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Abstract This paper is concerned with chance constrained programming to
deal with nonlinear optimization problems with random parameters. Specific
Monte Carlo methods to evaluate the gradient and Hessian of probabilistic
constraints are proposed and discussed. These methods are implemented in
penalization optimization routines adapted to stochastic optimization. They
are shown to reduce the computational cost of chance constrained program-
ming substantially.
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1 Introduction

The presence of uncertainty in optimization problems creates a need for new
tools dealing with stochastic programming. Stochastic programming is based
on advanced mathematical tools such as non smooth calculus, abstract op-
timization, probability theory and statistical techniques, including Monte
Carlo (MC) simulations [12,7]. It addresses a variety of models where ran-
dom data are present in optimization problems encountered in engineering
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or finance: chance-constrained models, transportation and logistics models,
economics, or models involving risk measures (see the books by Prékopa [15],
Ruszczyński & Shapiro [17], and Kall & Wallace [13] and the survey articles
by Birge [4] and Sen & Higle [18]).

It is possible to distinguish two types of optimization problems in pres-
ence of randomness [19]. In the first type, the cost function is random, or
it is the expectation of a random cost function, and the set of feasible solu-
tions is deterministic [1]. In this paper we address a second type of random
optimization problems. Here, a deterministic cost function J(x) has to be
minimized under a set of Nc random constraints

gp(x, Λ) ≤ cp , p = 1, ..., Nc, (1)

where gp : R
Nx × R

NΛ → R is a real-valued constraints mapping and cp ∈ R

is the constraint level, for each p = 1, ..., Nc,

x = (x1, . . . , xNx
) ∈ R

Nx (2)

is the vector of physical parameters, and

Λ = (Λ1, . . . , ΛNΛ
) ∈ R

NΛ (3)

is a continuous random vector modeling the uncertainty of the model. In
many situations, the set of points x such that the Nc constraints (1) are
satisfied for (almost) all realizations of the random vector Λ is empty or
quasi-empty. Indeed, even if constraint violation at x happens only for a
very unlikely subset of realizations of Λ, the point x has to be excluded.
It then makes sense to look for an admissible set of points x that satisfy
the constraints with high probability 1 − α, 0 < α ≪ 1, in the sense that
only a small proportion α of realizations of the random vector Λ leads to
constraint violation at x. The set of constraints (1) is then substituted by
the probabilistic constraint

P (x) ≥ 1 − α, (4)

with

P (x) = P

(

gp(x, Λ) ≤ cp , p = 1, ..., Nc

)

. (5)

The probabilistic constraint prescribes a lower bound for the probability of
simultaneous satisfaction of the Nc random constraints. Situations where
probabilistic constraints of the form (4-5) are encountered are listed in the
book by Prékopa [15] and in the papers by Henrion & Romisch [10], Henrion
& Strugarek [11], and Prékopa [14].

The convexity of the admissible set, i.e. of the set of points x satisfying
(4), is a crucial point for the optimization problem [6]. We shall review this
question in this paper. In particular we shall present the recent contribu-
tion [11], where r-concavity properties of the functions gp together with a
r-decreasing assumption of the density of Λ are used to investigate the con-
vexity of the admissible set. The second crucial issue is that optimization
problems under probabilistic constraints of the form (4-5) are particularly
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difficult to solve for continuous random vectors, such as multivariate nor-
mal, because the probability (5) has the form of a high-dimensional integral
that cannot be evaluated directly, but has to be approximated by numerical
quadrature or by MC simulations. Because MC simulation appears to offer
the best possibilities for higher dimensions, it seems to be the natural choice
for use in stochastic programs. In [5] Birge and Louveaux describe some basic
approaches built on sampling methods. They also consider some extentions
of the MC method to include analytical evaluations exploiting problem struc-
ture in probabilistic constraints estimation. However, the evaluation of the
gradient and/or Hessian of (5) is required in nonlinear optimization routines,
and this is not compatible with the random fluctuations of MC simulations.
We propose a specific MC method to evaluate the gradient and Hessian of
the probabilistic constraint and we implement this method in penalization
optimization routines adapted to stochastic optimization. The proposed MC
estimators are based on probabilistic representations of the partial derivatives
of the probabilistic constraint, and they are shown to reduce the computa-
tional cost of chance constrained programming.

The paper is organized as follows. In Section 2 we apply standard convex
analysis results to study the convexity of the admissible set. Section 3 is
devoted to numerical illustrations of convex and non convex examples. In
Sections 4-6 we show how to construct MC estimators of the gradient and
of the Hessian of the probabilistic constraint. We finally implement these
methods in two simple examples.

2 Structural properties of the constraints set

In this section, we investigate the convexity of the admissible set

A1−α =
{

x ∈ R
Nx : P (x) ≥ 1 − α

}

, (6)

where α ∈ (0, 1). Let us first recall some definitions and results.

Definition 1 A non-negative real-valued function f is said to be log-concave
if ln(f) is a concave function. Since the logarithm is a strictly concave func-
tion, any concave function is also log-concave.

Equivalently, a function f : R
Nx → [0,∞) is log-concave if

f(s x + (1 − s)y) ≥ (f(x))s(f(y))1−s, for any x, y ∈ R
Nx , s ∈ [0, 1].

A random variable is said to be log-concave if its density function is
log-concave. The uniform, normal, beta, exponential, and extreme value dis-
tributions have this property [2].
The log-concavity of the density of a real-valued random variable implies
the log-concavity of the distribution function (Theorem 4.2.4 [15]). As an
example, the standard normal distribution N (0, 1) with density φ(x) =

(1/
√

2π) exp(−x2/2) is log-concave, since (ln φ(x))′′ = −1 < 0. Therefore,
the normal distribution has a log-concave distribution function.
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If F (x) = P(X ≤ x) is log-concave and if p0 ∈ (0, 1) is fixed, then the
set of x such that P(X ≤ x) ≥ po is convex. Indeed, if x, y are such that
P(X ≤ x) ≥ po and P(X ≤ y) ≥ po, then for any s ∈ [0, 1],

P(X ≤ sx + (1 − s)y) ≥ P(X ≤ y)s
P(X ≤ x)1−s ≥ ps

op
1−s
o = po.

Definition 2 A function f : R
Nx → R is said to be quasi-convex, resp.

quasi-concave, if for any x, y ∈ R
Nx and s ∈ [0, 1]

f(sx + (1 − s)y) ≤ max(f(x), f(y)) resp. ≥ min(f(x), f(y)).

Note that convexity implies quasi-convexity. We now give an important result
which follows directly from Theorem 10.2.1 by Prékopa [15]:

Proposition 1 Let g1(x, Λ), g2(x, Λ), ..., gNc
(x, Λ) be quasi-convex functions

in (x, Λ). If the random vector Λ has a log-concave density, then P is log-
concave and the admissible set A1−α defined by (6) is convex for any α ∈
(0, 1).

In this section, we shall focus our attention to the case where Nc = NΛ

and the constraint function g = (gp)p=1,...,Nc
is of the form

gp(x, Λ) = fp(x) − Λp.

If, additionnally, we suppose that the Λp, p = 1, ..., Nc, are independent ran-
dom Gaussian variables with mean µp and variance σ2

p, then the distribution
function of Λp is:

Fp(x) = Φ

(

x − µp

σp

)

, (7)

where Φ is the distribution function of the N (0, 1) distribution. As the Λp

are independent, we get the following :

P (x) = P

(

fp(x) ≤ Λp , p = 1, ..., Nc

)

=

Nc
∏

p=1

Φ

(

µp − fp(x)

σp

)

. (8)

By Proposition 1 we obtain the following result : If f1(x), f2(x), ..., fNc
(x)

are quasi-convex functions then the admissible set A1−α defined by (6) is
convex.

In the linear case the functions fp are of the form

fp(x) =

Nx
∑

j=1

Apjxj , p = 1, ..., Nc, (9)

where A is a Nx ×Nc matrix. Therefore, the hypotheses of Proposition 1 are
fulfilled and A1−α is convex.

In the general case where the functions fp are nonlinear in the x-variable,
the general theory is based on the Karush-Kuhn-Tucker Theorem:
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Theorem 1 (KKT Theorem) Suppose that J and Gk(x), k = 1, ..., K,
are all convex functions. Then under very mild conditions, x̄ solves

min
x∈RNx

J(x) s. t. Gk(x) ≤ ℓk , k = 1, ..., K (10)

if and only if there exists µ ∈ [0,∞)K such that
(i) ∇J(x̄) + µ · ∇G(x̄) = 0,
(ii) Gk(x̄) ≤ ℓk, k = 1, ..., K.
(i) and (ii) are known as the KKT conditions.

The convexity of the admissible set (6) in the nonlinear case corresponds
to K = 1 and G1(x) = − log(P (x)), where P (x) is given by (8). If the
functions fp are quasi-convex, then the admissible set A1−α is convex by
Proposition 1, the function P (x) is logconcave, and G1(x) is convex. Theorem
1 can therefore be applied.

When the problem is non convex (i.e. the cost function J and/or the
constraint function G1 are not convex) we can at least assert that any optimal
solution must satisfy the KKT conditions, i.e. under very mild conditions, if
x̄ solves (10), there exists µ1 that the KKT conditions (i) and (ii) are fulfilled.

As noted in [11], it is not necessary for the admissible domain A1−α to be
convex for all values of α ∈ (0, 1). In practical situations the convex property
is sufficient if it is satisfied only for small values of α. It turns out that an
extension of the previous results based on this remark is possible. We will see
in Section 7 configurations where randomness leads to the convexification of
the admissible set for small α. We give in the final part of this section the
basis of this theory developed by Henrion and Strugareck [11], where the
convexity of the admissible set is obtained under more general hypotheses
satisfied by r-concave and r-decreasing functions.

Definition 3 A function f : R
Nx → [0, +∞) is said to be r-concave for

r ∈ [−∞, +∞] if

f(sx + (1 − s)y) ≥
[

sf(x)r + (1 − s)f(y)r
]

1
r

(11)

for all (x, y) ∈ R
Nx × R

Nx , and for any s ∈ [0, 1].

For r = 1, a function f is 1-concave if and only if (iff) f is concave. For
r = −∞, a function f is −∞-concave iff f is quasi-concave, i.e. for any
x, y ∈ R

Nx and s ∈ [0, 1]

f(sx + (1 − s)y) ≥ min(f(x), f(y)).

Definition 4 A function f : R → R is said to be r-decreasing for some r ∈ R

if it is continuous on (0, +∞) and if there exists some t∗ > 0 such that the
function trf(t) is strictly decreasing for t > t∗.

For r = 0, a function f is 0-decreasing iff it is strictly decreasing. This
property can be seen as a generalization of the log-concavity, as shown by the
following proposition, which follows from Borell’s theorem [6] and is proved
in [11].
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Proposition 2 Let F : R → [0, 1] be a log-concave distribution function
with differentiable density φ and such that F (t) < 1 for all t ∈ R. Then, φ is
r-decreasing for all r > 0.

Many classical density functions (including Gaussian, log-normal densi-
ties) are r-decreasing. This notion is important, as shown by the following
theorem [11].

Theorem 2 Suppose that there exist rp > 0 such that −fp(x) are (−rp)-
concave functions, and suppose that Λp are independent random variables
with (rp + 1)-decreasing densities φp for p = 1, ..., Nc. Then

A1−α =
{

x ∈ R
Nx : P

(

fp(x) ≤ Λp , p = 1, ..., Nc

)

≥ 1 − α
}

(12)

is a convex subset of R
Nx , for all α < α∗ := max{Fp(t

∗
p) , p = 1, ..., Nc},

where Fp denotes the distribution function of Λp and the t∗p refer to Definition
4 in the context of φp being (rp + 1)-decreasing.

3 Applications

In this section we plot admissible domains A1−α of the form (6) in the case
where

gp(x, Λ) = fp(x) − Λp , p = 1, ..., Nc,

and Λ = (Λ1, ..., ΛNc
) is a Gaussian vector in R

Nc with covariance matrix Γ
and mean zero. In this case it is possible to express analytically the proba-
bilistic constraint. In this section we address cases where the fp’s are linear
and nonlinear functions such that, for each realization of the random vector
Λ, the set of constraints fp(x) − Λp ≤ cp defines a bounded, convex or non-
convex, domain in R

Nx . In these situations, the convexity of the admissible
set A1−α is investigated.

Example 1 (Convex case) Let us consider the set G1 of random constraints

fp(x) − Λp ≤ 1 , p = 1, ..., 4, (13)

where f : R
2 → R

4 is defined by

f1(x) = −x1 + x2,

f2(x) = x1 + x2,

f3(x) = x1 − x2,

f4(x) = −x1 − x2, (14)

and Λp are independent zero-mean Gaussian random variables with standard
deviations σp. The set of points x such that fp(x) ≤ 1, p = 1, ..., 4 is a simple
convex polygon (namely, a rectangle). Figure 1 plots the 1 − α level sets of
the probabilistic constraint

P (x) = P

(

fp(x) − Λp ≤ 1, p = 1, ..., 4
)

for different values of α between 0 and 1. The admissible sets in this case are
convex, as predicted by the theory.
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Fig. 1 Level sets of the probabilistic constraint P (x) with the set G1 of random
constraints. The random variables Λp are independent with standard deviations
σp = 0.1p, 1 ≤ p ≤ 4.

Example 2 (Non-convex cases) We revisit the previous example and replace
one edge by a circular curve so that the obtained domain (for a realization
of Λ) is not convex. We consider the set of random constraints G2:

fp(x) − Λp ≤ 1 , p = 1, ..., 5, (15)

where f : R
2 → R

5 is defined by

f1(x) = −(x1 + 1)2 − (x2 + 1)2 + 2,

f2(x) = −x1 − x2 − 1,

f3(x) = −x1 + x2,

f4(x) = x1 + x2,

f5(x) = x1 − x2, (16)

and Λp are independent zero-mean Gaussian random variables with standard
deviations σp. As shown in Figure 2 a,c, the level sets of the probabilistic
constraint P (x) = P

(

fp(x) − Λp ≤ 1 , p = 1, ..., 5
)

are convex for high values
of the level 1 − α. This is in qualitative agreement with the conclusion of
Theorem 2: The admissible domain is convex for high levels 1 − α. Note,
however, that the constraint G2 does not fulfill the hypotheses of Therorem
2, which means that it should be possible to extend the validity of this result.

Finally, we consider the set G2 of random constraints and assume that
the coordinates of the Gaussian random vector Λ are not independent. More
precisely, we consider the case where Λp ≡ Λ, p = 1, ..., 5, where Λ is a real
Gaussian random variable with mean zero and variance σ2. Even in this case,
for high values of the probability level 1 − α, the level set is convex as seen
in Figure 2 b,d, although the convexification is less efficient in the correlated
case.

To summarize. The hypotheses of (−r)-concavity and independence of
the entries of the Gaussian random vector are important in the proof of
the convexity result stated in Theorem 2. However, as we have seen in our
simulations, the convexification of the admissible domain for large (i.e. close
to one) probability levels 1−α seems to be valid for a large class of problems.
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Fig. 2 Level sets of the probabilistic constraint P (x) with the set G2 of random
constraints. In pictures (a) and (c) the random variables Λp are independent zero-
mean Gaussian variables with standard deviations 0.3. In pictures (b) and (d) the
random variables Λp are all equal to a single real random variable with Gaussian
statistics, mean zero and standard deviations σ = 0.3.

When the functions fp(x), p = 1, ..., Nc, are upper semi-continuous, then
the probabilistic constraint P (x) is upper semi-continuous and the admis-
sible domain A1−α is closed. Consequently, the minimization problem of a
strictly convex cost function is well posed (i.e. the problem has a unique solu-
tion). According to the previous section, it is important to use nonlinear and
non-convex minimization algorithms. The computation of the gradient (and
the Hessian) of the probabilistic constraint P (x) is required in the nonlin-
ear optimization. When simple analytical expressions of P (x) (using the erf
function for instance) are available, finite differences can be used to evaluate
the partial derivatives of P (x). However, in many situations, the expression
of P (x) involves an integral in high dimension, whose evaluation by deter-
ministic quadrature or Monte Carlo methods is not easy. In this case, the
computation of the the partial derivatives of P (x) with finite differences can
lead to significant errors. In Sections 5-6, specific techniques to compute gra-
dient and Hessian of probabilistic constraints are proposed and discussed.

4 The probabilistic constraint

In this section, we consider the general framework introduced in Section
1 and consider the probabilistic constraint (4-5). Here we assume that Λ
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is a Gaussian random vector with mean 0 and covariance matrix D2. In
many applications the Λi’s are independent and have Gaussian distribution
with mean 0 and variance σ2

i , so that D2 is the diagonal NΛ × NΛ matrix
(σ2

i )i=1,...,NΛ
, but we shall carry out our analysis with a general covariance

matrix.
The constraints are of the form:

gp(x, Λ) ≤ cp , p = 1, ..., Nc ,

where g : R
Nx × R

NΛ → R
Nc is a complicated function. We assume in the

following that the function g is of class C2. The goal is to solve an optimization
problem with such constraints. Due to the complexity of the function g in
typical industrial problems, the computational cost of an evaluation method
of the probabilistic constraint, its gradient and Hessian, is proportional to
the number of calls of g.

In general we can distinguish two types of contraints:
- n constraints depend on the random vector Λ,
- Nc − n constraints are deterministic:

gp(x) ≤ cp , p = n + 1, ..., Nc .

The Nc −n deterministic constraints will be dealt separately, using standard
constrained optimization tools. Of course, it may happen that Nc = n, i.e.
all constraints are random.

Let us fix x and consider the n constraints that depend on Λ. We shall
restrict ourselves to cases where the constraints are linear in Λ, or to cases
where the constraints can be linearized in Λ, in the sense that the approxi-
mation

gp(x, Λ) ≃ gp(x, 0) +

NΛ
∑

i=1

∂gp

∂Λi

(x, 0)Λi

is valid in the hypercube
∏NΛ

i=1[−3σi, 3σi]. Note that this is certainly the case
when σ is small, and that the choice of the constant 3 is actually determined
by the level 1 − α of the admissible set. The set of constraints can then be
rewritten in the form

G(x)Λ ≤ C(x),

where G(x) is a n × NΛ deterministic matrix and C(x) is a n-dimensional
vector

Gpi(x) =
∂gp

∂Λi

(x, 0) , p = 1, ..., n, i = 1, ..., NΛ,

Cp(x) = cp − gp(x, 0) , p = 1, ..., n.

The computation of G requires 1 + 2NΛ evaluations of g.
Now, let us fix x ∈ R

Nx . This point is admissible if P (x) ≥ 1 − α, where
the probabilistic constraint is

P (x) = P(G(x)Λ ≤ C(x)). (17)

Our main goal is to compute P (x), as well as its gradient and Hessian.
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The random vector G(x)Λ has distribution N (0, Γ (x)) with Γ (x) the real,
symmetric, n × n matrix given by

Γ (x) = G(x)D2G(x)t, (18)

where D2 is the covariance matrix of Λ.
We will assume in the following that Γ (x) is an invertible matrix. This is

the case in the applications we have considered so far, and this is one of the
motivations for introducing the distinction between the n constraints that
depend on Λ and the ones that do not depend on it. This hypothesis could
be removed, but this would complicate the presentation.

Therefore, the probabilistic constraint can be expressed as the multi-
dimensional integral

P (x) =

∫ C1(x)

−∞

· · ·
∫ Cn(x)

−∞

pΓ (x)(z1, ..., zn)dz1 · · · dzn, (19)

where pΓ is the density of the n-dimensional distribution with mean 0 and
covariance matrix Γ :

pΓ (z) =
1

√

(2π)n detΓ
exp

(

−1

2
ztΓ−1z

)

.

If Γ (x) were diagonal, then we would have simply

P (x) =

n
∏

i=1

Φ

(

Ci(x)
√

Γii(x)

)

,

where Φ is the distribution function of the N (0, 1) distribution. In this
case, the probabilistic constraint can be evaluated with arbitrary precision,
as well as its gradient and Hessian. Unfortunately, this is not the case in
our applications, as well as in many other applications, so that the eval-
uation of the multi-dimensional integral (19) is necessary. The problem is
to integrate a discontinuous function (the indicatrix function of the domain
(−∞, C1(x)] × ... × (−∞, Cn(x)]) in dimension n, which is usually large. There-
fore, we propose to use a MC method. This method is cheap in our framework
because it does not require any new call of the function g. It is reduced to the
generation of an independent and identically distributed (i.i.d.) sequence of
Gaussian random vectors with zero-mean and covariance matrix Γ (x). Ac-
cordingly, P (x) can be evaluated by MC method, and the estimator has the
form:

P (M)(x) =
1

M

M
∑

l=1

1(−∞,C1(x)](Z
(l)
1 ) · · ·1(−∞,Cn(x)](Z

(l)
n ), (20)

where Z(l), l = 1, ..., M is an i.i.d. sequence of random variables with density
pΓ (x). The computational cost, i.e. the number of calls of the function g, is
1 + 2NΛ, which is necessary to evaluate G(x), and therefore Γ (x). Once this
evaluation has been carried out the computational cost of the MC estimator
is negligible.
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5 The gradient of the probabilistic constraint

5.1 Probabilistic representations of gradients

The gradient of the probabilistic constraint is needed in optimization rou-
tines. We distinguish two methods:
Method 1. One can try to estimate the gradient from the MC estimations of
P (x). One should get estimates of P (x) and P (x+δx) and then use standard
finite-dfferences to estimate the gradient. However, the fluctuations inher-
ent to any MC method are dramatically amplified by the finite-differences
scheme, so that a very high number M of simulations would be required.
This method is usually prohibitive.
Method 2. It is possible to carry out MC simulations with an explicit ex-
pression of the gradient. The gradient of P (x) has the form

∂P

∂xk

(x) =

n
∑

i,j=1

Aij(x)
∂Γij(x)

∂xk

+

n
∑

i=1

Bi(x)
∂Ci(x)

∂xk

(21)

for k = 1, ..., Nx, where the matrix A and the vector B are given by:

Aij(x) =

∫ C1(x)

−∞

· · ·
∫ Cn(x)

−∞

∂pΓ

∂Γij

(z1, ..., zn)dz1 · · · dzn |Γ=Γ (x)

=

∫ C1(x)

−∞

· · ·
∫ Cn(x)

−∞

∂ ln pΓ

∂Γij

(z)pΓ (z)dnz |Γ=Γ (x), (22)

Bi(x) =

∫ C1(x)

−∞

· · ·
∫ Ci−1(x)

−∞

∫ Ci+1(x)

−∞

· · ·
∫ Cn(x)

−∞

×pΓ (x)(z1, .., zi = Ci(x), ..., zn)dz1 · · · dzi−1dzi+1 · · · dzn

=
1√

2πΓii

exp

(

−Ci(x)2

2Γii

)∫ C1(x)

−∞

· · ·
∫ Ci−1(x)

−∞

∫ Ci+1(x)

−∞

· · ·
∫ Cn(x)

−∞

×pΓ (x)(z
′|zi = Ci(x))dn−1z′. (23)

Here pΓ (z′|zi) is the conditional density of the (n − 1)-dimensional random
vector Z ′ = (Z1, ..., Zi−1, Zi+1, ..., Zn) given Zi = zi. The conditional distri-
bution of the vector Z ′ given Zi = zi is Gaussian with mean

µ(i) =
1

Γii

zi(Γji)j=1,...,i−1,i+1,...,n

and (n − 1) × (n − 1) covariance matrix

Γ̃ (i) =

(

Γkl −
1

Γii

ΓkiΓil

)

k,l=1,...,i−1,i+1,...,n

.

Its density is given by

pΓ (z′|zi) =
1

√

(2π)n−1 det Γ̃ (i)

exp

(

−1

2

(

z′ − µ(i)
)t (

Γ̃ (i)
)−1 (

z′ − µ(i)
)

)

.
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The logarithmic derivative of pΓ has the form

∂ ln pΓ (z)

∂Γij

= − 1

2 detΓ

∂ detΓ

∂Γij

−1

2
zt ∂Γ−1

∂Γij

z = −1

2
(Γ−1)ji+

1

2
(Γ−1z)i(Γ

−1z)j.

(24)

5.2 Monte Carlo estimators

The goal of this subsection is to construct a MC estimator for the gradient
of the probabilistic constraint. This estimator is based on the representation
(21) and is given by (29) below.
Indeed, the matrix A(x) can be evaluated by MC simulations, at the same
time as P (x) (i.e. with the same samples Z(l), 1 ≤ l ≤ M):

A
(M)
ij (x) =

1

M

M
∑

l=1

1(−∞,C1(x)](Z
(l)
1 ) · · ·1(−∞,Cn(x)](Z

(l)
n )

∂ ln pΓ

∂Γij

(Z
(l)
1 , ..., Z(l)

n )

= −1

2
(Γ−1(x))jiP

(M)(x)

+
1

2M

M
∑

l=1

1(−∞,C1(x)](Z
(l)
1 ) · · ·1(−∞,Cn(x)](Z

(l)
n )

×(Γ (x)−1Z(l))i(Γ (x)−1Z(l))j , (25)

where Z(l), l = 1, ..., M is an i.i.d. sequence of n-dimensional Gaussian vectors
with mean 0 and covariance matrix Γ (x).

B(x) can be evaluated by Monte Carlo as well, but this requires a specific
computation for each i = 1, ..., n. The MC estimator for Bi(x) is

B
(M)
i (x) =

1
√

2πΓii(x)
exp

(

− Ci(x)2

2Γii(x)

)

× 1

M

M
∑

l=1

1(−∞,C1(x)](Z
′
1
(l)

) · · ·1(−∞,Ci−1(x)](Z
′
i−1

(l)
)

×1(−∞,Ci+1(x)](Z
′
i+1

(l)
) · · ·1(−∞,Cn(x)](Z

′
n

(l)
), (26)

where (Z ′
1
(l)

, ..., Z ′
i−1

(l)
, Z ′

i+1
(l)

, ..., Z ′
n
(l)

), l = 1, ..., M is an i.i.d. sequence of
(n − 1)-dimensional Gaussian vectors with mean

µ(i) =

(

Γji(x)

Γii(x)

)

j=1,...,i−1,i+1,...,n

Ci(x) (27)

and covariance matrix

Γ̃ (i) =

(

Γkl(x) − Γki(x)Γil(x)

Γii(x)

)

k,l=1,...,i−1,i+1,...,n

. (28)
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In order to complete the computation of the gradient of P (x) given by
(21), one should also compute (∂Γij(x))/(∂xk) and (∂Ci(x))/(∂xk). They are
given by

∂Γij(x)

∂xk

=

NΛ
∑

l,l′=1

∂

∂xk

[

∂gi(x, 0)

∂Λl′
D2ll′

∂gj(x, 0)

∂Λl

]

,

∂Ci(x)

∂xk

= −∂gi(x, 0)

∂xk

.

Substituting these expressions into the expression (21) of the gradient, we
obtain the MC estimator for the gradient of the probabilistic constraint:

(

∂P

∂xk

(x)

)(M)

=

n
∑

i,j=1

A
(M)
ij (x)

∂Γij(x)

∂xk

−
n
∑

i=1

B
(M)
i (x)

∂gi(x, 0)

∂xk

, (29)

where A
(M)
ij is the MC estimator (25) of Aij and B

(M)
i is the MC estimator

(26) of Bi.
The computational cost for the evaluations of the terms (∂Ci(x))/(∂xk) is

2Nx. The computational cost for the evaluations of the terms (∂2gp(x, 0))/(∂xk∂Λi)
is 4NΛNx (by finite differences). This is the highest cost of the problem. How-
ever, the computation of the gradient of P (x) can be dramatically simplified
if the variances σ2

i are small enough, as we shall see in the next paragraph.

5.3 Simplified computation of the gradient

If the σ2
i ’s are small, of the typical order σ2, then the expression (21) of

(∂P )/(∂xk) can be expanded in powers of σ2. We can estimate the order of
magnitudes of the four types of terms that appear in the sum (21). We can
first note that the typical order of magnitude of Γ (x) is σ2, because it is
linear in D2. We have:
- Aij(x) is given by (22). It is of order σ−2, because (∂ ln pΓ )/(∂Γij) is of
order σ−2.
- (∂Γij(x))/(∂xk) is of oder σ2, because it is linear in D2.
- Bi(x) is given by (23). It is of order σ−1, because it is proportional to
1/

√
Γii.

- (∂Ci(x))/(∂xk) is of order 1, because it does not depend on D2.
As a consequence, the dominant term in the expression (21) of (∂P )/(∂xk)
is

∂P

∂xk

(x) ≃
n
∑

i=1

Bi(x)
∂Ci(x)

∂xk

. (30)

This can be evaluated by the simplified MC estimator

(

∂P

∂xk

(x)

)(M)

≃ −
n
∑

i=1

B
(M)
i (x)

∂gi(x, 0)

∂xk

, (31)
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Fig. 3 Left picture: Deterministic admissible domain A for the model of page 14.
Right picture: The solid lines plot the level sets P (x) = 0.1, 0.3, 0.5, 0.7 and 0.9 of
the exact expression of the probabilistic constraint (32). The arrows represent the
gradient field ∇P (x). Here σ = 0.3.

where B
(M)
i is the MC estimator (26) of Bi. The advantage of this simplified

expression is that it requires a small number of calls for g, namely 1+2(NΛ+
Nx), instead of 1 + 4NΛNx for the exact one, because only the first-order
derivatives of g with respect (x, Λ) at the point (x, 0) are needed.

5.4 Numerical illustrations

We consider a particular example where the exact values of P (x) and its
gradient are known, so that the evaluation of the performance of the proposed
simplified method is straightforward. We consider the case where Nx = 2,
NΛ = 5, Nc = 5, gp(x, Λ) = fp(x)−Λp, cp = 1, with fp given by (16). In the
non-random case Λ ≡ 0, the admissible space is

A =
{

x ∈ R
2 : fi(x) ≤ 1 , i = 1, ..., 5

}

,

which is the domain plotted in the left panel of Figure 3. It is in fact the
limit of the domain A1−α when the variances of the Λi go to 0, whatever
α ∈ (0, 1).

We consider the case where the Λp are i.i.d. zero-mean Gaussian variables
with standard deviation σ = 0.3 (figures 3-4). The figures show that the
simplified MC estimators for P (x) and ∇P (x) are very accurate, even for
σ = 0.3, while the method is derived in the asymptotic regime where σ is
small. The exact expression of P (x) is

P (x) =

5
∏

i=1

Φ

(

1 − fi(x)

σ

)

, (32)

where Φ is the N (0, 1)-distribution function.
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Fig. 4 The solid lines plot the level sets P (x) = 0.1, 0.3, 0.5, 0.7 and 0.9 of the
model of page 14 with σ = 0.3. The arrows represent the gradient field ∇P (x). Left
figure: the exact expression (32) of P (x) is used. Right figure: the MC estimator (20)
of P (x) and the simplified MC estimator (31) of ∇P (x) are used, with M = 5000.
The fluctuations of the MC estimation of P (x) are of the order of the percent (the
maximal absolute error on the 33 × 65 grid is 0.022). The fluctuations of the MC
estimation of ∇P (x) are of the same order (the maximal value of ∇P is 2.68 and
the maximal absolute error is 0.051).

6 The Hessian of the probabilistic constraint

The Hessian of the probabilistic constraint is needed (or can be useful) in
some advanced optimization routines. Differentiating (21) with respect to x
we obtain the complete expression of the Hessian. This expression contains
a lot of terms, including terms that involve third-order derivatives of the
form (∂3gi)(∂Λl∂xk∂xm), whose evaluations by finite-differences or any other
method would be very costly. However, these terms have different orders of
magnitude with respect to σ (assuming that σ is small). If we keep only the
higher-order terms, we get the following simplified expression

∂2P (x)

∂xk∂xm

=
∑

1≤i≤j≤n

Dij(x)
∂Ci

∂xk

∂Cj

∂xm

(33)

for k, m = 1, ..., Nx, where Dij is of order σ−2 and (∂Ci)/(∂xk) is of order 1,
so that the overall expression is of order σ−2. Terms of order σ−1 and smaller
have been neglected, as shown in the next subsection.

6.1 Derivation of the simplified expression of the Hessian

To get the expression (33), we have noted that the x-derivatives of the terms
in the first sum in (21):

n
∑

i,j=1

Aij(x)
∂Γij(x)

∂xk
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are of order σ−1, and the x-derivatives of the terms of the second sum

n
∑

i=1

Bi(x)
∂Ci(x)

∂xk

have contributions of order σ−1, namely

n
∑

i=1

Bi(x)
∂2Ci(x)

∂xk∂xm

,

and contributions of order σ−2, namely

n
∑

i=1

∂Bi(x)

∂xm

∂Ci(x)

∂xk

,

that give (33). Indeed:

∂Bi(x)

∂xm

=

∫ C1(x)

−∞

· · ·
∫ Ci−1(x)

−∞

∫ Ci+1(x)

−∞

· · ·
∫ Cn(x)

−∞

∂pΓ (x)(ži, zi = Ci(x))

∂xm

dži

+
∑

j 6=i

∫ C1(x)

−∞

· · ·
∫ Ci−1(x)

−∞

∫ Ci+1(x)

−∞

· · ·
∫ Cj−1(x)

−∞

∫ Cj+1(x)

−∞

· · ·
∫ Cn(x)

−∞

×pΓ (x)(ži,j , zi = Ci(x), zj = Cj(x))dži,j ×
∂Cj(x)

∂xm

,

where ži = (z1, .., zi−1, zi+1, ..., zn) and
ži,j = (z1, .., zi−1, zi+1, ..., zj−1, zj+1, ..., zn). The partial derivative of the
probability density can be written as

∂pΓ (x)(ži, zi = Ci(x))

∂xm

=

n
∑

k,l=1

∂pΓ (ži, zi = Ci(x))

∂Γkl

|Γ=Γ (x)
∂Γkl(x)

∂xm

+
∂pΓ (x)(ži, zi)

∂zi

|zi=Ci(x)
∂Ci(x)

∂xm

.

The first sum is of order pΓ because (∂pΓ )/(∂Γkl) is of order σ−2pΓ (see
(24)) while (∂Γkl)/(∂xm) is of order σ2.
The second sum is of oder σ−1pΓ because (∂Ci)/(∂xm) is of order 1 while
(∂pΓ )/(∂zi) is of order σ−1pΓ :

∂ ln pΓ (z)

∂zi

= −1

2

∂

∂zi

(

ztΓ−1z
)

= − (ztΓ−1)i + (Γ−1z)i

2
= −(Γ−1z)i.

We only keep the second sum in the simplified expression:

∂Bi(x)

∂xm

=

∫ C1(x)

−∞

· · ·
∫ Ci−1(x)

−∞

∫ Ci+1(x)

−∞

· · ·
∫ Cn(x)

−∞

× ln pΓ (x)

∂zi

(ži, zi = Ci(x))pΓ (x)(ži, zi = Ci(x))dži ×
∂Ci(x)

∂xm
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+
∑

j 6=i

∫ C1(x)

−∞

· · ·
∫ Ci−1(x)

−∞

∫ Ci+1(x)

−∞

· · ·
∫ Cj−1(x)

−∞

∫ Cj+1(x)

−∞

· · ·
∫ Cn(x)

−∞

×pΓ (x)(ži,j , zi = Ci(x), zj = Cj(x))dži,j ×
∂Cj(x)

∂xm

.

The explicit expressions of Dij(x) in (33) are the following ones. If i < j:

Dij(x) =
1

π
√

ΓiiΓjj − Γ 2
ij

exp

(

−1

2

(

Ci(x)
Cj(x)

)t(

Γii Γij

Γij Γjj

)−1(
Ci(x)
Cj(x)

)

)

×
∫ C1(x)

−∞

· · ·
∫ Ci−1(x)

−∞

∫ Ci+1(x)

−∞

· · ·
∫ Cj−1(x)

−∞

∫ Cj+1(x)

−∞

· · ·
∫ Cn(x)

−∞

×pΓ (x)(z
′′|zi = Ci(x), zj = Cj(x))dn−2z′′. (34)

The conditional distribution of the vector

Z ′′ = (Z1, ..., Zi−1, Zi+1, ..., Zj−1, Zj+1, ..., Zn)

given (Zi, Zj) = (zi, zj) is Gaussian with mean µ(ij), with

µ
(ij)
k =

(

Γki

Γkj

)t(

Γii Γij

Γij Γjj

)−1(
zi

zj

)

for k = 1, ..., i − 1, i + 1, ..., j − 1, j + 1, ..., n, and (n−2)× (n−2) covariance

matrix Γ̃ (ij) with

Γ̃
(ij)
kl = Γkl −

(

Γki

Γkj

)t(

Γii Γij

Γij Γjj

)−1(
Γli

Γlj

)

for k, l = 1, ..., i− 1, i + 1, ..., j − 1, j + 1, ..., n.
If i = j

Dii(x) = − 1√
8πΓii

exp

(

−Ci(x)2

2Γii

)∫ C1(x)

−∞

· · ·
∫ Ci−1(x)

−∞

∫ Ci+1(x)

−∞

· · ·
∫ Cn(x)

−∞

×pΓ (x)(z
′|zi = Ci(x))

(

(ztΓ−1)i + (Γ−1z)i

)

zi=Ci(x)
dn−1z′.

The expression of Dii(x) can also be written as

Dii(x) = −(Γ−1)iiCi(x)Bi(x)

− 1√
2πΓii

exp

(

−Ci(x)2

2Γii

)∫ C1(x)

−∞

· · ·
∫ Ci−1(x)

−∞

∫ Ci+1(x)

−∞

· · ·
∫ Cn(x)

−∞

×pΓ (x)(z
′|zi = Ci(x))





∑

k 6=i

(Γ−1)ikz′k



 dn−1z′. (35)

Here pΓ (z′|zi) is the conditional density of the (n − 1)-dimensional random
vector Z ′ = (Z1, ..., Zi−1, Zi+1, ..., Zn) given Zi = zi described in the previous
section.
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6.2 Monte Carlo estimators

The MC estimator for Dij(x), i < j, is

D
(M)
ij (x) =

1

π
√

ΓiiΓjj(x) − Γ 2
ij(x)

× exp

(

−1

2

(

Ci(x)
Cj(x)

)t(

Γii(x) Γij(x)
Γij(x) Γjj(x)

)−1(
Ci(x)
Cj(x)

)

)

× 1

M

M
∑

l=1

1(−∞,C1(x)](Z
′′
1

(l)
) · · ·1(−∞,Ci−1(x)](Z

′′
i−1

(l)
)

×1(−∞,Ci+1(x)](Z
′′
i+1

(l)
) · · ·1(−∞,Cj−1(x)](Z

′′
j−1

(l)
)

×1(−∞,Cj+1(x)](Z
′′
j+1

(l)
) · · ·1(−∞,Cn(x)](Z

′′
n

(l)
), (36)

where (Z ′′
1

(l)
, ..., Z ′′

i−1
(l)

, Z ′′
i+1

(l)
, ..., Z ′′

j−1
(l)

, Z ′′
j+1

(l)
, ..., Z ′′

n
(l)

), l = 1, ..., M is

an i.i.d. sequence of (n − 2)-dimensional Gaussian vectors with mean µ(ij),

µ
(ij)
k =

(

Γki(x)
Γkj(x)

)t(

Γii(x) Γij(x)
Γij(x) Γjj(x)

)−1(
Ci(x)
Cj(x)

)

,

k = 1, ..., i− 1, i + 1, ..., j − 1, j + 1, ...n, and covariance matrix Γ̃ (ij),

Γ̃
(ij)
kl = Γkl −

(

Γki(x)
Γkj(x)

)t(

Γii(x) Γij(x)
Γij(x) Γjj(x)

)−1(
Γli(x)
Γlj(x)

)

,

k, l = 1, ..., i− 1, i + 1, ..., j − 1, j + 1, ..., n.
The MC estimator for Dii(x) is

D
(M)
ii (x) = −(Γ−1)iiCi(x)B

(M)
i (x)

− 1√
2πΓii

exp

(

−Ci(x)2

2Γii

)

× 1

M

M
∑

l=1

1(−∞,C1(x)](Z
′
1
(l)

) · · ·1(−∞,Ci−1(x)](Z
′
i−1

(l)
)

×1(−∞,Ci+1(x)](Z
′
i+1

(l)
) · · ·1(−∞,Cn(x)](Z

′
n

(l)
)

×





∑

k 6=i

(Γ−1)ikZ ′
k

(l)



 , (37)

where (Z ′
1
(l)

, ..., Z ′
i−1

(l)
, Z ′

i+1
(l)

, ..., Z ′
n

(l)
), l = 1, ..., M is an i.i.d. sequence

of (n − 1)-dimensional Gaussian vectors with mean µ(i) given by (27) and

covariance matrix Γ̃ (i) given by (28). The same sequence as the one used
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Fig. 5 The solid lines plot the level sets P (x) = 0.1, 0.3, 0.5, 0.7 and 0.9 of the
model of page 14 with σ = 0.3. The arrows represent the diagonal Hessian field
(∂2

x1
P, ∂2

x2
P )(x). Here the exact expression (32) of P (x) is used.

to construct the estimator B
(M)
i by (26) can be used here for the estimator

D
(M)
ii . As a result, the MC estimator for the Hessian of P (x) is:

(

∂2P (x)

∂xk∂xm

)(M)

=
∑

1≤i≤j≤n

D
(M)
ij (x)

∂Ci

∂xk

∂Cj

∂xm

. (38)

To summarize, the computation of the Hessian (33) by the MC estimator
(38) does not require any additional call to the function g, since only C, the
gradient of C, and the matrix Γ are needed.

6.3 Numerical illustrations

We illustrate the results with the model of page 14 introduced in Subsection
5.4. Figure 6 shows that the simplified MC estimator for the Hessian of P (x)
is very accurate, even for σ = 0.3. This means that, with 1 + 2(Nx + NΛ)
calls of the function g, we can get accurate estimates of P (x), its gradient
and its Hessian.

7 Stochastic optimization

The goal is to solve

min
x∈RNx

J(x) s. t.

{

P (x) ≥ 1 − α and
gp(x) ≤ cp , p = n + 1, ..., Nc

}

. (39)

The previous sections show how to compute efficiently P (x), its gradient
and its Hessian. Therefore, the problem has been reduced to a standard
constrained optimization problem. Different techniques have been proposed
for solving constrained optimization problems: reduced-gradient methods, se-
quential linear and quadratic programming methods, and methods based on
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Fig. 6 The solid lines plot the level sets P (x) = 0.1, 0.3, 0.5, 0.7 and 0.9 of
the model of page 14 with σ = 0.3. The arrows represent the diagonal Hessian
field (∂2

xP, ∂2

yP )(x). Left figure: the exact expression (32) of P (x) is used. Right
figure: the MC estimator (20) of P (x) and the simplified MC estimator (38) of
(∂2

x1
P, ∂2

x2
P )(x) are used, with M = 5000.

augmented Lagrangians and exact penalty functions. Fletcher’s book [8] con-
tains discussions of constrained optimization theory and sequential quadratic
programming. Gill, Murray, and Wright [9] discuss reduced-gradient meth-
ods. Bertsekas [3] presents augmented Lagrangian algorithms.

Penalization techniques are well-adapted to stochastic optimization [20].
The basic idea of the penalization approach is to convert the constrained
optimization problem (39) into an unconstrained optimization problem of

the form: minimize the function J̃ defined by

J̃(x) := J(x) + ρQ(x),

where Q : R
Nx → R is the penalty function and ρ is a positive real number,

referred to as the penalty parameter. Note that, in our case, we have K =
Nc − n + 1, G1(x) = 1 − α − P (x), and Gk(x) = gk−n+1(x) − ck−n+1,
k = 2, ..., K. The q-th order penalization (q ≥ 2) uses the penalty function
[16]

Q(x) =
1

q

K
∑

k=1

(

max{0, Gk(x)}
)q

,

which is constinuously differentiable with

∇Q(x) =

K
∑

k=1

max{0, Gk(x)}q−1∇Gk(x).

In the following minimization examples, the unconstrained problem ob-
tained by penalization is solved by the Scilab routine optim. This routine
uses a gradient method optimization. At each iteration k, k ≥ 1, a descent
direction dk of the cost function J̃ at the current state xk is determined. This
direction has the form dk = −Wkgk, where Wk is the current approximation
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Fig. 7 Minimization of J1 subject to G1 for the probability level 1 − α = 0.95.
The left picture shows that the minimum is obtained at the level set 0.95. The right
picture plots the cost function and level set curves.

of the inverse Hessian of the cost function at xk and gk is the gradient of the
cost function at xk. The iteration formula has the form:

xk+1 = xk + αkdk,

where αk is a step-size determined along the direction dk by Wolf’s condi-
tions.

Example 3 (convex optimization) We consider the linear minimization prob-
lem:
Minimize the function

J1(x) = x1 + 4x2 + 4,

subject to the constraints G1 given by (13) where the Λp are independent
zero-mean Gaussian random variables with standard deviations 0.1p, p =
1, ..., 4. Figure 7 shows the result of the optimization routine with quadratic
penalization.

Example 4 (non-convex optimization) We consider the nonlinear minimiza-
tion problem:
Minimize the function

J2(x) = (x1 − 1)2 + 4x2
2 + 4,

subject to the constraints G2 given by (15) where the Λp are independent
zero-mean Gaussian random variables with standard deviations 0.1p, p =
1, ..., 5. Figure 8 shows the result of the optimization routine with quadratic
penalization.
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Fig. 8 Minimization of J2 subject to G2 for the probability level 1 − α = 0.95.
The left picture shows that the minimum is obtained at the level set 0.95. The right
picture plots the cost function and level set curves.

8 Optimization of a random parameter

In this section we briefly address another stochastic optimization problem.
Here the constraints are assumed to be known, as well as the cost function,
but the input variable x ∈ R

Nx is known only approximately. This problem
models the production of an artefact by a non-perfect machine and takes
into account the unavoidable imperfections of the process. In this case the
probabilistic constraint has the form

P (x) = P

(

fp(Xx) ≤ 0 , p = 1, ..., Nc

)

, (40)

where fp, p = 1, ..., Nc are constraint functions, Xx is a random variable
with density φ(· − x), and φ is the density of a zero-mean random variable
that models the fluctuations of the process. The admissible domain A1−α is
defined by

A1−α =
{

x ∈ R
Nx : P (x) ≥ 1 − α

}

.

We can rewrite the probabilistic constraint as

P (x) = P

(

gp(x, Λ) ≤ 0 , p = 1, ..., Nc

)

,

where gp(x, Λ) = fp(x + Λ) and Λ a is a random vector with density f .
This problem has the same form as the previous one. If φ is a multi-variate
normal vector with zero mean and covariance matrix D2 and the variations
of fp are small over the hypercube

∏Nx

i=1[−3σi, 3σi], then we can apply the
same methodology. We first expand the constraints in Λ and obtain:

P (x) = P(G(x)Λ ≤ f(x)),

where the Nx × Nc matrix G(x) is given by

Gpk(x) =
∂fp(x)

∂xk

, p = 1, ..., Nc , k = 1, ..., Nx,

and the random vector G(x)Λ is Gaussian with zero-mean and covariance
Γ (x) = G(x)D2G(x)t. By applying the strategy developed in the previous
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section, we obtain that it is possible to compute accurately P (x), its gradient
and its Hessian if we have (finite-differences) estimates of (fp(x))p=1,...,Nc

,
its gradient and its Hessian. This means that an optimization problem with
a probabilistic constraint of the form P (x) ≥ 1 − α with P (x) given by
(40) has the same computational cost as the same problem with the set of
deterministic constraints fp(x) ≤ 0, p = 1, ..., Nc.

9 Conclusion

In this article we have investigated the possibility to solve a chance con-
strained problem. This problem consists in minimizing a deterministic cost
function J(x) over a domain A1−α defined as the set of points x ∈ R

Nx sat-
isfying a collection of Nc random constraints gp(x, Λ) ≤ 0, p = 1, ..., Nc, with
some prescribed probability 1−α. Here Λ is a random vector that models the
uncertainty of the constraints. We have studied the probabilistic constraint

P (x) = P(gp(x, Λ) ≤ 0 , p = 1, ..., Nc),

that is the probability that the point x satisfies the constraints. We have
analyzed the structural properties of the admissible domain

A1−α =
{

x ∈ R
Nx : P (x) ≥ 1 − α

}

,

that is the set of points x that satisfy the constraints with probability 1−α.
In particular we have presented general hypotheses about the constraints
functions gp and the distribution function of Λ ensuring the convexity of the
domain.

The original contribution of this paper consists in a rapid and efficient
MC method to estimate the probabilistic constraint P (x), as well as its gra-
dient vector and Hessian matrix. This method requires a very small number
of calls of the constraint functions gp, which makes it possible to implement
an optimization routine for the chance constrained problem. The method is
based on particular probabilistic representations of the gradient and Hessian
of P (x) which can be derived when the random vector Λ is multivariate nor-
mal. It should be possible to extend the results to cases where the conditional
distributions of the vector Λ given one or two entries are explicit enough.
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