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Abstract

In this paper a 3D elastic model for the segmentation of vector fields
has been proposed and analyzed. Elastic models for segmentation usually
involve minimization of internal and external energy. A problem we ob-
served with standard internal and external energy is that the local or the
global reached minima do not force the external energy to be zero. To
eliminate this difficulty, we propose introducing a constraint. The con-
straint problem is proved to be mathematically well posed, and a simple
algorithm which avoids computing the lagrange multiplier is provided.
This algorithm is proved to be convergent. Then the algorithm is ap-
plied to the segmentation of cardiac magnetic resonance imaging, and its
efficiency is shown with two experiments.

Segmentation of a vector field, Minimization Problem subject to a Constraint,
Elastic Finite Element model, Cardiac Image Segmentation.

1 Introduction

Volumetric biomechanical models for segmenting cardiac medical images uses a
clinical Magnetic Resonance data set (MR volume data set). This volume data
set is manipulated through a matrix V with x rows, y columns and z slices,
that represent a discrete grid of volume elements ( or voxels) w ∈ {1, ··, X} ×
{1, ··, Y } × {1, ··, Z}. For each voxel w, we denote by G : IN3 −→ IN, w 7→
G(w) the gray level function. Data is anisotropic with an equal sampling in
x and y directions but with a coarser density in the z-direction. By image
segmentation we refer to processes which identify all voxels that belong to a
group that share a homogeneity criterion (most often this criterion is the same
anatomical structure). Segmentation is required for the identification of the
object (i.e. the heart) in the M. R. volume data. Here we deal with edge-based
algorithms which try to detect the borderline of a structure, that is to say the
discontinuity surfaces of the ”gradient” H of the gray level function.
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1.1 Meshing

Generally segmentation has three stages [8], [13], [2]. Firstly, a mesh of a given
anatomical structure is created, in our case, a volumetric tetrahedra mesh of the
heart including both left and right ventricles extracted from a databank. When
creating a tetrahedral mesh, conditions have to be satisfied, such as the mesh
size has to be chosen in order to keep the computation time reasonable and the
shape quality of the tetrahedra must be sufficiently good for producing accurate
results. In the experiments we provide at the end of the article, we use a quality
criteria defined in [3] and used in this context in [3]. Here we briefly recall the
definition of the quality criteria. Let S be a tetrahedron, we denote by hmax the
largest length of its edges, VS its volume and by AS the total surface of its four
faces. The radius ρ = 3VS

AS
is the largest ball included in S. The quality criteria

QS we used is given by: QS =
√

24 ρ
hmax

. The criteria QS ranges from 0 to 1,
equals 1 for a regular tetrahedron, the faces of which are equilateral triangles
and equals 0 for a degenerated tetrahedron. If the values of QS fall below 0.1
the mesh is modified.

1.2 Rigid registration

The second step as a prerequisite is, using a rough scale, to apply a full affine
transformation. The template is first scaled to correct dimensions, with respect
to the image resolution, and translated so that a small number of reference
points of the template and of the image match in a one to one way. We look for
the 3-D rigid transformation T (r, t), where r = (rx, ry, rz) and t = (tx, ty, tz) are
respectively the rotation and the translation vectors, which brings the template
as close as possible to the anatomical structures of interest. The registration
principle can be formulated within an energy minimization framework, where
the global energy Eini to be minimized is composed of two terms

Eini(T ) = Esurf (T )Eregion(T )

where Esurf (T ) denotes the surface energy and Eregion(T ) denotes the region
energy. Multiplication of surface and region energies was preferred over addition
because addition of the terms would require both terms to be normalized ([15]).
The surface energy is related to the distance from the template’s boundary to
detected edges in the image

Esurf (T ) =
1
N

N∑

k=1

d(nk(T ), edge)

with N the number of nodes on the surface mesh, nk the k-th node and d(·, ·) the
Euclidean distance. The region energy, which is based on the mutual information
criterion, measures the gray level similarity between the reference dataset and
the image to segment, via a meshed domain W surrounding the template and
sampling the gray values at its nodes

Eregion(T ) = I(Wref ,Wtarget(T ))
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where I(·, ·) is the mutual information, Wref the gray values of the reference
dataset carried by the nodes of W and Wtarget the gray values sampled on the
image to segment. The reference dataset is the image from which the geometric
model was extracted. This minimization is carried out using, for example, a
powel multi-dimensional algorithm [16]. In Figure 1 results are presented for
a mid-ventricular slice of a heart patient. The input data consists of a MR
cardiac data set acquired from a patient with a 1.5T MR scanner (Siemens,
Erlangen, Germany) using TurboFLASH squenses. The imaging parameters
are: TR=80ms; TE=4,8ms; FOV=350 mm; NEX=1; matrix size = 256X256;
slice thickness=8mm; ECG-gated with breathhold. Each sequence comprises 9
phases from end diastole to end systole. 8 short axis (SA) images cover the
heart ventricles. The left picture represents the initial position of the template
and the right picture represents the registration result.

(a) (b)

Figure 1: (a): trace of the initial template, (b): rigid registration

1.3 Local Deformation

The last stage concerns the fine detail. The minimization of internal and ex-
ternal energy enables more local deformations. This stage is important when
biomechanical models aim at specifying important physiological parameters.
Classical computer vision uses an eventually ill-posed minimization problem in-
volving internal and external energy which enables more local deformations.
Due to noise and inhomogeneities in the gray levels, segmentation of the car-
diac muscle in MRIs cannot be reduced to finding the exact zero level set of
the external energy. Therefore, a regularizing flow is introduced, which in the
deformable template context can be chosen as the linearized elasticity opera-
tor. On the one hand, the linearized elasticity operator prevents the undesirable
changes of topology of the template allowing to handle some inhomogeneities
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in the gray levels. Moreover, if necessary, a more sophisticated model adding
boundary rigid constraints modelling crudely some biomechanical properties of
the heart fibers can be incorporated (see [10]). On the other hand, the intro-
duction of an elastic energy requires this energy to be balanced by the external
energy (i.e. the work of the image forces) when a minimum is reached. There is
no way for introducing such information with the gray level function. Therefore,
a modified formulation of the minimization problem has to be introduced for
handling the correct balance between internal and external energies.

The goal of this article is to analyze how a biomechanical model evolves under
the influence of both an internal energy computed from linear elasticity mod-
els, which represents physical properties of the organ, and an external energy
computed from the image as defined in the framework of deformable templates,
when noise and inhomogeneities have been filtered. Here the problem addressed
is the segmentation of a vector field. A problem we have observed, with stan-
dard internal and external energy, is that the local or global reached minima do
not impose the external energy to be zero. That is a serious limitation when
the external energy is derived with the Gradient Vector Flow method (GVF)
[19], since the zero level of the external energy is reached when the boundaries
of the template fit with the image edges (see Figure 2 (a)). The remedy we have
proposed is to introduce a constraint in order that the external energy becomes
zero for the energy minimizer, which enforces the boundaries of the template
to fit the image edges. For the convenience of the reader, let us briefly recall
the main features of the Gradient Vector Flow method. One of the aims of the
GVF is to extend the force field extracted from the gray level function with
a diffusion process. Let I denote the gray level function of the image defined
everywhere. The GVF method can be summarized in three steps.
1- Regularize with a smooth convolution kernel the function I, which is still
denoted by I.
2- Compute the edge map f(x) = ‖∇I(x)‖2 and set to zero the values of ∇f
greater than a fixed large parameter.
3- Extend ∇f in a bounded domain O containing the image of interest with a
diffusion process. For µGV F , a fixed inverse-diffusion parameter, compute t, the
solution to

∆t− µGV F (t−∇f)‖∇f‖2 = 0 in O;
t = 0 on ∂O.

(1)

Roughly speaking, when ‖∇f‖2 is large t = ∇f , and outside of these regions,
t is extended in a smooth way. Noise and heterogeneities in MR images are
the principal difficulty in automatic segmentation. Thus the quality of the zero
level of the GVF will give the quality of the final segmentation. This question
is discussed in [18] (see for example Figure 3).
The outline of the paper is as follows. The minimization problem induced by a
linear elastic model under constraint is introduced, and an existence result for a
minimizer is proved. Then an algorithm for computing a minimizer is proposed.
In section 3 a toy problem is considered to analyze the convergence properties
of the algorithm introduced in section 2. The 2D toy problem mimics some
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difficulties of the segmentation algorithm (i.e. the derivative of the iteration
function is not one to one), since it is quite hard to evaluate the convergence
properties in such a situation. Finally, the paper ends with numerical examples
and heart patient images segmented using our method.

2 Methods

We recall here briefly the basic concepts of elasticity in 3 dimensions. The
reader can refer to [7] for further details on the elasticity theory. Here we
address the typical problem of the deformation of an elastic body. Let Ω0 be the
initial configuration of the elastic template, the deformation is described by the
Green-Lagrange strain tensor which is linearized under the small deformation
assumption. We denote by ε(v) = 1

2 (∇v + ∇vT ) the strain tensor and by
σ(v) = λTr(ε(v))II + 2µε(v) the stress tensor as a function of the displacement
v. The coefficients λ and µ stand for the Lamé coefficients (see [7]). It is
well-known that the equilibrium position of an elastic body corresponds to the
minimum of the elastic energy:

F (v) =
1
2

∫

Ω0

σ(v) : ε(v) dx (2)

We assume that a bounded lipschitzian open domain O of IR3 exists such that
V(Ω0), a Ω0 neighborhood, verifies V(Ω0) ⊂ O. Let t be the resultant of the
external superficial forces which deform the template by acting on its boundary.
The force field t is derived from the MR volume data set according to the
Gradient Vector Flow method [19]. The external energy is defined as work
produced by the force field t due to the deformation. The following hypotheses
for the field t are convenient for analyzing the level set method on vector fields.

• H1 The function t is defined on O, t ∈ C1(O; IR3) and its derivative Dt
is bounded on O.

As mentioned in the introduction, after the image has been filtered, the external
energy zero level is reached when the boundary of the template corresponds to
the borderline of the structure to be detected in the image. This implies that Dt
the derivative of force field t is not a regular linear operator on the boundary of
the deformed template, that is to say Dt is not one to one, since the zero level
set of t is not constituted of isolated points. Let us mention that Hypothesis H1
is satisfied for the applications considered since t is the solution to the elliptic
problem (1) with a regular right hand side.
Let us now introduce the functional setting for stating the mathematical model
we are dealing with. We denote by H1(Ω0) the classical Sobolev space of func-
tions in L2(Ω0) with a derivative in distributional sense in L2(Ω0).

H1(Ω0) = {ϕ ∈ L2(Ω0); Dϕ ∈ L2(Ω0)}

(see [7]) and we set H =
(
H1(Ω0)

)3.
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Let R be the subspace of rigid motions, which is defined as the kernel of the

strain tensor: R = Ker ε, set IH =
(
H1(Ω0)/R

)3

the displacement space,
equipped with the semi-norm ‖ε(v)‖L2(Ω0) which, thanks to the Korn inequality,
is a Hilbert space. We denote by IH

1
2 the set of traces of displacements on ∂Ω0

(i.e. the traces of functions of IH). As mentioned before we are interested in
deformations which bring the template boundary ∂Ω0 onto the zero level set
for the external energy, so, for introducing this information into the functional
setting, we define the continuous operator K as:

K : IH → IH1/2

v 7→ t(I + v)
∣∣∣
∂Ω0

Finally, let C denote the subset of admissible displacements: C = {v ∈
IH, K(v) = 0} which is closed. Please remark that a displacement belong-
ing to C is a zero of the external energy. Let IF : IH → IR be the strictly convex
IH-coercive function defined by

IF(v) =
1
2

∫

Ω0

σ(v) : ε(v) dx. (3)

The elastic model for the level set segmentation for vector fields reads: find u
which verifies

IF(u) = inf
v∈C

IF(v), (4)

the image of the object to be detected, Ω̃, is recovered with Ω̃ = (I + u)Ω0.

Theorem 1. Problem 4 has a solution u ∈ C. Moreover if we assume that
the derivative DK(u) is a surjective operator belonging to L(IH; IH1/2), then we
have the following optimality conditions: ∃ (λ, u) ∈ (IH1/2)′ × IH be such that




−div(σ(u)) = 0 in Ω0;
σ(u) · n = −λ ◦DK(u) = −λ ◦Dt(I + u) on ∂Ω0;
K(u) = 0 i.e t(I + u)|∂Ω0 = 0,

(5)

Let us comment on the hypothesis DK(u) is surjective. For image segmentation
of the heart in MR context, it is very hard to check that this hypothesis holds
true. In fact, this technical hypothesis is required for expressing the optimality
conditions in a simple way. Please note that this condition is not used in the
proposed algorithm 11 in the next section, but is just used for interpreting the
link between the limit solution and the optimality conditions. Furthermore,
this hypothesis will be satisfied by a penalized version of the force field t (see
appendix B).

Proof. From the compact injection of H1/2(∂Ω0) into L2(∂Ω0) we deduce that
C is weakly closed. Let {vn}n∈IN be a bounded sequence of C. Since {vn}n∈IN

is bounded in IH a subsequence still denoted by {vn}n∈IN and v ∈ IH exist such
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that vn weakly converges towards v. Accounting for the continuity of the trace
operator from IH into IH1/2 and due to the compact injection of H1/2(∂Ω0) into
L2(∂Ω0), the subsequence {vn}n∈IN converges strongly towards the trace of v
in L2(∂Ω0). So there exists a subsequence still denoted by {vn}n∈IN converging
almost everywhere towards v (see [9] Theorem 4.9 p. 58).
The functional IF is weakly l.s.c (Theorem 2.1.3 in [1] p. 27) so we obtain the
existence of a minimizer u ∈ C of Problem 4. The optimality conditions are
deduced from Theorem 3.1.36 p. 124 in [4], that is to say λ ∈ (IH1/2)′ exists
where (IH1/2)′, also denoted by (IH−1/2), is the dual of the space IH1/2 such that
minimizing IF over C is equivalent to minimizing
IF(v)− < K(v), λ >H1/2,H−1/2 over IH.

Remark 1. Due to the third equation in (5), the second equation in (5) can be
expressed as:

σ(u) · n = t(I + u)− λ ◦DK(u)
= t(I + u)− λ ◦Dt(I + u) on ∂Ω0

(6)

2.1 An algorithm for computing the minimizer

The issue of this section is to propose an implementable algorithm. The con-
vergence of this algorithm will be addressed in the next section. When the
subset C is not convex the difficulties for solving Problem 5 are twofold: solving
K(u) = 0 and computing the Lagrange multiplier λ. As has been mentioned
in remark 1 the second equation of the optimality conditions can be modified.
Therefore we first propose to replace the equation (52) by

σ(u) · n = t(I + u)− λ ◦DK(u)
= t(I + u)− λ ◦Dt(I + u) on ∂Ω0.

(7)

Problem 5 with equation (52) replaced by the equation (7) is still a nonlinear
problem. So we introduce the following iterative algorithm. Starting from
u0 = 0 and for a given uk find (λk+1, uk+1) ∈ (IH1/2)′ × IH verifying





−div(σ(uk+1)) = 0 in Ω0;
σ(uk+1) · n = t(I + uk)− λk+1 ◦ DK(uk)
= t(I + uk)− λk+1 ◦ Dt(I + uk) on ∂Ω0;
K(uk+1) = 0 in Ω0.

(8)

To avoid computing the Lagrange multiplier λk+1, we note that if Algorithm 8
converges, then

σ(u∞) · n = −λ∞ ◦ Dt(I + u∞). (9)

Thus we replace −λk+1 ◦ Dt(I +uk) by σ(uk) ·n and equation (83) is cancelled
out, because this condition is recovered implicitly for the limit u. Algorithm 8
becomes: starting from u0 = 0 and for a given uk find uk+1 ∈ IH verifying:

{ −div(σ(uk+1)) = 0 in Ω0;
σ(uk+1) · n = t(I + uk) + σ(uk) · n on ∂Ω0,

(10)
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which is a linear elasticity problem. In order to be able to analyze the conver-
gence of the algorithm, for 0 < β a fixed parameter, we consider the following
algorithm which has the same limit as the previous one:

{ −div(σ(uk+1)) = 0 in Ω0;
σ(uk+1) · n + β(uk+1 − uk) = t(I + uk) + σ(uk) · n on ∂Ω0,

(11)

We obtain:

Lemma 1. For uk ∈ H given, the problem 11 has a unique solution uk+1 ∈ H.

Proof. The reader is referred to the lemma 1 proof in the next section.

Let us check that if algorithm 11 converges, then the limit function ũ verifies
the constraint: K(ũ) = 0.

Lemma 2. Assume a sequence (u0 = 0, {uk}∞k=1) ⊂ (H1(Ω0))3) of solutions to
the algorithm 11 exists which weakly converges towards ũ. Then ũ verifies:




−div(σ(ũ)) = 0 in Ω0;
σ(ũ) · n = −β(ũ) +

∑∞
l=0 t(I + ul) on ∂Ω0;

K(ũ) = 0 i.e t(I + ũ)|∂Ω0 = 0,
(12)

Proof. From (112) we know that t(I + uk) weakly converges towards zero in((
H1/2(∂Ω0)

)3
)′

. From the compact injection of H1/2(∂Ω0) into L2(∂Ω0),
up to a subsequence, we have ukp → ũ a.e. in ∂Ω0. Then we deduce that
t(I + ũ) = 0 a.e. in ∂Ω0.

Now let us specify the relation between Problem 12 and Problem 5. If we
assume DK∗(ũ) to be surjective, by defining µ ∈ DK∗(ũ)−1

[
β(ũ)−∑∞

l=0 t(I +

ul)
]

we obtain for all v ∈
(
H1(Ω0)

)3

< µ, DK(ũ)v >H−1/2,H1/2=
< DK∗(ũ)−1

[
β(ũ)−∑∞

l=0 t(I + ul)
]
, DK(ũ)v >H−1/2,H1/2

=< β(ũ)−∑∞
l=0 t(I + ul), v >H−1/2,H1/2 ,

(13)

so the equation (122) can be rewritten as

σ(ũ) · n = −µ ◦DK(ũ),

and thus ũ is a solution to Problem 4. Moreover, since DK∗(ũ) is surjective,
the Lagrange multiplier associated to ũ is unique.
In [13] a similar algorithm has been implemented without accounting for the
constraint. The equation (112) was replaced by σ(uk+1) ·n = t(I + uk) and the
problem approximated with a tetrahedral finite element method of order one.
This algorithm has been tested in [3]. Unfortunately the constraint K(u) = 0
was not verified (see Figure 2 (c) and (d)).
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(a) (b)

(c) (d)

Figure 2: (a): a plane section of force field t, (b): trace of the initial template,
(c): a trace of segmented data without constraint, (d) mesh of segmented data
without constraint
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(a) (b)

Figure 3: (a): a trace of segmented data with the algorithm 11, (b): mesh of
segmented data with the algorithm 11

2.2 Convergence of the algorithm in a finite dimensional
subspace

As has been mentioned previously, the derivative of the function t is not a reg-
ular linear operator since the set of its zeros is the boundary of the object to
be detected in the volume data set. In the Gradient Vector Flow strategy, the
function t is built through a resolution of a P.D.E., so analyzing the mathe-
matical properties of the function t is beyond the scope of this article. In what
follows, first we are given sufficient conditions for proving the convergence of
algorithm 11 when the space H is approximated with a finite dimensional sub-
space according to a Galerkin procedure. Then we are going to deal with a toy
problem that mimics the main difficulties of the original problem (i.e. Dt is not
regular), for which the convergence of algorithm 11 will be exemplified.
Let {ψi}i∈IN be a dense family of H’s basis functions. For a given positive
integer N , we introduce the finite dimensional subspace HN defined by

HN = span{ψ1, · · ·, ψN}.

In what follows, we will still denote by u a solution to problem 4 in HN ∩ C.
Here we assume a hypothesis concerning the regularity of the derivative of the
external force field t convenient for analyzing the convergence of algorithm 11.
This hypothesis simply expresses in a mathematically formal manner the prop-
erty that the GVF t tends towards its zero level set.

• Hypothesis H2. Let u be a solution to problem 4 in HN ∩ C, then the
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derivative DK(u) is semi-negative definite, for all ϕ ∈ HN we have

< DK(u)ϕ,ϕ >
H

1
2 ,H−1/2

= (Dt(I + u)ϕ, ϕ)∂Ω0 ≤ 0. (14)

For a given arbitrary small positive parameter τ , we define the penalized external
force field tτ by

tτ (I + v) = t(I + v)− τv.

With the penalized external force field tτ , the bilinear form (Dtτ (I + u)·, ·)∂Ω0

is negative definite. Thus the resulting operator DKτ (u) is surjective (see ap-
pendix B). Now we introduce the approximated problem 11. Let 0 < β be a
fixed parameter, we consider the following algorithm: for a given uk ∈ HN,
where div(σ(uk)) = 0, find uk+1 verifying:




−div(σ(uk+1)) = 0 in Ω0;
σ(uk+1) · n + β(uk+1 − uk) = tτ (I + uk)+
σ(uk) · n on ∂Ω0,

(15)

First let us give a property concerning the sequence of solutions {un}n∈IN to
algorithm 15.
We introduce the bilinear continuous form a(·, ·) defined by

a : HN ×HN −→ IR
(ϕ,ψ) 7→ a(ϕ,ψ) =

∫
Ω0

∑3
i=1,j σ(ϕ)ijε(ψ)ij dx.

(16)

Then a variational formulation of the problem 15 reads: for given tτ and un

with div(σ(un)) = 0, find un+1 ∈ HN verifying for all ϕ ∈ HN,

a(un+1, ϕ) + β(un+1, ϕ)∂Ω0 = β(un, ϕ)∂Ω0+
a(un, ϕ) + (tτ (I + un), ϕ)∂Ω0 .

(17)

In what follows some intermediate technical results are given.

Lemma 1. Let ψ ∈ HN be given. Then the operator

L−1 : HN −→ HN

ψ 7→ w verifying
a(w, ϕ) + β(w, ϕ)∂Ω0 = β(ψ, ϕ)∂Ω0+
a(ψ, ϕ) + (tτ (I + ψ), ϕ)∂Ω0 ∀ϕ ∈ HN

(18)

is well defined.

Proof. Let us check that the Lax-Milgram theorem applies. Since the Korn
inequality asserts that the bilinear form a(·, ·) induces a norm in IH, we claim
that β(·, ·)∂Ω0 + a(·, ·) is a HN-coercive bilinear continuous form (see [7]). The
continuity of linear forms ψ 7→ β(ψ, ·)∂Ω0 , ψ 7→ (tτ (I+ψ), ·)∂Ω0 is a consequence
of hypothesis H1 (since Dt is a bounded function, t(I + ψ) ∈ HN if ψ ∈ HN

see [11] lemma 7.5 p. 144).
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Lemma 2. Assume that Dt is locally a Lipschitzian function, let ψ ∈ HN be
given, then L−1 is a C1 operator, and its Frechet derivative DL−1(ψ) is defined
by the following linear operator

DL−1(ψ) : HN −→ HN

v 7→ w verifying
a(w, ϕ) + β(w, ϕ)∂Ω0 = β(v, ϕ)∂Ω0+
a(v, ϕ) + (Dtτ (I + ψ)v, ϕ)∂Ω0 ∀ϕ ∈ HN.

(19)

Proof. Set L−1(ψ + v) = z + w; L−1(ψ) = z, the hypothesis H1 provides

tτ (I + ψ + v)− tτ (I + ψ) = Dtτ (I + ψ)v
+

∫ 1

0

[
Dtτ (I + ψ + sv)−Dtτ (I + ψ)

]
v ds a. e. on ∂Ω0.

(20)

Since Dtτ is a locally lipchitzian function, the continuity of the trace operator
from H1(Ω0) into Lp(∂Ω0) for 1 ≤ p ≤ 3

‖ϕ‖Lp((∂Ω0) ≤ Cp‖ϕ‖H1(Ω0) ∀ϕ ∈ H1(Ω0), (21)

leads to the following estimate
( ∫ 1

0

[
Dtτ (I + ψ + sv)−Dtτ (I + ψ)

]
ds v, ϕ

)
∂Ω0

≤
C(|v|2, ϕ)∂Ω0 ≤ CLips(ψ)C3‖v‖2H‖ϕ‖L3(∂Ω0).

(22)

We deduce that

a(L−1(ψ + v)− L−1(ψ)−DL−1(ψ)v, ϕ)+
β(L−1(ψ + v)− L−1(ψ)−DL−1(ψ)v, ϕ)∂Ω0 ≤

CLips(ψ)C‖v‖2HN
‖ϕ‖L3(∂Ω0) ∀ϕ ∈ HN.

(23)

The lemma is proved.

Lemma 3. Let B be a finite dimensional Banach space and let T ∈ L(B) be
an operator the spectral radius of which is denoted by ρ(T ). For a given ε > 0,
an equivalent norm |‖·‖| such that:

|‖T‖|L(B) ≤ ρ(T ) + ε.

exists.

The proof of Lemma 3 is to be found in appendix A.
Now we are in a position to give the main convergence theorem for algo-

rithm 15.

Theorem 2. Let β verifying ‖D(tτ (I + u))‖L < β be given, and assume the hy-
potheses H1 and H2 are satisfied, and that Dtτ is locally a Lipchitzian function.
Then the eigenvalues µ of the operator DL−1(u) : HN → HN verify:

0 < µ < 1.
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Thus, a neighborhood U of u in HN exists such that for all u0 ∈ U , where
div(σ(u0)) = 0, the sequence of functions {un}n∈IN ⊂ HN verifying

a(un+1, ϕ) + β(un+1, ϕ)∂Ω0 = a(un, ϕ)+
β(un, ϕ)∂Ω0 + (tτ (I + un), ϕ)∂Ω0 ∀ϕ ∈ HN,

(24)

converges.

Proof. Let µ be an eigenvalue of DL−1(u) that is to say, v ∈ HN such that

DL−1(u)v = µv (25)

exists. Setting w as equal to µv, we have for all ϕ ∈ HN

a(w,ϕ) + β(w,ϕ)∂Ω0 = β(v, ϕ)∂Ω0 + a(v, ϕ)+
(Dtτ (I + u)v, ϕ)∂Ω0 = 1

µ

(
β(w, ϕ)∂Ω0 + a(w,ϕ)+

(Dtτ (I + u)w,ϕ)∂Ω0

)
.

(26)

Choosing ϕ = v in (26) we obtain

0 <
(β − ‖D(tτ (I + u))‖L)

a(v, v) + β(v, v)∂Ω0

≤ µ. (27)

Next choosing ϕ = w in (26) we obtain
(
1− 1

µ

)
(a(w,w) + β(w, w)∂Ω0) =

1
µ (Dtτ (I + u)w, w)∂Ω0 .

(28)

The bilinear form a(·, ·) is H-semi coercive, this enables us to estimate from
below the left hand side of equation (28) by

(
1− 1

µ

)[
β‖w‖2(

L2(∂Ω0)
)3 + a(w,w)

]
. (29)

Since the right hand side is negative we obtain

(
1− 1

µ

)
< 0. (30)

Since we have 0 < µ we obtain 0 < µ < 1. If u0 ∈ HN then lemma 1 asserts
that un+1 verifying (24) belongs to HN. Therefore it is sufficient to consider the
fixed point algorithm 15 in HN. The linear operator DL−1(u) has a spectral
radius which verifies ρ(DL−1(u)) < 1. Then from lemma 3 we have for a given
ε > 0 the existence of an equivalent norm |‖·‖| on HN such that

|‖DL−1(u)‖|L(H,H) ≤ ρ(DL−1(u)) + ε

The classical fixed point convergence theorem for contraction mapping applies
(see Contraction Mapping Theorem [4] p.111 ) and we obtain the existence of a
neighborhood U in HN of u such that for all u0 ∈ U , where div(σ(u0)) = 0 the
sequence of functions {un}n∈IN converges.
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Remark 2. For a fixed 0 < η sufficiently large, the function IF defined in section
1 can be increased with a zero order term η

∫
Ω0

v2 dx. The induced operator L
will no longer be the classical elasticity operator.
The parameter β can be chosen to be zero if

0 < sup
v∈H

a(v, v)− ‖D(tτ (I + u))‖L.

The obtained convergence result in finite dimensional space cannot be simply
extended to the infinite dimensional space since the operator DL−1(u) is not a
compact operator.

3 Results

Let x ∈ IR3, the euclidean norm of which is denoted by ‖x‖, and Rf a positive
number. We choose as external force field the following function:

t(x) = −α
(
‖x‖ −Rf

) x

‖x‖ . (31)

with 0 < α < 1.
Now we would like to investigate the convergence property of algorithm 15 for
such an external force field with the parameter τ being set to zero. Set Rf = 1

2 ,

Rf < R0 and let u ∈
((

H1(BR0)
)3

)
be a solution to problem 5. We obtain for

the derivative of the operator K.

Lemma 3. The derivative DK(u) of the operator K is defined by: for all

v ∈
(
H1(BR0)

)3

< DK(u)ϕ, v >
H

1
2 ,H−1/2

=

−α
∫

∂BR0

((I+u)(x)/ϕ(x))IR3 ((I+u)(x)/v(x))IR3

‖(I+u)(x)‖3
IR3

+(
1− 1

2‖(I+u)(x)‖IR3

)
(ϕ(x)/v(x))IR3 ds.

(32)

Since u is a solution to problem 5 with Ω0 = BR0 , we have ‖(I + u)(x)‖IR3 =
1
2 a.e. on ∂BR0 . So the equation (32) becomes: for all v ∈

(
H1(BR0)

)3

< Dt(I + u)ϕ, v >
H

1
2 ,H−1/2

=

−α
∫

∂BR0

((I+u)(x)/ϕ(x))IR3 ((I+u)(x)/v(x))IR3

( 1
2 )3

,
(33)

which proves that the bilinear form induced by Dt(I + u) is semi-negative defi-
nite.
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3.1 A 2D toy problem

In order to evaluate practically the speed of convergence of type algorithm 15, we
consider a set of points in IR2 which are linked to each other with springs. The
spring elasticity constants are constants. Analyzing the mathematical conver-
gence properties of a fixed point iterative method with a degenerated iterative
function is quite difficult. Hence the aim of this subsection is to understand
the interplay between the parameters involved (elasticity coefficients and the
properties of the force field).
The coordinates of the points are represented by a vector un, and an extreme
simplification of the elastic model is represented by a diagonal with an upper
and a lower diagonal matrix definite positive A−1. The function t is defined for
all x ∈ IR2 with α = .2 by:

t(x) = −α
(
‖x‖ − 1

) x

‖x‖ . (34)

Please note that with the notations introduced in the previous sections, since
u0 = 0, we can add div(σ(uk)) to the first equation of algorithm 15 and by
taking β = 0, the variational formulation 17 of algorithm 15 is expressed in an
equivalent way by:

un+1 = un + L−1(t(I + un))

So the simplified version for the toy 2D problem reads:

un+1 = un + A−1t(I + un).

The three following figures depict the evolution of the springs, the balls with red
lines represent the initial configuration of springs and points. The first picture is
the configuration after 2 iterations where green squares are the points and blue
lines the springs. The second picture is the configuration after 30 iterations and
the third one represents the configuration after 3 iterations for a doubled value
of the elasticity constants. Please note that the greater the elasticity constants
are, the faster the convergence is. Nevertheless, if the elasticity constants are
too large no deformations are possible under a reasonable force field.

4 Discussion and conclusions

We end this article with some test cases. The first one consists of transforming
a ball into a cube. The space H is approximated by a tetrahedral finite element
method of order one, and the parameter τ is taken to be zero. For the numer-
ical example presented here, we have used 2237 tetrahedra and 519 nodes. In
Figure 2.1 (a) we have a section of the force field t, the initial template Ω0 is a
sphere and is depicted in (b). The convergence for algorithm 15 is reached after
10 iterations and Ω̃, the mesh of the segmented image, is presented in Figure 2
on the right, and on the left the trace of the segmented image is presented. In
what follows, we consider the heart MRI segmentation described in the intro-
duction of this article. In Figure 5 on the left and on the right we respectively

15
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Figure 4: (a): 4 iter, (b): 30 iter , (c): 3 iter with a doubled value of the
elasticity constants
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display the rigid registration and the segmentation with algorithm 15 of the
medical data of the heart of a patient at the end of diastole (see [14] for the
data).

Figure 5: Left: rigid registration, right: segmentation with algorithm 15

As we can see in Figure 5, algorithm 15 requires the rigid registration not to be
too far from the object we want to detect. When the rigid registration is not so
close to the object to be detected, algorithm proposed in the previous sections
does not converge towards the correct object. To overcome this difficulty, we
propose an extension of the algorithm 15 to the large displacements case. The
idea consists of moving the reference configuration at each iteration in process
15. We use the notation introduced in the previous sections. Let τ and β be
two positive parameters. We take τ very small, and Ωk will be the sequence
of deformed domains. We consider the following algorithm : for ûk given such
that div(σ(ûk)) = 0, find ûk+1 verifying :

− div(σ(ûk+1)) = 0 in Ωk; (35a)
σ(ûk+1) · n + β(ûk+1 − ûk) = tτ (I + ûk) + σ(ûk) · n on ∂Ωk, (35b)
Ωk+1 = (I + ûk)Ωk. (35c)

In what follows, we explain how to extend ûk in domain Ωk+1 (ûk is only defined
in Ωk). So, we assume that the sequence

(
Ωk

)
k∈IN

remains in a bounded domain
O of R3

For ûk+1, solution to the problem (35), we compute ŭk+1 verifying

− div(σ(ŭk+1)) = 0 in O \ Ωk; (36a)
ŭk+1 = ûk+1 on ∂Ωk; (36b)
ŭk+1 = 0 on ∂O. (36c)

And we set

uk+1 =
{

ûk+1 in Ωk;
ŭk+1 in O \ Ωk.
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Figure 6: a trace of a heart segmentation without constraint.

In Figure 7 the results obtained with algorithm 35-36 are depicted when the
registration is not close to the object to be detected.
We have proved that a linear 3D elastic segmentation model on vector fields is
mathematically well posed and we have proposed a simple algorithm proved to
be convergent for computing the solutions. The formulation of the problem as a
constraint problem has demonstrated a necessity when working with synthetic
images. The algorithm proposed is simple and converges with few iterations and
ensures reaching the zero level of the external energy with an arbitrarily large
precision corresponding to an arbitrarily small parameter τ in the definition of
tτ . The algorithm proposed has been used for segmentation in cardiac MRI
and has been showed to be efficient on patient data. If the constraint is not
tacken into account for segmentation in cardiac MRI the result suffers some
discrepancy (see Figure 6). It is worth mentioning that in numerical simulations
the parameter τ is taken to be zero, because it does not significantly change
the results. In fact, a nonnegative τ is required for the derivative of t to be
negative definite which is a theoretical argument used in theorem 2. A careful
analysis of the spectral properties of the derivative Dt in the 2D toy problem
(where τ = 0), shows that the operator Dt has a zero eigenvalue, but the
sequence of displacement vectors always has a non-zero component belonging
to the orthogonal eigenspace where the eigenvalues are negative. A similar
study for the force field t issued from GVF technique is beyond the scope of
this article.
The next step for improving the segmentation process is to eliminate the hy-
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(a)

(b)

(c)

Figure 7: Left column: registration, right column: segmentation with algorithm
35-36. (a) slices orthogonal to Z axis, (b)-(c) slices orthogonal to X axis and Y
axis

(a) (b)

Figure 8: (a): registration mesh, (b): segmentation mesh
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pothesis of small displacements. This means in particular that we do not require
Ω0 to be in a neighborhood of Ω̃, while the image is still recoverable. To do this
we propose using non-linear elastic models (see [17]).
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Appendix A

Proof. The spectral radius of T can be characterized with the following limit

ρ(T ) = lim
n→+∞

‖Tn‖
1
n

B . (37)

Let N(ε) be such that

‖TN(ε)+1‖
1

N(ε)+1

B ≤ ρ(T ) + ε. (38)

We introduce the norm |‖·‖| defined by

|‖x‖| =
N(ε)∑

j=0

1(
ρ(T ) + ε

)j
‖T jx‖B .

An easy calculation leads to

|‖T‖|L(B) = supx 6=0

(
PN(ε)

j=0
‖T j+1x‖B(

ρ(T )+ε

)j

PN(ε)
j=0

‖T jx‖B(
ρ(T )+ε

)j

)

= (ρ(T ) + ε) supx6=0

(
PN(ε)

j=0
‖T j+1x‖B(
ρ(T )+ε

)j+1

PN(ε)
j=0

‖T jx‖B(
ρ(T )+ε

)j

)
.

Hence we deduce

|‖T‖|L(B) = sup
x 6=0

( |‖x‖| − ‖x‖B + ‖T N(ε)+1x‖B

(ρ(T )+ε
)N(ε)+1

|‖x‖|
)
.

Since ‖TN(ε)+1x‖B ≤ |‖TN(ε+1)‖|L(B)‖x‖B , inequality (38) yields the desired
result.

Remark 3. This result is still valid for a compact operator in an infinite dimen-
sional Banach space.
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Appendix B

Let γ : H1(Ω0) → H1/2(∂Ω0) be the trace application. The space H1/2(∂Ω0)
is equipped with the usual norm (see [12])

‖ϕ‖1/2,∂Ω0 = inf
Φ ∈ H1(Ω0)
γ(Φ) = ϕ

‖∇Φ‖L2(Ω0), ∀ϕ ∈ H1/2(∂Ω0). (39)

Moreover, the trace operator has a right continuous inverse:

∃cd > 0, ∀Φ ∈ IH‖Φ‖H1(Ω0) ≤ cd‖γ(Φ)‖1/2,∂Ω0 . (40)

Now let us introduce the following scalar product

∀ϕ,ψ ∈ IH1/2(∂Ω0), (ϕ, ψ)1/2,∂Ω0 =
∫

Ω0

3∑

i=1

∇Φi∇Ψi dx (41)

where Φ,Ψ are solutions to
{ −∆Φi = 0 in Ω0,

γ(Φi) = ϕi on ∂Ω0, .

{ −∆Ψi = 0 in Ω0,
γ(Ψi) = ψi on ∂Ω0, .

1 ≤ i ≤ 3. (42)

Please note that the norm induced by the scalar product verifies

(ϕ, ϕ)1/2,∂Ω0 = ‖ϕ‖21/2,∂Ω0

since the optimality conditions for the minimization problem in the definition
the norm (39) read:

{ ∫
Ω0

∑3
i=1∇Φi∇θi dx, = 0∀θi ∈ H1

0 (Ω0)
γ(Φi) = ϕi on ∂Ω0,

1 ≤ i ≤ 3. (43)

For any small positive parameter τ , we can define the penalized external force
field in the same way as in the finite dimensional case in subsection 2.2, by
tτ (I + u) = t(I + u)− τ(u, ·)1/2,∂Ω0 .

If Dt(I + u) is semi-negative definite, then the operator

DKτ (u)Φ = Dtτ (I + u)γ(Φ)

is surjective from IH onto IH1/2.
For all η ∈ IH1/2 we have to prove the existence of Φ ∈ IH such that Dtτ (I +
u)γ(Φ) = η. Let J be the Riez isomorphism which allows us to represent an
element q ∈ (IH1/2)′ by Jq ∈ IH1/2,

which is such that < ·, q >IH1/2,(IH1/2)′= (·, Jq)1/2,∂Ω0 .

We introduce the bilinear form

b(ϕ, q) =< Dt(I+u)ϕ, q)IH1/2,(IH1/2)′−τ(ϕ, Jq)1/2,∂Ω0 , ∀ϕ ∈ IH1/2, ∀q ∈ (IH1/2)′.
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The bilinear form a(·, ·) is defined by (16) and we consider the problem: find
(Φ, λ) ∈ IH× (IH1/2)′ verifying ∀θ ∈ IH, ∀q ∈ (IH1/2)′

{
a(Φ, θ) + b(γ(θ), λ) = 0
b(γ(Φ), q) =< η, q >

H
1
2 ,H−1/2

. (44)

Since a(·, ·) is IH-coercive (due to the Korn inequality), it is sufficient to prove
the following Brezzi-Babuska condition for the form b(·, ·) (see [5])

∃ c > 0, inf
Φ ∈ IH
‖ϕ‖IH1/2 = 1

sup
q ∈ (IH1/2)′

‖q‖(IH1/2)′ = 1

b(γ(Φ), q) ≥ c. (45)

The derivative Dt(I + u) is semi-negative definite, hence b(γ(Φ),−γ(Φ)) ≥
τ‖γ(Φ)‖2

IH1/2 since Jϕ = ϕ which proves (45) with c = τ
cd

.

Remark 4. In the finite dimensional case, we can deal with the L2(∂(Ω0)) scalar
product instead of the IH1/2 duality product since all norms are equivalent.

Notations

Ker ... Kernel of a linear operator
E/F ... quotient space
D ... Derivative
Di ... Derivative with respect to the ith variable
∇ ... Gradient
∆ ... Laplacian

div(v) =
∑3

i=1 Divi ... Divergence
εi,j = 1

2 (Divj + Djvi 1 ≤ i, j ≤ 3 ... Strain tensor
σ(v) = λTr(ε(v))II + 2µε(v) ... Stress tensor

σ(v) : ε(v) =
∑3

i,j=1 σij(v)εij(v) ... Tensor product

Values of parameters for Heart Segmentation
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E ... Young modulus
E=200 ... for the right ventricle
E=160 ... for the left ventricle
ν = 0.1 ... Poisson coefficient

λ = Eν
(1+ν)(1−2ν) ... Lame coefficient

µ = E
(1+ν)(2) ... Lame coefficient

µGV F=0.15 ... Inverse-diffusion coefficient in GVF
iter=150 ... Number of iterations

100 ... Weighting parameter for force field
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l’optimisation, Masson Paris (1982).

[7] P.G. Ciarlet, Mathematical Elasticity II, theory of plates, Studies in
Mathematics and its Applications 27, Elsevier Amsterdam (1997).
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