (10). In next sections, this incremental method is
applied to image segmentation.



5 Finite Element Discretization

For the numerical optimization of the total energy (6) with the incremental
method presented in the previous section, the finite element method is used. Let
M be a positive number, {ψ1, · · · , ψM} a function basis for the approximation
of the displacements. The algorithm is detailed below:

Let U0 a vector containing displacement components.

– Initialization step: U0 = 0 and u0 = 0;
– Iterations

(i) Assemble the stiffness matrix at iteration n

Kn
ij =

∫

Ωh

k(un, ψi, λn) : ∇φj dx− 〈
g′(un) · ψi, ψj

〉
, 1 ≤ i, j ≤M ;

(ii) Solve the linear system, with Un+1 as unknown

KnUn+1 = KnUn + (λn+1 − λn)F(Un);

(iii) Compute the approximate displacement at iteration n+ 1

un+1 =
i=M∑

i=1

Un+1,i ψi;

(iv) If ‖un+1 − un‖ < ε stop, otherwise go to (i).

Where F has the components:

Fj(Un) =< g(un), ψj >, 1 ≤ j ≤M

and

k(u,w) = (1 +∇u)Σ(
ε(w) +

1
2
(∇ut∇w +∇wt∇u)) +∇wΣ(

E(u)
)
.

The scalar product < ·, · > is defined on ∂Ω for the two functions α and β by :

< α, β >=
∫

∂Ω

α(x)β(x)dσ.

The stiffness matrix Kn can be updated at each iteration, but this is quite
time consuming. The convergence of the algorithm can be accelerated by updat-
ing the stiffness matrix Kn after several iterations instead of updating it at each
iteration. Two types of iterations are thus used: internal and external iterations.
With the external iterations, the stiffness matrix is updated, which permits large
displacements. Internal iterations do not require the computation of the matrix.
Hence, less computing time is needed for internal iterations than for external it-
erations. The number of external iterations should therefore be reduced as much
as possible but depends on the problem. If only small displacements are required
it is not necessary to update the stiffness matrix. In that case, internal iterations
suffice.



6 Simultaneous Segmentation of the left and right Heart
Ventricles in 3D Cine MR Images

6.1 Experimental data

Mouse heart cine MR images were acquired with a 7 T magnetic resonance
scanner with a whole body coil for RF excitation and a 15 mm surface coil
for MR signal reception. An ECG-gated FLASH sequence was used to acquire
short-axis cine images with 25 mm2 FOV, 256×256 pixels, 1 mm slice thickness,
7/3.5 ms TR/TE, 64 KHz bandwidth and 20 degrees flip-angles. Cine images (16
frames over the cardiac cycle) were acquired for 7 slice levels, covering the entire
left ventricle (LV). With a cardiac frequency of 450 b.p.m, the total acquisition
time was 20 minutes.

6.2 Image data preprocessing and initial model placement

High resolution MR images have a relatively low SNR. Furthermore, the abun-
dance of small features in the images (papillary muscles, coronaries, etc.) can
lead to local minima of the model energy, leading to inaccurate segmentation.
Both problems need to be addressed before the image edges can be extracted.
We applied morphological operators to remove small features and noise while
preserving strong edges (see [16]).

The non rigid segmentation algorithm requires that the model be initialized
close to the targeted object, in this case the mouse heart. Various solutions have
been proposed to solve this problem. A fully automatic approach can be used,
optimizing an affine transformation to match two criteria: distance to the closest
edge, and appearance. In [8], the Powell optimization method is used to minimize
the resulting energy. Results can be further improved by repeating the Powell
optimization with several random initializations and keeping the result with the
lowest energy, thus reducing the risk of falling into a local minimum.

The fully automated method was found to yield generally good results, how-
ever it is not always robust. In order to give more reproducible results, a semi-
automatic approach was preferred here. In this approach, a medical expert selects
several fiducial points located on the heart contours, both on the heart model
and in the acquired images. This information is used to compute the best affine
registration using a least squares approach. Registration can be further refined
by adding a thin-plate spline registration step with the same fiducial points.
More details on this process can be found in [17].

6.3 Results

Four 4D MRI sequences corresponding to 4 different mice were processed using
our method. The model parameters were set to: Young modulus of 10 Pa for the
LV and 40 Pa for the right ventricle (RV), and a Poisson coefficient of 0.485 for
the whole model. Figure 1 illustrates the 3D segmentation process. Figure 2-(a)-
(b) shows the results of the deformation of the 3D mesh for the same 3D image.



Results show that although we are still experiencing a few specific problems, our
method is able to correctly locate the heart borders in the images.

(a) (b) (c) (d)

Fig. 1. Segmentation of 3D mouse MR data : (a) Initial positioning of the DET model,
(b) Result of affine positioning, (c) Segmentation result, and (d) 3D mesh obtained as
a result of the segmentation process

Fig. 2. (a) Original model (b) deformed model; Diagram on the right: Estimated vol-
ume variation of the ventricles over the cardiac cycle.

6.4 Segmentation over the cardiac cycle

Segmentation tracking of the heart is achieved by taking the segmentation result
at the present time frame as the initial solution for the next time frame, and
repeating the process for all the times frames in the MRI sequence. Once the
3D contours have been extracted, it is straightforward to compute the enclosed
ventricle volumes. Figure 2 shows on the right an example of volume varia-
tion curves obtained by automatic segmentation tracking. The overall volume
variation pattern is coherent. However, localized problems persist during early
diastole. These problems may be tackled by incorporating temporal constraints
for the tracking of the heart shape over time.



7 Discussion and conclusions

This article presents the non linear deformable elastic template model for the
segmentation of soft structures in image sequences. One striking feature of this
model is that convergence results for the incremental method, which is used
to approximate a solution for a 3D nonlinear elastic template under successive
forces, are available. This sets a convenient framework for the segmentation of
soft structures in 3D and 3D+time images.

The proposed model has been experimented here for the segmentation of
MR image sequences of mouse hearts.The proposed method was able to retrieve
the heart contours in most cases, allowing the computation of volume variation
curves. However, manual interactions and corrections of the results would still be
needed to use the method routinely. Remaining problems include inaccuracies in
the segmentation of the pericardium due to the presence of numerous anatomical
structures close to the heart, and localized errors during the early diastolic phase
due to motion artifacts.

Note that for the segmentation over a cardiac cycle, progressive segmenta-
tion (see section 6.4) was used. It would be interesting to include a temporal
constraint in the model by introducing non stationary equations for the segmen-
tation over the cardiac cycle. Larger scale experiments, including quantitative
evaluation of the segmentation accuracy is also be needed to fully validate the
method.
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Lötjönen, Outi Sipilä, Helena Hänninen, Kirsi Lauerma, Juhani Knuuti, Toivo
Katila, and Isabelle E. Magnin. A 3-D model-based registration approach for the
PET, MR and MCG cardiac data fusion. Medical Image Analysis, 7:377–389, 2003.

9. Steven C. Mitchell, Johan G. Bosch, Boudewijn P. F. Lelieveldt, Rob J. van der
Geest, J. H. C. Reiber, and Milan Sonka. 3D active appearance models: segmenta-
tion of cardiac MR and ultrasound images. IEEE Transactions on Medical Imaging,
21(9):1167–1178, 2002.

10. J. Montagnat and H. Delingette. A review of deformable surfaces: topology, geom-
etry and deformation. Image and Vision Computing, 19(14):1023–1040, 2001.

11. Stanley Osher and James A. Sethian. Fronts propagating with curvature-dependent
speed: algorithms based on hamilton-jacobi formulations. J. Comput. Phys.,
79(1):12–49, 1988.

12. Q.-C. Pham, F. Vincent, P. Clarysse, P. Croisille, and I. E. Magnin. A FEM-
based deformable model for the 3D segmentation and tracking of the heart in
cardiac MRI. In 2nd International Symposium on Image and Signal Processing
and Analysis (ISPA 2001), volume 1, pages 250–254, Pula, Croatia, 2001.

13. M. Picq, J. Pousin, and Y. Rouchdy. A Linear 3D Elastic Segmentation Model for
Vector Fields. Application to the Heart segmentation in MRI. To be published in
Journal of Mathematical Imaging and Vision, 2007.

14. Y. Rouchdy, J. Pousin, J. Schaerer, and P. Clarysse. A nonlinear elastic deformable
template for soft structure segmentation. Application to the heart segmentation in
MRI. Accepted in Inverse Problems, 2007.

15. T. Saito and T.I. Toriwaki. New algorithm for euclidean distance transformation of
an n-dimensional digitized picture with applications. Pattern recognition, 27:1551–
1565, 1994.

16. J Schaerer, Y Rouchdy, P Clarysse, B Hiba, P Croisille, J Pousin, and IE Magnin.
Simultaneous segmentation of the left and right heart ventricles in 3D cine MR
images of small animals. In Proceedings of Computers in Cardiology, pages 231–234,
Lyon, 2005.
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