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Abstract— This paper presents a parametric approach for
tracking piecewise planar scenes with central catadioptric cam-
eras (including perspective cameras). We extend the standard
notion of homography to this wider range of devices through the
unified projection model on the sphere. We avoid unwarping
the image to a perspective view and take into account the
non-uniform pixel resolution specific to non-perspective central
catadioptric sensors. The homography is parametrised by the
Lie algebra of the special linear group SL(3) to ensure that only
eight free parameters are estimated. With this model, we use
an efficient second-order minimisation technique leading to a
fast tracking algorithm with a complexity similar to a first-order
approach. The developed algorithm was tested on the estimation
of the displacement of a mobile robot in a real application and
proved to be very precise.

I. INTRODUCTION

The wide field of view offered by panoramic cameras make
them ideal candidates in tasks such as motion estimation,
autonomous navigation and localization [1]. Catadioptric cam-
eras are the omnidirectional vision systems that combine a
single mirror and a camera. Baker and Nayar [2] derive the
complete class of catadioptric sensors comprised of a unique
mirror and with a single effective viewpoint, these are referred
to as central catadioptric sensors. Geyer [3] and Barreto [4]
developed a unified projection model for these sensors using
properties of the projection of points on the sphere. It has since
been used extensively to develop generic algorithms. Recently
a lot of research has been done in ego-motion estimation [5],
[6] and visual servoing [7], [8]. Visual tracking, which is a
fundamental step for various computer vision applications,
has seen very few articles for catadioptric systems, [7] being
one of the rare examples. This approach however was only
applied to track straight lines using a contour-to-point tracker
to avoid the problem of quadric-based catadioptric line fitting.
The non-linear projection model of the sensor means that
even simple motions such as translations modify the shape
to track significantly. Unwarping the image to a perspective
view introduces discontinuities in the Jacobian (at least two
planes are needed to represent the 360o field of view), is
inefficient and means the non-uniform pixel resolution of
the sensor is not taken into account. This leads naturally
to the use of parametric models [9], [10], [11], [12] such
as the homography-based approach presented in this article.
Previous related work for perspective cameras were done in
[13] which extends the work proposed by Hager [10] using

homographies and in [17]. Homographies have also been used
recently for visual servoing with central catadioptric cameras
[8] and share with this article the notion of homographies for
points belonging to the sphere of the unified projection model.

The tracking approach presented here minimizes a dis-
similarity measure and more specifically a sum-of-squared-
differences (SSD) between a reference template and the current
image warped through a homography. This leads to a non-
linear optimization problem that can be solved for small
displacements (the type of movement that would be expected
in a scene at video rate). Compared to methods such as [15]
we do not linearize the state estimate but obtain the optimal
transformation at each new incoming image. This makes the
approach less sensitive to strong camera motion. The rotation
and the translation of the camera can then be extracted from
the obtained optimal homography [16]. The main contribution
of this article concerns the extension of homography-based
tracking to central catadioptric devices. We will see that
through the projection model we take into account the nature
of the sensor (non-uniform resolution and distortion). We adapt
the efficient second-order minimization algorithm proposed in
[14], [17] in order to improve the convergence domain and
speed over a standard first-order minimization algorithm [9],
[10], [11], [12]. The algorithm is evaluated on the motion
estimation of a mobile robot and the results are compared
to the precise odometry considered as ground truth.

II. LIE-GROUP HOMOGRAPHY PARAMETERIZATION

A. The SL(3) Lie Group

Let R ∈ SO(3) be the rotation of the camera and t ∈ R
3 its

translation. R can be written as R = exp([r]×) where r = uθ
(u and θ being the axis and the angle of rotation respectively).
The standard planar homography matrix H is defined up to a
scale factor:

H ∼ R + tn∗>
d

where n∗
d = n∗/d∗ is the ratio between the normal vector to

the plane n∗ and the distance d∗ of the plane to the origin
of the reference frame. In order to fix the scale, we choose
det(H) = 1, i.e. H ∈ SL(3) (the Special Linear group of
dimension 3). This choice is well justified since det(H) = 0
happens only if the observed plane passes through the optical
center of the camera (in this singular case the plane is not
visible any more). Let w : SL(3)×R2 → R2 be an action of



SL(3) on R
2 on the left (i.e. w<H><p> ∈ R

2). The map
w<H> : R2 → R2 defines a coordinate transformation (a
warping) such that q = w<H><p>. Let I be the identity
element of the transformation group :

• w<I><p> is the identity map. i.e. ∀p ∈ R2:

w<I><p> = p (1)

• the composition of two actions corresponds to the action
of the composition, i.e ∀p ∈ R2, ∀H1, H2 ∈ SL(3):

w<H1><w<H2><p>> = w<H1H2><p> (2)

B. The Lie algebra of SL(3) and the exponential map

Let Ai, with i ∈ {1, 2, ..., 8}, be a basis of the Lie algebra
sl(3) (i.e. the dimension of sl(3) is 8). Any matrix A ∈ sl(3)
can be written as a linear combination of the matrices Ai:

A(x) =

8∑

i=1

xiAi (3)

where x = (x1, x2, ..., x8) is a (8×1) vector and xi is the
i-th element of the base field. The Ai matrices are defined as:

A1 =




001
000
000


,A3 =




010
000
000


,A5 =




1 0 0
0−10
0 0 0


,A7 =




000
000
100




A2 =




000
001
000


,A4 =




000
100
000


,A6 =




0 0 0
0−10
0 0 1


,A8 =




000
000
010




(4)

The exponential map links the Lie algebra to the Lie Group:
exp : sl(3) → SL(3). There exist an open cube v about 0 in
sl(3) and an open neighborhood U of the identity matrix I

in SL(3) such that exp : v → U is smooth and one-to-one
onto, with a smooth inverse. The neighborhood U of I is very
large. Consequently, the homography matrix H can be locally
parameterized as:

H(x) = exp

(
8∑

i=1

xiAi

)

III. GENERALIZED HOMOGRAPHY-BASED TRACKING

A. Unified projection model

For sake of completeness, we present here a slightly modi-
fied version of the projection model of Geyer [3] and Barreto
[4] (Fig. 1). The projection of 3D points can be done in the
following steps (the values for ξ and γ are detailed Table I):

1) world points in the mirror frame are projected onto the
unit sphere, (X )Fm

→ (X s)Fm
= X

‖X‖ = (Xs, Ys, Zs)
2) the points are then changed to a new reference frame

centered in Cp = (0, 0, ξ), (X s)Fm
→(X s)Fp

=
(Xs, Ys, Zs − ξ)

3) we then project the point onto the normalized plane,
m = ( Xs

Zs−ξ
, Ys

Zs−ξ
, 1) = }(X s)

4) the final projection involves a generalized camera pro-
jection matrix K (with γ the generalized focal length,
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Fig. 1. Unified image formation

(u0, v0) the principal point, s the skew and r the aspect
ratio)

p = Km =




γ γs u0

0 γr v0

0 0 1


m = k(m)

The function } is bijective and

}
−1(m) =




−ξ−
√

1+(1−ξ2)(x2+y2)

x2+y2+1 x
−ξ−
√

1+(1−ξ2)(x2+y2)

x2+y2+1 y
−ξ−
√

1+(1−ξ2)(x2+y2)

x2+y2+1 + ξ


 (5)

We will call lifting the calculation of the point X s corre-
sponding to a given point m (or p according to the context).
We may note that in the perspective case, there is no mirror
and only points with Z > 0 are accepted (we thus fall back
to the standard projection model with an extra normalization
to the sphere).

TABLE I
UNIFIED MODEL PARAMETERS

ξ γ

Parabola 1 −2pf

Hyperbola df
√

d2+4p2

−2pf
√

d2+4p2

Ellipse df
√

d2+4p2

2pf
√

d2+4p2

Planar 0 -f
Perspective 0 f

d: distance between focal points
4p: latus rectum

B. Minimization problem

Let I∗ be the reference image. We will call reference tem-
plate, a region of size q (rows × columns) of I∗ corresponding
to the projection of a planar region of the scene.

Two planar points are related by a homography H by
X = HX

∗ so the projection of points, belonging to a planar
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Fig. 2. Homography between points on the sphere

region of the scene, on the sphere are related by the planar
homography H: ρX s = ρ∗HX

∗
s .

Consider the following scheme, illustrated by figure 2 (n
corresponds to the point normalization):

p∗ k−1

−→ m∗ }
−1

−→ X
∗
s

↓H

p
k←− m

}←− X s
n←− X

(6)

Let Π = k◦} be the transformation between the sphere and
the image plane: p = Π(X s). To track the template in the
current image I is to find the transformation H ∈ SL(3) that
warps the lifting of that region to the lifting of the reference
template of I∗, i.e. find H such that:

∀i : I
(
Π
(
n(w<H><X

i∗
s >)

))
= I∗(pi)

In other words, knowing an approximation Ĥ of the trans-
formation H, the problem is to find the incremental transfor-
mation H(x) that minimizes the sum of squared differences
(SSD) over all the pixels:
{

F (x) = 1
2

∑q

i=1 ‖fi‖2
fi = I

(
Π
(
n(w<ĤH(x)><X

i∗
s >)

))
− I∗(pi)

(7)

C. Efficient second-order minimization

Although the optimization problem can be solved using
first-order methods [9], [10], [11], [12], we have chosen to
use an efficient second-order minimization algorithm [14]
[17]. Indeed, with little extra computation, we can make the
most of the local quadratic convergence of the second-order
optimization.

Consider the general minimization problem:

F (x) =
1

2

n∑

i=1

(fi(x))2 =
1

2
‖f(x)‖2 (8)

The necessary condition for finding a local minimum of the
cost function is the existence of a stationary point x0 with:

[∇xF ]x=x0
= 0 (9)

where ∇x is the gradient operator with respect to the parame-
ter x. When equation (9) is non-linear, a closed-form solution
is generally difficult to obtain.

A second-order Taylor series of f about x = 0 gives:

f(x) = f(0) + J(0) x +
1

2
M(0,x)x +R(‖x‖3) (10)

where J(0) = [∇xf ]x=0, M(z,x) = [∇xJ]x=zx and
R(‖x‖3) is the third-order reminder. Similarly, we can write
the Taylor series of the Jacobian J about x = 0:

J(x) = J(0) + M(0,x) +R(‖x‖2) (11)

Plugging (11) in (10) leads to:

f(x) = f(0) +
1

2
(J(0) + J(x)) x +R(‖x‖3) (12)

Using equation (12), we obtain a second-order approxima-
tion of the cost function:

F (x) =
1

2

∥∥∥∥f(0) +
J(0) + J(x)

2
x

∥∥∥∥
2

+R(‖x‖3) (13)

Setting f̂ (x) = f(0) + 1
2 (J(0) + J(x)) x, the cost function

is approximated by:

F (x) ≈ 1

2
‖f̂(x)‖2

The derivative of the cost function is approximated by:

∇xF ≈ (∇xf̂ )
>f̂

and using equation (9), we find the approximated local mini-
mizer by solving the equation:

[∇xf̂ ]
>
x=x0

(
f(0) +

J(0) + J(x0)

2
x0

)
= 0 (14)

1) Application to the tracking problem: The Jacobians J(0)
and J(x0), computed in the Appendix, can be written as the
product of five Jacobians:

J(0) = JIJΠJnJwJH(0)

J(x0) = JI∗JΠJnJwJH∗(x0)

Despite the Jacobian J(x0) generally depending on the
unknown x0, thanks to the left-invariance property of the
vector fields on SL(3), the following identity can be proved:

JH∗(x0)x0 = JH(0)x0

Thus, in the equation (14), we can use JH(0)x0 instead
of JH∗ (x0)x0 where JH (0) is a constant Jacobian matrix
detailed in the Appendix. The update x̂ of the second-order
minimization algorithm can be computed as follows:

x̂ = −
((

JI + JI∗

2

)
JΠJnJwJH(0)

)+

f(0)

The computational complexity is almost the same as for
first-order algorithms especially as the reference Jacobian JI∗

only needs to be calculated once.



Obtaining JI∗ and JI , that are the Jacobians taken in
the images, is a remarkable property. It indicates that we
can take into account the non-linear properties of the sensor
simply through the jacobian of the projection function JΠ (this
appears in the derivation of the jacobian in the Appendix).

IV. EXPERIMENTAL RESULTS

The algorithm was tested on real data obtained from a mo-
bile robot. The central catadioptric camera was comprised of
a S80 parabolic mirror from RemoteReality with a telecentric
lens and perspective camera of resolution 1024×7681.

The sequence was done over 120 images and a distance of
about 2 m. Four reference templates were tracked (Fig. 3), they
are numbered in counterclockwise order from 1 to 4 starting
top left. Templates number 2 and number 3 were considered
on the same plane (i.e. only one homography was estimated).
For each homography, a translation t up to a scale factor and
a rotation R can be extracted (the ambiguity was solved by
using several frames). The scale was then fixed by measuring
the distance of the camera to one of the planes. In Fig. 10
and Fig. 11 are shown the median of the estimated motions
in dotted lines and the odometry in full lines.

The camera field of view was obstructed in the case of the
template number 1 after the image 100 as we can see in Fig. 7,
Fig. 8 and Fig. 9. The algorithm which uses a straight forward
minimization was not able to find the correct homography, this
does not appear in the motion estimation as a median is used.

Template number 4 was correctly tracked as we can see in
Fig. 9, the complex motion depicted in the images (Fig. 4-8)
are only due to the mirror geometry.

The estimated translation gave a maximum error of
[2.7, 3.6, 7.3] cm on the [x,y,z] axis and an mean absolute
error of [1, 1.3, 1.4] cm. The maximal error for the rota-
tion was [1.6, 2.2, 1.0] deg with a mean absolute error of
[0.8, 0.6, 0.3] deg. (The estimated angle obtained from the
normals between templates 1 and 2 was of 87 deg and between
templates 1 and 3 of 91 deg.)

V. CONCLUSION

We have presented in this article a homography-based
approach to tracking for central catadioptric sensors. It has
proved a precise method for motion estimation.

Future work will concentrate on making the present version
robust to partial occlusion or illumination variation [10]. In
order to improve motion estimation, euclidean constraints
could also be integrated to link the motion of the different
templates tracked.

APPENDIX: JACOBIANS COMPUTATION

For clarity, we will no longer indicate the index i for fi.

1the camera was calibrated with the open-source toolbox available on
http://www-sop.inria.fr/icare/personnel/Christopher.
Mei/Toolbox.html
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Fig. 10. Estimation of the translation of the robot
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Fig. 11. Estimation of the rotation of the robot

Current Jacobian

We will write the current Jacobian as the product of five
different Jacobians:

J(0)=
[
∇x

(
I
(
Π
(
n(w<ĤH(x)><X

∗
s>)

))
− I∗(p)

)]
x=0

=JI JΠ Jn Jw JH(0)

Noting that that :

w<ĤH(x)><X
∗
s> = w<Ĥ><w<H(x)><X

∗
s>>

= w<Ĥ><Π−1(q)>

with q = Π(n(w<H(x)><X
∗
s>)), the first Jacobian J∗

I is:

J∗
I =

[
∇q

(
I
(
Π
(
n(w<Ĥ><Π−1(q)>)

)))]
q=t

with : t = Π(n(w<H(0)><X
∗
s>))

Π(n(w<H(0)><X
∗
s>)) = Π(n(w<I><X

∗
s>)) = p so

JI is the jacobian of the current image.
With Π = k ◦ }:

JΠ = Jk J} =
1

Zs − ξ

[
γ γs − f1(Xs+sYs)

Zs−ξ

0 γr − f2Ys

Zs−ξ

]



Fig. 3. Reference image Fig. 4. Image 25

Fig. 5. Image 50 Fig. 6. Image 75

Fig. 7. Image 100 Fig. 8. Image 120



Fig. 9. Reprojection of the templates for iterations 0,25,50,75,100,120 in the reference image using the estimated homography

Jw = [∇H w<.><X
∗
s>]H=H(0)=I =




X
∗>
s 0 0

0 X
∗>
s 0

0 0 X
∗>
s




3×9

JH(0) = [∇x H]x=0 = [flat(A1)
> flat(A2)

> · · ·flat(A8)
>]>9×8

with : flat(Mn×m) = [m11 m12 · · · m1m m21 m22 · · ·mnm]>

Reference Jacobian

The reference Jacobian J(x0) can be written as:

J(x0)=
[
∇x

(
I
(
Π
(
n(w<ĤH(x)><X

∗
s>)

))
− I∗(p)

)]
x=x0

=JI∗ JΠ JnJw JH∗(x0)

Noting that :

w<ĤH(x)><X
∗
s>=w<H><w<H

−1
ĤH(x)><X

∗
s>>

=w<H><Π−1(q)>

with q = Π(n(w<H
−1

ĤH(x)><X
∗
s>)), the Jacobian JI

is:

JI =
[
∇q

(
I
(
Π
(
n(w<H><Π−1(q)>)

)))]
q=t

with : t = Π(n(w<H
−1

ĤH(x0)><X
∗
s>))

Π(n(w<H
−1

ĤH(x0)><X
∗
s>)) = Π(n(w<I><X

∗
s>)) =

p so J∗
I is the jacobian of the reference image.

JH∗(x0) =
[
∇xH

−1
ĤH

]
x=x0

Thanks to the Lie group parameterization, it can also be
shown that the product JH∗(x0)x0 = JH(0)x0.
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