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Abstract. This article proposes a nonlinear 3D deformable model for the image

segmentation of soft structure. The template is modeled as an elastic body which

is deformed by forces derived from the image. It relies on a template, which is a

topological, geometrical and material model of the structure to segment. This model is

based on the nonlinear three-dimensional elasticity problem with a boundary condition

of pure traction. In addition, the applied forces are successive, as they depend on the

displacements. For computations, an incremental algorithm is proposed to minimize

the global energy of template deformation. Sufficient conditions of the convegence

for the incremental algorithm are given. Finally, a discrete algorithm using the finite

element method is presented and evaluated on synthetic images and actual MR images

of mice.
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1. Introduction

Modern medical imaging systems can provide a great amount of data explaining the

anatomy and function of the patient’s organs. However, the development of efficient

tools for automatic processing is mandatory to fully exploit the wealth of information

obtained by medical imaging systems and to provide quantified parameters. The

context of this paper is related to the extraction of the heart’s anatomy and motion

from temporal image sequences, more precisely Magnetic Resonance Imaging (MRI)

sequences. Currently, a clinical examination results in a stack of slices covering the

whole heart at successive time points over the cardiac cycle. Interpolation techniques

can reconstruct 3D volumes at each time point. The reconstructed volumes constitute

the input of the segmentation tracking approach proposed in this paper. Let’s formalize

the 3D imaging data. A volume data set is denoted by a matrix V with x rows, y

column’s and z slices which represents a discrete grid of volume elements (or voxels)

v ∈ {1, ··, X}×{1, ··, Y }×{1, ··, Z}. For each voxel v, we denote the gray level function

by I : IN3 −→ Z, v 7→ I(v). The data are anisotropic with an equal sampling

in the x and y directions but with a lower resolution along the z-direction. Image

segmentation refers to the process which identifies all voxels that belong to the same

structure according to a certain homogeneity criterion (most often this criterion is the

gray level). Segmentation is required for the identification of the object (for instance

the heart) in the MRI volume data. Here, we deal with edge-based algorithms which

try to detect the border of a structure, that is to say the discontinuity surfaces of the

gray level function I.

The methodology we follow for the segmentation is based on the deformable model

principle and, as such, relies on a priori model of the structure to be segmented

[19]. In the great variety of the deformable models, our approach uses a volumetric

tetrahedral mesh of the heart with elastic properties. We call it Deformable Elastic

Template (DET). The linear DET model has been previously introduced in [21]. In this

paper, we introduce the nonlinear DET model which is able to take into account large

displacements, a major limitation of the linear version.

The segmentation scheme proceeds in three stages [21]. Firstly, a reference mesh of

a given anatomical structure is created. In the present case, a volumetric tetrahedral

mesh of the heart including both left and right ventricles was extracted from a reference

data set. The mesh size is a tradeoff between computation time and accuracy of

shape representation. The quality of the mesh elements is controlled throughout the

deformation by the estimation of a quality criterion defined in [2]. Secondly, the reference

mesh is positioned into the image with in an iterative affine transform process until the

minimization of a similarity measure between the reference model and the image data is

achieved. The template is first scaled to correct dimensions, with respect to the image

resolution, and translated so that a few number of reference points of the template and

in the image matchs. We look a 3-D rigid transformation which brings the template as

close as possible to the anatomical structures of interest.
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The 3D rigid transformation results from the minimization of a combined edge and

region energy term with an approach similar to the one presented in [22]. Figure 1 the

automatic initial positionning of the template through a global affine transformation for

a mid-ventricular slice of a heart patient. The left picture shows the initial position of

the template and the right picture shows the registration result.

(a) (b)

Figure 1. (a): Trace of the reference template in a 2D MR slice before registration,

(b): The reference template after affine registration

In the last stage, the model is locally adapted to fit the structure borders. This is

achieved by minimizing a global energy which consists of an internal elasticity term and

an external energy term which reflects the proximity to the target borders in the image.

This paper focuses on the last step of the segmentation, which involves nonlinear

elasticity. An incremental method for the minimization of the global energy is proposed

and its convergence properties are demonstrated. It is assumed that the minimization of

the global energy is equivalent to solving Euler optimal conditions which corresponds in

this case to a nonlinear elasticity boundary problem. A major difficulty in the numerical

solution of large displacements and deformations of elastic structures is the proper

handling of the various non-linearities that occur in the boundary value problems of

elasticity. To deal with this difficulty, Ciarlet proposes in [7] an incremental method for

pure displacements. The incremental method consists in letting the forces vary by small

increments from 0 to the given ones and compute corresponding approximate solutions

by successive linearization. In this work, the incremental method is adapted to image

segmentation. The proposed algorithm is discretized with a finite element method and

evaluated both on synthetic images and cardiac MR images.
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2. Related work

Segmentation and motion estimation of the cardiac structures is one of the most popular

applications in image analysis. Numerous segmentation techniques have been tested

in this context from basic thresholding and low-level methods to more sophisticated

modeling and learning approaches [11]. The used methodology and the results depend

on the imaging modalities and the number of considered dimensions (2D, 3D, 2D+time,

3D+time). Up to now, Magnetic Resonance Imaging and Ultrasounds have been mainly

addressed for both static and dynamic segmentation. However, the inherent difficulties

(image artifacts, noise and motion) are such that no generic method has truly emerged

yet for routine practice. It is clear that a priori knowledge needs to be taken into

account to better constrain the segmentation. Therefore, methods based on a priori

models of the heart geometry, known as deformable models, have retained attention

and obtained a certain success in practice. As mentioned before, the final segmentation

results from the minimization of a global energy functional which finds the balance

between an internal energy, constraining the structure shape, and an external energy,

representing the action of image data onto the model. Contour and surface models

have been extensively studied for segmenting soft structures. Their extension to shape

tracking through 2D or 3D image sequences has generally come to the use of the result

at time point t as an initialization for the segmentation at time point t + 1 with some

temporal smoothness constraints [14]. Image registration has been used as well to assist

the initialization of the heart template, a crucial problem in such an approach. The

extraction of both endocardial and epicardial cardiac surfaces is considered either as the

coupled segmentation of two surfaces [14] or through the introduction of more complex

volumetric models [21]. These latter models involve a volumetric representation of the

heart associated to behavioral laws, such as elasticity. Level set methods, which can be

closely linked with the previous deformable models, have also been investigated in this

context [20, 6]. In this particular approach, however, the shape topology is allowed to

change during the optimization process which is not always desirable. Another popular

approach is based on prior learning or cardiac atlases. The prior model is a summary

representation of the manual segmentation of a (great, as big as possible) number

of patient data sets. One of the main difficulties is to be able to establish a unique

correspondence between all the segmentations to build up the statical model [11, 16].

This statistical model then constrains the segmentation of the new data set through

active shape (shape only)[13], active appearance models (taking into account image

Grey levels) [18]. Filtering techniques are generally introduced to regularize the spatio-

temporal segmentation [12, 15]. All these approaches present advantages and limitation.

To our knowledge, no comparative studies have been conducted yet that could help

selecting the optimal method for a specific context. We believe that prior models can

greatly improve the segmentation. Here, a model is proposed that incorporates both

physics and geometry. This model belongs to the volumetric deformable models. The

initial model introduced in [21, 17] uses linear elasticity to deform the template. We
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have developed a model which uses nonlinear elasticity. In this article, we demonstrate

some important properties of the proposed volumetric model and associated numerical

algorithms when displacements depend on the applied forces.

3. A nonlinear deformable elastic template

3.1. Description of the model

The approach adopted in this work for the segmentation of a smooth deformable object

is based on prior assumptions about its shape. A geometric template represents the

object interfaces as well as its interior and the elastic properties assigned to it. Within

the image, the template is placed close to the structure one wants to extract (Figure

2). By applying a force field, the template is deformed and its edges are pulled to the

borders of the targeted structure. The segmentation is achieved by the deformation of

the template which is in turn achieved by the minimization of a global energy.

Figure 2. principle of the deformable models

The global energy to be minimized is composed of two terms. The first term

is computed from the image data. Its role is to guide the deformation towards the

border of the targeted object. The second term introduces a regularity constraint on

the desired deformations. Its presence ensures also that the problem is settled in a

suitable functional space.

In this article, the regularization term comes from the nonlinear elasticity, which

allows large deformations. No part of the geometrical model is maintained fixed during

the deformation process, which contributes to the automation of the segmentation.

The deformable model is generally formulated as a minimization of a functional.

The equivalence between the minimization problem and local elasticity equations is
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ensured when the material is hyper-elastic and the applied forces are conservative (i.e.

derived from a potential energy, the exact definition is given in section 3.3).

For the considered applications the material of Saint Venat-Kirchhoff is considered

which is hyper-elastic and the simplest model among all nonlinear models. It is also

compatible with the physical hypotheses introduced in the next section. It is obtained by

neglecting the higher-order terms in the expansion of the Piola-Kirchhoff stress tensor.

The applied forces are assumed to be conservative. Let Ω be the domain to be deformed,

u : Ω → R
3 and E be the following strain tensor

E(u) =
1

2
(∇ut + ∇u+ ∇ut∇u), (1)

A material of Saint Venat Kirchhoff is hyper-elastic and homogeneous, thus the strain

energy is independent of a particular point x ∈ Ω̄ and defined by the relation

W (x,E) = W (E) =
λ

2
(TrE)2 + µTrE2 (2)

Then the internal energy is defined for the reference state Ω by

Eint(u) =

∫

Ω

W (∇(1 + u)(x)) dx (3)

While the external energy is expressed for the deformed state as:

Eext(u) = −

∫

∂Ω

Ĝ(1 + u) dσ (4)

The function Ĝ is the potential of the applied surface forces. The methods used to

compute the forces field are given in the application section 4. When the force field is

conservative (see the definition in section 3.3), the minimization of the global energy

Etotal(u) = Eint(u) + Eext(u)

is “formally” equivalent to solving the Euler’s equations (see section 3.3):

div((1 + ∇u)Σ(E(u))) = 0 in Ω

−(1 + ∇u)Σ(E(u)) · ν + g(u) = 0 on ∂Ω
(5)

where g is the applied surface forces, which is connected with a potential Ĝ by the

relation (18), and Σ is a tensor defined by

Σ(E) = λTr(E)1 + 2µE. (6)

The Euler’s equations (5) correspond to the pure traction elasticity problem of a

Saint Venant Kirchhoff material with successive forces. In the following, equations (5)

are studied in a general case when the material is not necessarily the Saint Venant

Kirchhoff material. The nonlinear three-dimensional elasticity with boundary condition

of pure traction is introduced and some preliminary results are given. Then an

incremental algorithm is presented and its convergence is proved.
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3.2. Notations and preliminary results related to the nonlinear elasticity problem with

boundary condition of pure traction

The equilibrium equations are expressed in the reference configuration in terms of

the first Piola-Kirchhoff stress tensor with the definition of an elastic material. More

precisely, let Ω be a bounded open subset of R
3, let ν be the unit outward normal to

∂Ω the boundary of Ω and let a : Ω × R
3×3 → R

3×3, h : Ω → R
3 and g : ∂Ω → R

3

be a given functions with

a(x, 1) = 0, for all x ∈ Ω. (7)

Lanza de Cristophoris and Valent have established in [9] that there exists a value r > 0

such that, if 0 < µ < r then there exists u : Ω → R
3 solution of

divA(u) + µh = 0 in Ω

−A(u)ν + µg = 0 on ∂Ω
(8)

where A(u)(x) = a(x, 1+∇u(x)) with ∇u(x) = (∂jui(x))i,j=1,2,3 is the gradient of u and

A(u)ν is the function from ∂Ω with values in R
3 defined by

(A(u)ν)i(x) =

3
∑

j=1

aij(x, 1 + ∇u(x))νj(x) i = 1, 2, 3.

The equations (8) correspond to the pure traction problem of nonlinear elasticity.

In the physical context, Ω represents the reference configuration of an elastic body, u

is the displacement, 1 + u the deformation corresponding to u. The function a defines

the response of the material, and a(x, 1 + ∇u(x)) is the first Piola-Kirchhoff stress

tensor at the point x ∈ Ω. The function g is the surface traction per unit surface

area in the reference configuration Ω. Throughout this work n, m denotes non negative

integers and p denotes a real number greater than one. Lp(Ω) is the space of (classes of)

measurable functions v : Ω → R such that |v|p is Lebesgue-integrable, while Wm,p(Ω) is

the (Banach) space of elements v of Lp(Ω) equipped with the norm

‖v‖m,p =
∑

|α|≤m

‖Dαv‖0,p,

where ‖ · ‖0,p is the usual Lp(Ω) norm. If Ω has the cone property, and if mp > 3, then

Wm,p(Ω) is a Banach algebra (see [1]), i.e.,

u, v ∈Wm,p(Ω) ⇒ uv ∈ Wm,p(Ω), ‖uv‖m,p ≤ cm,p‖u‖m,p‖v‖m,p,

where cm,p is a positive number independent of u and v (see [1], Th. 5.23). If

v = (vi)i=1,2,3 belongs to (Wm,p(Ω))3 we take :

‖v‖m,p =
3
∑

i=1

‖vi‖m,p
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We set V = (Wm+2,p(Ω))3, X = (Wm,p(Ω))3 × (Wm+1−1/p,p(∂Ω))3. Let the operator

L : V −→ X, be defined by

u 7−→ L(u) = (div(A(u)), A(u)ν)

Then the problem of pure traction (8) can be written as

L(u) = µf, (9)

where

f =

(

−h

g

)

∈ X.

The following spaces

Vm,p =
{

v ∈ (Wm+2,p(Ω))3 :

∫

Ω

vdx = 0,

∫

Ω

(∂jvi − ∂ivj)dx = 0, i,j=1, 2, 3.

}

Fm,p =
{

(h, g) ∈ (Wm,p(Ω))3 × (Wm+1−1/p,p(∂Ω))3 : (h, g) is equilibrated
}

.(10)

are used in [9] to prove the existence and uniqueness results. For the convenience of the

reader, a precise statement of those results is given in the Appendix.

In the next section, an incremental algorithm is given to compute an approximation

of the solution of the pure traction problem with successive forces (the functions h and

g depend on the displacements u). The convergence of the algorithm is proved.The

incremental method permitted also to extend the existence and uniqueness results of

Lanza De Cristoforis and Valent [9] to the problem of successive forces, and to give

another proof of their results.

3.3. Incremental method for nonlinear elasticity in pure traction with successive forces

Let h be a vector field defined in Ω. To segment the images, we need a vector field g

defined in the domain O containing Ω̄. The equilibrium equations in pure traction with

successive forces written in the reference configuration read:

divA(u) + h(u) = 0 in Ω

−A(u)ν + g(u) = 0 on ∂Ω
(11)

or

L(u) = f(u) in Ω × ∂Ω, (12)

with L(u) = (divA(u), A(u)ν). In the sequel, it is assumed that f is a C2(Vm,p;Fm,p)

function. The notations are those given in section 3.2.

Let us introduce the incremental method originally proposed by Ciarlet [7] for the

case of pure displacement with forces independent of the displacement. The incremental

method is based on the introduction of a sequence of parameterized problems. Hereafter,
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some technical results are given which prove the convergence of the incremental method.

For λ ∈ [0, 1], define u(λ) as the solution to

L(u(λ)) = λf(u(λ)) in Ω × ∂Ω (13)

After differentiating this relation with respect to λ and adding an initial condition, we

obtain

u′(λ) = (L′(u(λ)) − λf ′(u(λ)))−1
f(u(λ)), 0 ≤ λ ≤ 1,

u(0) = 0.
(14)

We have

Lemma 3.1 Assume that Ω is a Cm+2 bounded domain, pm > 3, that a ∈ (Cm+3(Ω̄ ×

R
3×3))3×3, and that hypotheses (A.1) apply. If there exists ρ > 0 and a constant K such

that |f ′(v)|L(V ;X) ≤ K‖v‖m+2,p for all v belonging to the ball B(0, ρ1) with the radius ρ1,

then there exists ρ2 such that the operator (L′(u) − λf ′(u)) is invertible for all u in the

ball B(0, ρ1) in Vm,p.

Proof. Although one is in infinite dimension, there exists ρ > 0 such that for all

‖v‖m+2,p ≤ ρ, L′(v) is an isomorphism. In fact, from the lemma Appendix A.2 L′(0) is

an isomorphism from Vm,p onto Fm,p. The spaces Vm,p and Fm,p being defined with the

relation (10), we can write

L′(v) = L′(0)(1 − (L′(0))−1(L′(0) − L′(v))),

The operator defined by Tv = (L′(0))−1(L′(0) − L′(v)) is linear and continuous from

Vm,p in Vm,p for all v ∈ Vm,p. With application of the mean value theorem and Lemma

Appendix A.1, we get

|Tv|L(V ) ≤ |L′(0)−1|L(X;V )|L
′(0) − L′(v)|L(V ;X)

≤ |L′(0)−1|L(V,X) sup
‖v‖V ≤ρ

|L′′(v)|L(V ;L(V ;X))‖v‖V

≤M1M
ρ
2 ‖v‖V

M1 stands for the norm of L′(0)−1 and M
ρ
2 is a constant resulting from the Lemma

Appendix A.1. Let ρ be a strictly positive number such that

ρ2 < min(
1

M1M2

, ρ). (15)

Then |Tv|L(V ) < 1 for all v in the ball B(0, ρ2), it follows that the operator L′(v) =

L′(0)(1 − Tv) is an isomorphism of Vm,p onto Fm,p. Let us prove that there exists ρ2

such that L′(u) − λf ′(u) is invertible for ‖v‖m+2,p ≤ ρ2. For ‖v‖m+2,p ≤ ρ we have the

relation

L′(u) − λf ′(u) = L′(u)(1 − λL′(u(λ))−1f ′(u(λ)))
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Set Tu = λL′(u)−1f ′(u). Since there exists a ρ1 > 0 and a constant K such that for

‖u‖m+2 < ρ1

|f ′(u)|L(V ;X) ≤ K‖u‖m+2,p,

it follows that

|Tu|L(V ) ≤ KM‖u‖m+2,p

M stands for the norm of L′(u)−1. Then L′(u) − λf ′(u) is an isomorphism from Vm,p

into Fm,p for all ‖u‖V ≤ ρ1 such that ρ1 < min ( 1
KM

; ρ; ρ2).

Let B(u) = L′(u) − λf ′(u)

Lemma 3.2 Assume that Ω is Cm+2, pm > 3, a ∈ (Cm+3(Ω̄ × R
3×3))3×3 and that

the hypotheses (A.1) apply. If there exists a ρ1 > 0 and a constant K such that

|f ′(v)|L(V ;X) ≤ K‖v‖m+2,p for all v in the ball B(0, ρ1), then there exists a ρ > 0 such

that B(u)−1f(u) is Lipschitzian in the ball B(0, ρ); more precisely, there exists a constant

C such that : ∀u1, u2 satisfying ‖u1‖V < ρ, ‖u2‖V < ρ :

|B(u1)
−1f(u1) − B(u2)

−1f(u2)|L(X;V ) ≤ C‖u1 − u2‖V . (16)

Proof. Given the two elements ‖u1‖V ≤ ρ2, ‖u2‖V ≤ ρ2, we have the factorizations

B(u1)
−1 − B(u2)

−1 = B(u1)
−1(B(u2) −B(u1))B(u2)

−1

B(u1)
−1f(u1) −B(u2)

−1f(u2) = (B(u1)
−1 −B(u2)

−1)f(u1) +

B(u2)
−1(f(u1) − f(u2));

the previous relations combined with the mean value theorem lead to

‖B(u1)
−1f(u1) −B(u2)

−1f(u2)‖ ≤ ‖B(u1)
−1 − B(u2)

−1‖‖f(u1)‖ +

‖B(u2)
−1‖‖f(u1) − f(u2)‖

≤ k1‖B(u1)
−1(B(u2) − B(u1))B(u2)

−1‖ +

M1Kρ1‖u1 − u2‖

≤ k1M
2
1‖B(u2) − B(u1)‖ +M1Kρ1‖u1 − u2‖

≤ (k1k2M
2
1 +M1Kρ1)‖u1 − u2‖

Corollary 3.3.1 Assume that Ω is Cm+2, pm > 3, a ∈ (Cm+3(Ω̄ × R
3×3))3×3 and

that hypothesis (A.1) applies. If there exists ρ1 > 0 and a constant K such that

|f ′(v)|L(V ;X) ≤ K‖v‖m+2,p for all v in the ball B(0, ρ1), then the differential equation (14)

has one and only one solution. This solution is also a solution of L(u(λ)) = λf(u(λ))

up to λ = 1.

Proof. Using the lemma 3.1 and 3.2, we verify that the mapping

Φ : u ∈ C0([0, 1];B(0, ρ)) → Φ(u) ∈ C0([0, 1];Vm,p)
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with

Φ(u)(λ) =

∫ λ

0

(

L′(u(µ)) − µf ′(u(µ))
)−1

f(u(µ)) dµ

is well defined and : λ ∈ [0, 1] →
(

L′(u(λ)) − λf ′(u(λ))
)−1

∈ Vm,p is continuous, since

it is composed of several continuous mappings. Then for u ∈ C0([0, 1];B(0, ρ)) we have

Φ(u) ∈ C0([0, 1];Vm,p). In addition, if the vector space C0([0, 1];Vm,p) is equipped with

the norm

|||Ψ||| := sup
0≤λ≤1

‖Ψ(λ)‖2+m

it becomes a Banach space, so that a subset of C0([0, 1];B(0, ρ)) is a complete metric

space.

Using the lemma 3.1 and 3.2, the mapping Φ or an iterate thereof: Φk = Φ(Φ(. . .))

is a contraction of the space C0([0, 1];B(0, ρ)). According to the contraction mapping

theorem, there exists a unique fixed point of the contraction Φk and consequently this

point is the unique solution of (14).

In addition, for a u solution of the differential equation (14) we have

0 = L′(u(λ))u′(λ) − f(u(λ)) − λf ′(u(λ))u′(λ) =
d

dλ
(L(u(λ)) − λf(u(λ)))

from which we deduce that

λ ∈ [0, 1] → (L(u(λ)) − λf(u(λ)))

is a constant mapping, which vanishes since u(0) = 0, i.e. u is a solution of the equation

L(u(λ)) = λf(u(λ)) with 0 ≤ λ ≤ 1.

Theorem 3.1 Assume that the hypotheses of the corollary 3.3.1 apply, and let (λn)n∈N

be a sequence in [0, 1]. Then there exists a sequence (un)
n=N
n=1 satisfying

u0 = 0, 0 ≤ n ≤ N,

(L′
1(un) − λnh

′(un))(un+1 − un) = (λn+1 − λn) h(un) in Ω

(L′
2(un) − λng

′(un))(un+1 − un) = (λn+1 − λn) g(un) on ∂Ω.

(17)

Moreover, there exists a constant c such that

‖un − u(λnf)‖ ≤ c (λn+1 − λn),

where u(λnf) denotes the unique solution in the ball B(0, ρ) of the equation L(u) =

λnf(u).

Proof. This algorithm corresponds to an Euler’s method to approximate the

solution of the equations (14). Due to lemma 3.2, this problem satisfies the hypotheses

of the convergence of Euler’s method :
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• u→
(

L′(u) − λf ′(u)
)−1

f(u) is Lipschitzian in the ball B(0, ρ);

• λ ∈ [0, 1] →
(

L′(u(λ)) − λf ′(u(λ))
)−1

f(u(λ)) ∈ Vm,p is continuous, since it is

composed of several continuous mappings.

Since the longest step (λj+1 − λj) of the sequence (λj)j tends towards 0, the algorithm

(17) converges (see [8]).

Now let us specify in which circumstance the apply forces are conservative. The applied

force fields h and g are conservative if there exists two potential forces F̂ : Ω×R
3 → R

and Ĝ : ∂Ω × R
3 × R

3×3
+ → R such that the functionals defined by

F (ψ) =

∫

Ω

F̂ (x, ψ(x)) dx and G(ψ) =

∫

∂Ω

Ĝ(x, ψ(x),∇ψ(x)) dσ(x)

have the following Gâteaux derivatives

F ′(φ)θ =

∫

Ω

h(φ(x)) · θ(x) dx and G′(φ)v =

∫

∂Ω

g(φ(x)) · v(x) dσ(x) (18)

An elastic material with the response function a Ω̄× R
3×3
+ → R

3×3 is hyper-elastic

if there exists a function W : Ω̄×R
3×3
+ → R, differentiable with respect to the variable

F ∈ R
3×3
+ for each x ∈ Ω̄, such that

aij(x, F ) =
∂W

∂Fij
(x, F ), 0 ≤ i, j ≤ 3

The function W is called the stored energy function.

Finally we end this section with a result proved in [7].

Theorem 3.2 We consider an hyper-elastic material and assume that the applied forces

are conservative. Let

U = {ψ : Ω̄ → R
3, det∇ψ > 0,

∫

Ω

ψdx = e}

The boundary value problem is “formally” equivalent to the minimization problem:

φ ∈ U and I(φ) = inf
ψ∈U

I(ψ),

where

I(ψ) =

∫

Ω

W (x,∇ψ(x)) dx− (F (ψ) +G(ψ)),

and W is a strain energy for a hyper-elastic problem.

This theorem allows us to formulate the pratical algorithm for DET based

segmentation. In the next section, the incremental method is applied to image

segmentation.
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4. Application of the incremental method to image segmentation

To apply the incremental method to image segmentation, the St Venant-Kirchhoff

material is used. Note that this is the simplest model among all nonlinear models

and that it is compatible with the hypotheses introduced previously. The notations

introduced at the beginning of the previous section are used. The strain energy is

independent of a particular point x ∈ Ω̄ and defined by the relation

W (E) =
λ

2
(TrE)2 + µTrE2. (19)

Then the internal energy is defined for the reference state Ω by

Eint(u) =

∫

Ω

W (∇(1 + u)(x)) dx. (20)

While the external energy is expressed for the deformed state as:

Eext(u) = −

∫

∂Ω

Ĝ(1 + u) dσ. (21)

The function Ĝ is the potential of the applied surface forces.

When the force field is conservative, the minimization of the total energy

Etotal(u) = Eint(u) + Eext(u)

is “formally” equivalent to solving the Euler’s equations (see previous section). These

equations are the equilibrium equations of a St Venant-Kirchhoff material:

div((1 + ∇u)Σ(E(u))) = 0 in Ω

−(1 + ∇u)Σ(E(u)) · ν + g(u) = 0 on ∂Ω

The force field g and the potential Ĝ are connected by relation (18).

For instance, it can be computed from the norm of the image gradient, an edge map

obtained using a Canny operator [5] smoothed with a Gaussian filter, or a distance map

[3], [24]. The Gradient Vector Flow algorithm (GVF) introduced in [26] generates a force

field by an iterative diffusion process, which is not derived from a potential. The force

field obtained by the GVF method is not conservative, but if used it in the equations

(5) below, the numerical results are equivalent as the results obtained with the Canny

technique. For the convenience of the reader, let us briefly recall the main features of the

Gradient Vector Flow method. One of the aims of the GVF is to extend the force field

extracted from the gray level function with a diffusion process. If I denotes the gray

level function of the image defined everywhere, the GVF method can be summarized in

three steps.

1- Regularize with a smooth convolution kernel the function I, which is still denoted by

I.
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2- Compute the edge map p(x) = ‖∇I(x)‖2 and set to zero the values of ∇p greater

than a fixed large parameter.

3- Extend ∇p in a bounded domain O containing the image of interest with a diffusion

process. For a fixed inverse-diffusion parameter µGV F , compute solution f of

∆f − µGV F (f −∇p)‖∇p‖2 = 0 in O;

f = 0 on ∂O.
(22)

Roughly speaking, when ‖∇p‖2 is large, f = ∇p, and outside of these regions, f is

extended in a smooth way.

The MR images of the mice used for the application in section 5 contained many

small features (papillary muscles, coronaries, ect.). Therefore, mophological filtering

ang GVF were used to pre-process the images and compute the force field acting onto

the model, see [25].

To segment a simple structure, an explicit force field can be computed. For example

to segment a sphere with the radius 1 from one image, the following force field can be

used

g(x) = −α(‖x‖ − 1)
x

‖x‖

with 0 < α < 1.

4.1. Finite Element Discretization

In this section, an algorithm to compute the solution of the problem (5) is given. Using

the notation introduced previously, the parameterized problem associated to (5) can be

written as L(u(λ)) = λ f(u(λ)), where

f(u) =

(

0

g(u)

)

.

For the numerical implementation of this algorithm, the finite element method is used.

Let M be a positive number, {ψ1, · · · , ψM} the basis for an approximation of the

displacement in Vm,p and Vh = V ect{ψ1, · · · , ψM}.

The variational problem associated to the incremental method is the following: Given

un, find a un+1 ∈ Vh which is a solution of
∫

Ω

k(un, un+1) : ∇v dx− λn〈g
′(un) · un+1, v〉 =

∫

Ω

k(un, un) : ∇v dx

−λn〈g
′(un) · un, v〉 + (λn+1 − λn)

∫

∂Ω

g(u)v dσ ∀vh ∈ Vh.
(23)

where

k(u, w) = (1 + ∇u)Σ(ǫ(w) +
1

2
(∇ut∇w + ∇wt∇u)) + ∇wΣ(E(u)),
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which is a linearization of the tensor

K(u) = (1 + ∇u)Σ(E(u)).

at w ( i. e. k(u,w)= K’(u)w ). The scalar product < ·, · > is defined on ∂Ω for the two

functions α and β by :

< α, β >=

∫

∂Ω

α(x)β(x)dσ.

Resolution algorithm

Let UO a vector containing displacement components.

• Initialization step

UO = 0 and u0 = 0;

• Iterations

(i) Assemble the rigidity matrix at iteration n

Kn
ij =

∫

Ωh

k(un, ψi, λn) : ∇φj dx− 〈g′(un) · ψi, ψj〉, 1 ≤ i, j ≤M ;

(ii) Solve the linear system derived from (23), with Un+1 as an unknown

KnUn+1 = KnUn + (λn+1 − λn)F(Un);

(iii) Compute the approximate displacement at iteration n+ 1

un+1 =

i=M
∑

i=1

Un+1,i ψi;

(iv) If ‖un+1 − un‖ < ǫ stop, otherwise go to (i).

In this algorithm, the matrix Kn is updated at each iteration, the iterations require

therefore much computing time. The convergence of the algorithm can be accelerated

by updating the rigidity matrix Kn only after several iterations instead of updating it at

each iteration. So, a step time sequence (τ1, τ2, . . . , τn) is introduced, called super-step

in reference to the super-step method described in [10]. Now, let U0 = 0 and compute

Un(N+1)+1 ∈ R
M such that :

• for k = 0, 1, · · · , N

– for i = 0, 1, · · · , n

KkU i+nk+1 = KkU i+nk − τi+1F(U i+nk);

– end i

• end k
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Two types of iterations are used : internal and external iterations. With the

external iterations, the rigidity matrix is updated, which permits one to carry out large

displacements. Internal iterations do not require the computation of the matrix. Hence,

less computing time is needed for internal iterations than for external iteration. The

number of external iterations should be therefore reduced as much as possible. This

can be achieved by compensating with internal iterations. However, several external

iterations are needed for large displacements. The number of required external iterations

depends on the problem. If only small displacements are required it is unnecessary to

update the rigidity matrix. In that case, internal iterations are sufficient.

4.2. Tests

To evaluate the method, an example with a known target object is considered. A sphere

(see Fig 3-(b)) is transformed into an ellipsoid, i. e. the template is a sphere and the

target border is an ellipsoid. The axis of the ellipsoid are chosen in such way that the

transformation demands large displacements. A force field is computed from the image

(see Fig 3-(a)). The mesh representing the template has 15 019 tetrahedrons and 3 003

nodes and satisfies the quality conditions introduced in [4].

The segmentation result obtained with the proposed method is shown in Fig 3-(c). The

nonlinear elasticity was replaced by linear elasticity. Note that the linear model is unable

to correctly detected the ellipsoid (see Fig 3-(d)).

5. Simultaneous Segmentation of the left and right Heart Ventricles in 3D

Cine MR Images

5.1. Experimental data

Mouse cine MR images were acquired with a 7 T magnetic resonance scanner with a

whole body coil for RF excitation and a 15 mm surface coil for MR signal reception. An

ECG-gated FLASH sequence was used to acquire short-axis cine images with 25 mm2

FOV, 256×256 pixels, 1 mm slice thickness, 7/3.5 ms TR/TE, 64 KHz bandwidth and

20 degrees flip-angles. Cine images (16 frames over the cardiac cycle) were acquired for

7 slice levels, covering the entire LV (left ventricle). With a cardiac frequency of 450

b.p.m, the total acquisition time was 20 minutes.

5.2. Image data preprocessing

High resolution MR images have a relatively low SNR. Furthermore, the abundance

of small features in the images (papillary muscles, coronaries, etc.) can lead to local

minima of the model energy, leading to inaccurate segmentation. Both problems need

to be addressed before the image edges can be extracted. We applied morphological

opening to remove small features and noise while preserving strong edges (see [25]).
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(a) (b)

(c) (d)

Figure 3. (a): 2D plane section of the 3D force field, (b): initial templat and targret

ellipsoid, (c): result obtained with nonlinear DET, (d): result obtained with linear

DET.
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5.3. Results

Four 4D MRI sequences corresponding to 4 different mice were processed using our

method. The parameters of the model were a Young modulus of 10 Pa for the LV (left

ventricle) and 40 Pa for the RV (right ventricle), and a Poisson coefficient of 0.485 for

the whole model. Results show that although we are still experiencing a few specific

problems, our method is able to correctly locate the heart in the images and retrieve its

contours. Figure 4 illustrates the 3D segmentation process. Figure 5-(a)-(b) shows the

results of the deformation of the 3D mesh of the same 3D image.

(a) (b) (c)

Figure 4. Segmentation of the heart ventricles in MR images of the mouse. Column

(a): trace of initial model, orthogonal slices with Z, X and Y after affine registration

of the model, column (b): trace of the deformed model after segmentation using DET

model, column (c): 3D deformed model according to the three directions.
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Figure 5. (a) Original model and (b)deformed model; Diagram on the bottom:

Estimated volume variation of the ventricles over the cardiac cycle.
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5.4. Segmentation over the cardiac cycle

Figure 6. Tracking of the ventricular cavities of a mouse during a cardiac cycle (4

phases separated by 64 ms intervals).

One direct application of segmentation is the automatic extraction of the ventricle

cavity volumes over the cardiac cycle. Segmentation tracking of the heart is achieved by

taking the segmentation result at the present time frame at the initial solution at the

next time frame, and repeating the process for all the times frames of the MRI sequence.

Once the 3D contours have been extracted, it is easy to compute the enclosed volumes.

Figure 5 shows on the right hand an example of volume variation curves obtained by

automatic segmentation tracking. Figure 6 shows the obtained model at frame time

points. The overall variation pattern is coherent. However, localized problems persist

during early diastole. These problems may be solved using temporal constraints for the

segmentation tracking.

6. Discussion and conclusions

The main contribution of this article is the derivation of convergence results for the

incremental method, which is used to approximate a solution for a 3D nonlinear elastic

template under successive forces. This sets a convenient framework for the segmentation

of soft structures in 3D and 3D+time images. Experiments were conducted with both

synthetic and medical images showing the practical behavior of the proposed model.

The proposed method was able to retrieve the heart contours in most cases, allowing

the computation of volume variation curves. However, manual interaction and correction

of the results would still be needed to use the method routinely experiments. Remaining

problems include inaccuracies in the segmentation of the pericardium due to the presence

of numerous anatomical structures close to the heart, and localized errors during the

early diastolic phase due to motion artifacts. Another aspect concerns the papillary

muscle which might be included into the myocardium segmentation as shown in Figure

7.

Note that for the segmentation of a cardiac cycle progressive segmentation (see

section 5.4) was used. It will be interesting to include a temporal constraint in the

model by introducing non stationary equations for the segmentation over the cardiac

cycle. Larger scale experiments, including quantitative evaluation of the segmentation

accuracy will also be needed to fully validate the method.
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Figure 7. On the left hand: trace of the initial model; On the right hand: trace of

the deformed model
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Appendix A. Proprieties of elasticity pure traction problem

Table A1. Notations.

Ω bounded open subset of R
3

∂Ω boundary of Ω

m, p, n integer numbers

‖ · ‖m,p norm of Wm, p(Ω)

ν the unit outward normal to Ω

g applied surface forces

h applied volume forces

a Ω × R
3×3 → R

3×3 : response of material expressed in terms of the first

Piola-Kirchhoff stress tensor

E(u) E(u) = 1

2

(

∇ut + ∇u + ∇ut∇u
)

: Strain tensor

W (E) W (E) = λ
2

(

Tr(E)
)2

+ µ Tr(E2) : strain energy of St-Venant Kirchhoff

Q set of orthogonal matrices of R
3×3

M t transpose of the M matrix.

Appendix A.1. hypotheses and results

Let σ = (σij)i,j=1,2,3 ∈ R
3×3 \ {0} be a tensor with σij = σji . According to the physical

context, it is assumed that a satisfies the following hypotheses

a(x, qy) = qa(x, y)qt for all (x, y) ∈ Ω × R
3×3 and q ∈ Q,

derived from the principle of material frame-indifference, and

a(x, y)yt = yat(x, y) for all (x, y) ∈ Ω × R
3×3,

derived from the symmetry of the Cauchy-stress tensor. Finally it is assumed that
∂aij

∂yhk
(x, 1)σijσhk > 0 for all x ∈ Ω.

Let h : Ω → R
3 and g : ∂Ω → R

3 be given functions. The pair (h, g) is equilibrated if
∫

Ω

h(x)dx +

∫

∂Ω

g(x) dσ = 0,
∫

Ω

(xi hj(x) − xj hi(x)) dx+

∫

∂Ω

(xi gj(x) − xj gi(x)) dσ = 0 i, j = 1, 2, 3.

This implies the symmetry of the astatic tensor c of (h, g), defined by the relation

cij =

∫

Ω

xihj(x)dx+

∫

∂Ω

xigj(x)dσ, i, j = 1, 2, 3.

Theorem Appendix A.1 (Lanza de Cristoforis and Valent) Assume that Ω is a

Cm+2 domain, that p(m + 1) > 3, that a belongs to (Cm+2(Ω × R
3×3))3×3 and that

the hypotheses (A.1) are satisfied. Let (h, g) ∈ Fm,p be such that, if c1, c2, c3 are the
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eigenvalues of the matrix c defined by (Appendix A.1), then ci+cj 6= 0 when i 6= j. Then

there exist two positive numbers r and ρ such that, if 0 < |λ| ≤ r, the problem (8) has

one solution u ∈ (Wm+2,p(Ω))3 such that
∫

Ω
udx = 0 and ‖u‖m+2,p ≤ ρ.

Lemma Appendix A.1 Assume Ω to be a Cm+2 bounded domain, pm > 3 and that

a ∈ (Cm+3(Ω̄ × R
3×3))3×3. Then L is twice continuously differentiable, and bounded on

a bounded ball :

sup
‖u‖m+2,p≤η

‖L′′(u)‖ <∞ for each η > 0.

The proof is given in [23].

Lemma Appendix A.2 (Lanza de Cristoforis and Valent) Assume Ω to be a

Cm+2 bounded domain, (p + 1)m > 3 and that a ∈ (Cm+2(Ω̄ × R
3×3))3×3 such that

hypotheses (A.1) apply. Then the operator L′(0) is an isomorphism of Vm,p onto Fm,p.
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