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Abstract— This paper presents several methods for estimating
the relative position of a central catadioptric camera (including
perspective cameras) and a laser range finder in order to
obtain depth information in the panoramic image. The problem
is analysed from a robotic perspective and according to the
available information (visible or invisible laser beam, partial
calibration, drift of laser data, ...) The feasibility of the calibration
is also discussed. The feature extraction process and real data
are presented.

I. INTRODUCTION

The SLAM (Simultaneous Localization and Mapping) prob-
lem has been a major research topic in the robotics community
since 1980’s and has closely been linked with the development
of sensors. Sonars and odometers are often considered as
the first sensors to have led to convincing results as in the
same time the theoretical fundamentals were being set [8].
Since then, laser range finders have replaced sonars when
possible because of the higher precision. Techniques were also
devised to make the most of these type of data (polygonal
approximation, scan-matching, ...). The SLAM problem has
been efficiently solved using laser in some indoor [9] and
outdoor applications [7].

However some important problems need to be solved and
are often directly linked to the sensors used. Localization,
for example, which appears in problems like loop closing
or ”map choosing” are difficult with only scan data, and
perspective cameras give unconvincing results. Lasers cannot
help in evaluating the translation of a robot moving in a
straight line in a corridor. Mapping in dynamic environments
is also hard with only laser data (though not impossible [6]).

Panoramic sensors with wide fields of view [11] are be-
coming increasingly used. They offer the advantage of being
efficient in solving problems like localization and improve
motion estimation and tracking. The combination between
panoramic sensors and lasers make it possible to use wide
field of view vision based SLAM with the efficient depth
information from the laser.

Central catadioptric sensors are a specific class of omni-
directional sensors that preserve a single effective viewpoint.
This is a desirable property [11] and only certain camera and
convex mirror associations make it possible [1]. Barreto [2]
and Geyer [5] have proposed unified theories for the image
formation of this class of sensors.

Calibration techniques for omnidirectional sensors have
been at the center of a lot of research recently and some

efficient methods now exist [12]. The relationship between the
2D laser data and external properties (temperature, pressure)
can be found empirically and manufacturers often provide the
measurements.

This paper addresses the problem of finding the relative pose
between a laser range finder and an omnidirectional sensor.
The authors are not aware of any other paper analyzing this
problem thoroughly, Biber and al. [3] give just an outline of a
calibration method. The closest related work are that of Zhang
and Pless [13] [14] for perspective cameras. We assume that
the central catadioptric camera and the laser range finder have
been previously calibrated using existing methods.

The projection model for a central catadioptric sensor is
described in the first section. Different minimization problems
that arise in robotics are then discussed, when the laser beam
is visible (section III) and invisible (section IV) in the image
plane. Section V is then dedicated to the feature extraction
process and the difficulties that can arise. In the final section,
the minimization problems are applied to real data and the
results are analyzed.

II. UNIFIED CENTRAL CATADIOPTRIC MODEL

The class of single view point central catadioptric cameras
is limited to a perspective camera combined with hyperbolic,
elliptical or planar mirror or an orthographic camera with a
parabolic mirror [1]. The projection in the planar mirror case
is the same as the well-known perspective camera projection.
Geyer [5] and Barreto [2] developed unified projection models
for these cameras that separate the non linearities.

For sake of completeness we present a slightly modified
version of their model. (see Fig. 1). The projection of 3D
points can be done in the following steps (the parameters are
in Table I) :

1) world points in the mirror frame are projected onto the
unit sphere, (X )Fm

−→ (X s)Fm
= X

‖X‖ = s(X ) =
(Xs, Ys, Zs)

2) the points are then changed to a new reference frame
centered in Cp = (0, 0, ξ), (X s)Fm

−→(X s)Fp
=

(Xs, Ys, Zs − ξ)
3) we then project the point onto the normalized plane,

m = ( Xs

Zs−ξ , Ys

Zs−ξ , 1) = �(X s)
4) the final projection involves a generalized camera pro-

jection matrix K,



p = Km =


 fη fηs u0

0 fηr v0

0 0 1


m = k(m)

TABLE I

UNIFIED MODEL PARAMETERS

ξ η
Parabola 1 −2p

Hyperbola d√
d2+4p2

−2p√
d2+4p2

Ellipse d√
d2+4p2

2p√
d2+4p2

Planar 0 -1
d : distance between focal points

4p : latus rectum
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Fig. 1. Unified image formation

The function � is bijective and

�
−1(m) =




−ξ−
√

1+(1−ξ2)(x2+y2)

x2+y2+1 x
−ξ−

√
1+(1−ξ2)(x2+y2)

x2+y2+1 y
−ξ−

√
1+(1−ξ2)(x2+y2)

x2+y2+1 + ξ


 (1)

We will call lifting the calculation of the point X s corre-
sponding to a given point m (or p according to the context).

III. VISIBLE LASER

Two different minimization problems will be analyzed for
the case where the laser spot is visible in the image. The first
considers the association between points and their images. This
situation can only be obtained with laser sensors where the pan
angle can be explicitly controlled. For an auto-calibration, it
also imposes a static pose and cannot be done when the robot
is moving.

The second part analysis the association between a laser
trace (lines) and its image. This auto-calibration method can
be used during the robot’s displacement (even though the laser
rotation will probably need to be slowed down for the beam
to be visible). The disadvantage of this method comes from
the difficulty of associating the data as we will see in section
V.

The jacobians are specified so that a non-linear minimiza-
tion method such as Levenberg-Marquardt can be used.

A. Visible laser beam

Let us assume we have n laser points (l1, l2, . . . , ln)F l
∈

(R2)n in the laser frame and their projections
(p1,p2, . . . ,pn)Fm

∈ (R2)n (see Fig. 2) in the catadioptric
image plane (we will discuss in Section V ways of obtaining
these points).
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Fig. 2. Point to point association

1) Calibration equations: Calibrating the sensor consists
in finding the rotation R and translation T between the laser
frame (taken for example such that the laser plane corresponds
to z = 0) and the mirror frame that minimizes the reprojection
error : {

minR,T
1
2

∑n
i=1 ‖fi(R,T, li,pi)‖2

fi(R,T, li,pi) = k ◦ �(Rli + T) − pi
(2)

It is important to note that we are here minimizing the
error in the image using a euclidean metric. This metric is
not theoretically a good choice because the resolution of the
sensor is not uniform. A better metric is the Riemann metric
associated to the sphere as it takes into account the spatial
distribution. On the unit sphere, the distance between two
points A and B is simply arccos(A�B). This leads to the
new minimization problem :



minR,T
1
2

∑n
i=1 ‖gi(R,T, li,pi)‖2

gi(R,T, li,pi) = arccos(A�B)
A = s(Rli + T)
B = �

−1 ◦ k−1(pi)

(3)

2) Jacobian: Representing rotations by quaternions simpli-
fies the problem of guaranteeing that the parameters represent
a rotation through a simple normalization (see Annexe for
more detail). Rli can be rewritten Rli(q) with q a unit



quaternion. With n the normalization of the quaternion, we
obtain the following jacobians :

(∇q,Tf)3×7 = ∇k∇h [(∇Rli∇n)3×4 I3×3] (4)

(∇q,Tg)3×7 = ∇ arccosB�∇s [(∇Rli∇n)3×4 I3×3] (5)

3) Solvability: There are 6 unknowns and 2×n equations so
at least 3 point associations are needed to solve the calibration
problem.

Are 3 points sufficient ? The answer is yes if the camera cen-
ter is in the laser plane but an extra point is needed otherwise.
This problem is in fact the more general PnP (Perspective from
n Points) problem [4]. Four point associations are sufficient to
calibrate a central catadioptric sensor (including perspective
cameras) and a laser range finder.

B. Visible laser trace

We will now analyze a slightly different problem. Instead
of point associations, we have the association between a laser
trace and its image (see Fig. 3).
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Fig. 3. Line to plane association

1) Calibration equations: n lines representing the image
trace (L1,L2, . . . ,Ln)F l

are associated to n conics in the
image plane which are the images of the intersection of n
planes that go through the mirror center Cm. These planes have
normals (N1,N2, . . . ,Nn)Fm ∈ (R3)n (we will discuss in
Section V ways of extracting these lines and how to associate
the data).

A line Li can be described by its direction vector Di ∈
R

3 and a point Pi ∈ R
3. If we change reference frame

{(Li)F l
: (Di,P i)} → {(Li)Fm

: (RDi,RP i + T)}.
This leads to the constraints :{

N�
i RDi = 0

N�
i (RPi + T) = 0

Thus we have the following decoupled minimization problem :


minR
1
2

∑n
i=1 ‖ti(R,Ni,Di)‖2

ti(R,Ni,Di) = N�
i RDi

NT = −P
(6)

with N = [N1 . . . Nn]� and P = [RP1 . . . RPn]�

The second linear problem can easily be solved by using
the pseudo-inverse : T = −(N�N)−1N�P.

2) Jacobian for the rotation extraction: Yet again we can
parametrize RDi by a quaternion, we note the matrix RDi

(q).

(∇qti)1×4 = N�
i ∇RDi

∇n

IV. INVISIBLE LASER

The more complex problem of calibrating the sensor when
the laser beam is not observable in the image will now be
discussed.

A. Calibration from planes

The work from Zhang and Pless [14] can be adapted to
central catadioptric sensors. It is assumed that a calibration
grid is seen in the image and appears in the laser range scan
(see Fig. 4).
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Fig. 4. Association between a calibration grid and a laser trace

The minimization problem described in section III-A can
be used to solve the pose estimation problem of a grid seen in
the image plane. Thus the equation of the plane πi : Ni, di

can be obtained (di represents the distance from the camera
to the calibration plane).

The constrains are the same as in section III-B except that
the distance from the planes to the camera is no longer 0 :{

N�
i RDi = 0

N�
i (RPi + T) = di

The same approach as before can be used for the minimiza-
tion with P = [RP1 − d1 RP2 − d2 . . . RPn − dn]�.

If instead of using lines, the laser points are used directly
with lij ∈ Li, we obtain :{

minR,T
1
2

∑
i,j ‖wij(Ni,di,R,T)‖2

wij = N�
i (Rlij + T) − di

(7)

with the following jacobian :

(∇q,Twij)1×7 = N�
i [(∇Rlij

∇n)3×4 I3×3]

B. General case

Under the hypothesis that edges in the image correspond to
edges in the laser scan (see Fig. 5) is it possible to generate
enough constraints to calibrate the sensor entirely (ie. estimate
R and T) ?

The minimization problem can be rewritten as the associa-
tion between the 3D points (X 1,X 2, . . . ,X n) and the laser
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Fig. 5. Association between edge features

points (without loss of generality, we can assume that the plane
is in Z = 0). The points X i belong to the planes parametrized
by Ni : N�

i X i = 0




[
R T
0 1

] [ X 1 . . . X n

1 . . . 1

]
=


 l1 . . . ln

0 . . . 0
1 . . . 1




Nt
iX i = 0

(8)
In this case, there are 6 + 3 × n unknowns and 3 × n +

n equations so at least 6 points and corresponding planes
are needed to solve the calibration problem. The condition
rank(N) = 3 must also be satisfied or a translation direction
is unsatisfied. In Fig. 5, the four vertical lines are parallel,
rank(N) = 2 and the translation along these lines is not
constrained.

Are these two conditions sufficient ? The answer is no and
worse than that, however many points and plane associations,
three parameters are always missing. The proof can be found
in the Appendix. The reason comes from the coplanarity of
the li points.

Auto-calibration between a central catadioptric sensor and
a laser range finder is impossible in the general case (without
3D point associations).

To obtain convergence towards the solution, it is necessary
to know the association between three planes containing three
different 3D points that are not in the laser plane and their
position with respect to the laser plane. To obtain these points,
the robot must move from a known value in a direction differ-
ent to the laser plane using for example the equations derived
in [13] which can easily be adapted to the omnidirectional
case. This also means that to obtain the translation value on
the vertical axis, if the laser plane is horizontal, the robot
must move vertically (drone) which is of course impossible
for standard mobile robots.

V. DATA EXTRACTION AND ASSOCIATION

A. Visible laser beam

A method to extract the data in the case of a visible laser
beam is to take a reference image Iref with the laser turned
off. After having given an angular position to the laser a new
image Ic can be taken. The laser point is then simply the

maximum intensity value in the difference image Ic − Iref .
To improve the robustness, the maximum can be looked for in
a window based on an estimate of the laser point reprojection.
The squeletonize morphological operation can also be used to
reduce the signal to a dot in the difference image.

B. Visible laser trace

To obtain a strong signal corresponding to the laser, the
rotation speed needs to be turned down. Several images are
then taken and the difference between a reference image and
a image with the laser turned on is accumulated. To avoid
obtaining a trace several pixels wide, we use a line thinning
algorithm (eg. the squeletonize morphological operation).

The conics corresponding to the image of the laser trace
can then be extracted using the randomized hough transform
[10] (see Fig. 11). Similarly we can extract the lines from the
laser scan (see Fig. 10).

The problem then consists in associating the lines. If there
are n1 omni-lines and n2 laser-lines and it is assumed that
there are p line associations, pCp

n1
Cp

n2
values need to be

checked. This is a computationally expensive task, it is also
made harder by the difficulty of estimating the correctness
of an association. A possible approach is to find the best
association for 4 lines and then to gradually increase the size
of the associated sets.

VI. RESULTS

The calibration of the camera was done using a toolbox
available on Internet 1 and the images were corrected for lens
distortion.

A. Visible laser beam

To validate the extraction process, 10 auto-calibrations were
done. The translation estimation for each calibration is pre-
sented in Fig. 6 and the rotation in Fig. 7, the lines correspond
to the global calibration results. Table I summarizes the
estimation of the parameters.

The method gave a robust estimation of the translation and
the rotation except in the first case (which was removed for the
global parameter estimation). In a real-world auto-calibration
phase, these type of errors could easily be detected. For data
fusion, the most important information is the error in pixels
which was just over a pixel. The standard deviation was quite
high due to outliers.

Fig. 8 shows one of the laser scans. The extracted laser
spots are shown in Fig. 11. The points reprojected after the
rotation and translation estimate are indicated in ’+’ marks.

B. Visible laser trace

The calibration using only the laser trace did not give such
good results. Table III summarizes the results over two images
containing 6 lines each. The results are unconvincing, probably
due to the accumulation error from the line estimates and to the
“loosely” constrained minimization problem. This approach

1http://www-sop.inria.fr/icare/personnel/
Christopher.Mei/Toolbox.html
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TABLE II

PARAMETER ESTIMATION

T σ R (deg) σ Pixel error σ
0.0257
0.0440
−0.4574

0.0011
0.00062
0.0016

2.4902
0.4944
−0.0888

0.0507
0.0827
0.0496

1.367 1.354

proved also to be difficult to put into place in an autonomous
way, as the calibration can only be done in an environment
with enough planes to constrain the system.

TABLE III

PARAMETER ESTIMATION

T Minimization error R (deg) Minimization error
−0.032
0.051
−0.439

0.0037
4.259
−0.300
0.864

0.0012

C. Calibration from planes
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Fig. 12. Estimation of the translation
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The calibration from planes was also evaluated. Equation
7 was used for the minimisation. To extract the signal corre-
sponding to the planes in the image scan, only the points that
contributed to lines when using a randomized hough tranform
were kept.



The evaluation was done on 19 associations between the
visible planes and their trace in the laser scan. The esti-
mation of the rotation and translation improved regularly
with the amount of poses as shown in Fig. 12 and Fig.
13. We obtained T = [−0.0074, 0.0321,−0.471] and R =
[3.147, 0.048,−0.099] which is compatible with the previous
calibrations. Figure 14 shows some of the planes and their
associated laser points in the camera frame after calibration.

This method has the advantage of giving good results
without needing to see the laser beam in the image.

Fig. 14. Planes and associated laser points (camera frame)

APPENDIX

Rotation parametrization with quaternions

Let X = [x y z]� and q = [q0 q1 q2 q3]� :

RX = RX(q) =
[

R1
X(q) R2

X(q) R3
X(q)

]�
with :

R1
X(q) = (q2

0 + q2
1 − q2

2 − q2
3)x+2(−q0q3 + q1q2)y + . . .

2(q0q2 + q1q3)z

R2
X(q) = 2(q0q3 + q1q2)x+(q2

0 − q2
1 + q2

2 − q2
3)y + . . .

2(−q0q1 + q2q3)z

R3
X(q) = 2(−q0q2 + q1q3)x+2(q0q1 + q2q3)y + . . .

(q2
0 − q2

1 − q2
2 + q2

3)z

General calibration

Equation (8) aims at finding the isometry (R,D) that
transforms a n-tuple (X 1, . . . ,X n) into the polygon defined
by (l1, . . . , ln). Are the constraints defined on the X s through
the planes with normals Ns sufficient to define uniquely the
(X 1, . . . ,X n) polygon ? The proof established here uses an
iterative geometric construction. In brackets are indicated the
difference between the number of equations and the number
of unknowns.

With 1 point, we have 1 equation but 3 unknowns (-2).
With 2 points, if rank(N1,N2) = 2, we have 2 equations

from the normals and 1 equation from the distance but 6
unknowns (-3).

With 3 points, if rank(N1,N2,N3) = 3, we have 3
equations from the normals and 3 distances - these equations

are all independent - and 9 unknowns (-3) (see Fig. 15 drawn
in the plane defined by the three points).

With an extra point X 4, if we add three distance constraints
(see Fig. 16) two possibilities occur : either they are sufficient
to define X 4 uniquely which is the case if the solution is
planar, or there are two possible points which are at the
intersection of the three spheres centered at X 1, X 2 and X 3.
A plane defined by X 4 which does not contain the two points
will define uniquely X 4 (-2).

If the solution is not planar, this reasoning can be applied
recursively and for n = 6 with specific Ns, the system will
have a unique solution.
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Fig. 15. Constraints on three
points in a plane
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Fig. 16. Distance constraints
on a fourth point

In the case of the laser data, the solution (l1, . . . , ln) is
planar so 3 extra constraints are missing to solve the system.
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