

Multiscale hybrid methods for time-domain electromagnetics

Stéphane Lanteri, <u>Raphaël Léger¹</u>, <u>Claire Scheid²</u> Nachos Project-Team, Inria Sophia-Antipolis Méditerranée, France

Diego Paredes Pontificia Universidad Católica de Valparaíso, Chile

Frédéric Valentin Laboratório Nacional de Computação Científica, Petrópolis, Brazil

Hoscar Workshop - Sophia Antipolis - 2015/09/21

S. LANTERI, R. LÉCER, C. SCHEID, D. PAREDES, F. VALENTIN Hoscar Workshop - Sophia Antipolis - 2015/09/21

¹raphael.leger@inria.fr

²claire.scheid@unice.fr

Modeling context and challenges

MHM: formulation & algorithm

Numerical Results

Concluding remarks

S. LANTERI, R. LÉCER, C. SCHEID, D. PAREDES, F. VALENTIN Hoscar Workshop - Sophia Antipolis - 2015/09/21 MHM for time-domain electromagnetics

イロト イポト イヨト イヨト

2/25

э

Modeling context and challenges

MHM: formulation & algorithm

Numerical Results

Concluding remarks

S. LANTERI, R. LÉCER, C. SCHEID, D. PAREDES, F. VALENTIN Hoscar Workshop - Sophia Antipolis - 2015/09/21 MHM for time-domain electromagnetics

イロト イポト イヨト イヨト

3/25

э

Modeling context

Numerical Nanophotonics

- ▶ Interaction of electromagnetic waves in the optical regime with nano-scaled structures
- ▶ Nano-Antennas, Nano-scaled optical waveguides ...

Numerical Challenges

- Complex geometrical structures
- Heterogeneous propagation medium characteristics
- Strong energy concentration phenomena

Modeling context / Example: Y-waveguide

Y-shaped, 21 Au-nanospheres waveguide

S. LANTERI, R. LÉCER, C. SCHEID, D. PAREDES, F. VALENTIN Hoscar Workshop - Sophia Antipolis - 2015/09/21 MHM for time-domain electromagnetics

5/25

Modeling context / Example: Y-waveguide

Snapshot of electric field magnitude

S. LANTERI, R. LÉCER, C. SCHEID, D. PAREDES, F. VALENTIN Hoscar Workshop - Sophia Antipolis - 2015/09/21 MHM for time-domain electromagnetics

< (T) >

6/25

Modeling context

Numerical Nanophotonics

- ▶ Interaction of electromagnetic waves in the optical regime with nano-scaled structures
- ▶ Nano-Antennas, Nano-scaled optical waveguides ...

Numerical Challenges

- Complex geometrical structures
- ▶ Heterogeneous propagation medium characteristics
- Strong energy concentration phenomena

Computational challenge

- Realistic settings yield large problems...
- We seek good parallelization properties!

Discontinuous Galerkin Time-Domain Methods @ Nachos

DIOGENES - DIscOntinuous GalErkin Nano Solver

- ▶ 3D Maxwell PDE system + Dispersion Models
- Perfectly-Matched Layers
- ▶ Affine & curvilinear elements Hybrid unstructured/Cartesian meshes
- ▶ High-order nodal basis functions Local order adaptation
- ▶ 2nd order / 4th order Leap-Frog Low Storage Runge-Kutta
- Hybrid MIMD/SIMD parallelization (MPI+OpenMP)

Cylindric Antenna Array

Bow Tie Antenna

S. LANTERI, R. LÉCER, C. SCHEID, D. PAREDES, F. VALENTIN Hoscar Workshop - Sophia Antipolis - 2015/09/21

MHM for Maxwell

Past & present developments on MHM

- ▶ A family of multiscale methods
 - Upscaling of a solution lying on a coarse mesh
 - Intrinsically parallel
- ▶ Flows in porous media³ (Darcy) (@ LNCC)
- ▶ Elasticity⁴ (@ LNCC)
- ▶ Elastodynamics (@ LNCC + INRIA) (M.-H. Lallemand's talk)

Electromagnetics: The Maxwell PDE system

Electromagnetic waves in heterogeneous media \rightsquigarrow Maxwell's equation.

$$\left\{ \begin{array}{l} \mu(\mathbf{x}) \frac{\partial \mathbf{H}}{\partial t} + \nabla \times \ \mathbf{E} = \mathbf{0}, \\ \\ \varepsilon(\mathbf{x}) \frac{\partial \mathbf{E}}{\partial t} - \nabla \times \ \mathbf{H} = \mathbf{J} - \sigma(\mathbf{x}) \mathbf{E}. \end{array} \right.$$

 $^3{\rm Harder,~C.},$ et al. " A Family of Multiscale Hybrid-Mixed Finite Element Methods for the Darcy Equation with Rough Coefficients ", JCP, Vol. 245, pp. 107-130, 2013

 4 Harder, C., et al. "New finite elements for elasticity in two and three-dimensions", LNCC 2

S. LANTERI, R. LÉCER, C. SCHEID, D. PAREDES, F. VALENTIN Hoscar Workshop - Sophia Antipolis - 2015/09/21

Modeling context and challenges

MHM: formulation & algorithm

Numerical Results

Concluding remarks

S. LANTERI, R. LÉCER, C. SCHEID, D. PAREDES, F. VALENTIN Hoscar Workshop - Sophia Antipolis - 2015/09/21 MHM for time-domain electromagnetics

イロト イポト イヨト イヨト

э

Weak-form of Maxwell's equations

$$\begin{cases} (\varepsilon \,\partial_t \mathbf{E}, v) - (\nabla \times \mathbf{H}, v) = (\mathbf{J}, v) & \text{for all } v \in V, \\ (\mu \,\partial_t \mathbf{H}, w) + (\nabla \times \mathbf{E}, w) = 0 & \text{for all } w \in V. \end{cases}$$

 $\sim \sim \sim$

H > 0, Tessalation \mathcal{T}_H of Ω .

Localization

$$\begin{cases} (\varepsilon \,\partial_t \mathbf{E}, v)_K - (\nabla \times \mathbf{H}, v)_K = (\mathbf{J}, v)_K & \text{for all } v \in V, \\ (\mu \,\partial_t \mathbf{H}, w)_K + (\nabla \times \mathbf{E}, w)_K = 0 & \text{for all } w \in V. \end{cases}$$

Weak-form of Maxwell's equations

$$\begin{cases} (\varepsilon \,\partial_t \mathbf{E}, v) - (\nabla \times \mathbf{H}, v) = (\mathbf{J}, v) & \text{for all } v \in V, \\ (\mu \,\partial_t \mathbf{H}, w) + (\nabla \times \mathbf{E}, w) = 0 & \text{for all } w \in V. \end{cases}$$

 $\sim \sim \sim$

H > 0, Tessalation \mathcal{T}_H of Ω .

4

Hybridization and localization

$$\begin{cases} (\varepsilon \,\partial_t \mathbf{E}, v)_K - (\mathbf{H}, \nabla \times v)_K = (\mathbf{J}, v)_K - (\boldsymbol{\lambda}, v)_{\partial K}, \\ (\mu \,\partial_t \mathbf{H}, w)_K + (\nabla \times \mathbf{E}, w)_K = 0. \end{cases}$$

S. LANTERI, R. LÉCER, C. SCHEID, D. PAREDES, F. VALENTIN Hoscar Workshop - Sophia Antipolis - 2015/09/21

Weak-form of Maxwell's equations

$$\begin{cases} (\varepsilon \,\partial_t \mathbf{E}, v) - (\nabla \times \mathbf{H}, v) = (\mathbf{J}, v) & \text{for all } v \in V, \\ (\mu \,\partial_t \mathbf{H}, w) + (\nabla \times \mathbf{E}, w) = 0 & \text{for all } w \in V. \end{cases}$$

 $\sim \sim \sim$

H > 0, Tessalation \mathcal{T}_H of Ω .

Hybridization and localization

$$\begin{cases} (\varepsilon \,\partial_t \mathbf{E}, v)_K - (\mathbf{H}, \nabla \times v)_K = (\mathbf{J}, v)_K - (\boldsymbol{\lambda}, v)_{\partial K}, \\ (\mu \,\partial_t \mathbf{H}, w)_K + (\nabla \times \mathbf{E}, w)_K = 0. \end{cases}$$

S. LANTERI, R. LÉGER, C. SCHEID, D. PAREDES, F. VALENTIN Hoscar Workshop - Sophia Antipolis - 2015/09/21

Weak-form of Maxwell's equations

$$\begin{cases} (\varepsilon \,\partial_t \mathbf{E}, v) - (\nabla \times \mathbf{H}, v) = (\mathbf{J}, v) & \text{for all } v \in V, \\ (\mu \,\partial_t \mathbf{H}, w) + (\nabla \times \mathbf{E}, w) = 0 & \text{for all } w \in V. \end{cases}$$

 $\sim \sim \sim$

H > 0, Tessalation \mathcal{T}_H of Ω .

Hybridized Maxwell on each K

Hybridization and localization

$$\begin{cases} (\varepsilon \,\partial_t \mathbf{E}, v)_K - (\mathbf{H}, \nabla \times v)_K = (\mathbf{J}, v)_K - (\boldsymbol{\lambda}, v)_{\partial K}, \\ (\mu \,\partial_t \mathbf{H}, w)_K + (\nabla \times \mathbf{E}, w)_K = 0. \end{cases}$$

S. LANTERI, R. LÉGER, C. SCHEID, D. PAREDES, F. VALENTIN Hoscar Workshop - Sophia Antipolis - 2015/09/21

Weak-form of Maxwell's equations

$$\begin{cases} (\varepsilon \,\partial_t \mathbf{E}, v) - (\nabla \times \mathbf{H}, v) = (\mathbf{J}, v) & \text{for all } v \in V, \\ (\mu \,\partial_t \mathbf{H}, w) + (\nabla \times \mathbf{E}, w) = 0 & \text{for all } w \in V. \end{cases}$$

 $\sim \sim \sim$

H > 0, Tessalation \mathcal{T}_H of Ω .

Local Hybridized Maxwell on each K

Hybridization and localization

$$\begin{cases} (\varepsilon \,\partial_t \mathbf{E}, v)_K - (\mathbf{H}, \nabla \times v)_K = (\mathbf{J}, v)_K - (\boldsymbol{\lambda}, v)_{\partial K}, \\ (\mu \,\partial_t \mathbf{H}, w)_K + (\nabla \times \mathbf{E}, w)_K = 0. \end{cases}$$

S. LANTERI, R. LÉGER, C. SCHEID, D. PAREDES, F. VALENTIN Hoscar Workshop - Sophia Antipolis - 2015/09/21

Weak-form of Maxwell's equations

$$\begin{cases} (\varepsilon \,\partial_t \mathbf{E}, v) - (\nabla \times \mathbf{H}, v) = (\mathbf{J}, v) & \text{for all } v \in V, \\ (\mu \,\partial_t \mathbf{H}, w) + (\nabla \times \mathbf{E}, w) = 0 & \text{for all } w \in V. \end{cases}$$

 $\sim \sim \sim$

H > 0, Tessalation \mathcal{T}_H of Ω .

Hybridized Maxwell on each K

Hybridization and localization

$$\begin{cases} (\varepsilon \,\partial_t \mathbf{E}, v)_K - (\mathbf{H}, \nabla \times v)_K = (\mathbf{J}, v)_K - (\boldsymbol{\lambda}, v)_{\partial K}, \\ (\mu \,\partial_t \mathbf{H}, w)_K + (\nabla \times \mathbf{E}, w)_K = 0. \end{cases}$$

S. LANTERI, R. LÉCER, C. SCHEID, D. PAREDES, F. VALENTIN Hoscar Workshop - Sophia Antipolis - 2015/09/21

Weak-form of Maxwell's equations

$$\begin{cases} (\varepsilon \,\partial_t \mathbf{E}, v) - (\nabla \times \mathbf{H}, v) = (\mathbf{J}, v) & \text{for all } v \in V, \\ (\mu \,\partial_t \mathbf{H}, w) + (\nabla \times \mathbf{E}, w) = 0 & \text{for all } w \in V. \end{cases}$$

 $\sim \sim \sim$

H > 0, Tessalation \mathcal{T}_H of Ω .

Local Hybridized Maxwell on each K

Hybridization and localization

$$\begin{cases} (\varepsilon \,\partial_t \mathbf{E}, v)_K - (\mathbf{H}, \nabla \times v)_K = (\mathbf{J}, v)_K - (\boldsymbol{\lambda}, v)_{\partial K}, \\ (\mu \,\partial_t \mathbf{H}, w)_K + (\nabla \times \mathbf{E}, w)_K = 0. \end{cases}$$

S. LANTERI, R. LÉGER, C. SCHEID, D. PAREDES, F. VALENTIN Hoscar Workshop - Sophia Antipolis - 2015/09/21

Weak-form of Maxwell's equations

$$\begin{cases} (\varepsilon \,\partial_t \mathbf{E}, v) - (\nabla \times \mathbf{H}, v) = (\mathbf{J}, v) & \text{for all } v \in V, \\ (\mu \,\partial_t \mathbf{H}, w) + (\nabla \times \mathbf{E}, w) = 0 & \text{for all } w \in V. \end{cases}$$

 $\sim \sim \sim$

H > 0, Tessalation \mathcal{T}_H of Ω .

Hybridization and localization

 $\begin{cases} (\varepsilon \,\partial_t \mathbf{E}, v)_K - (\mathbf{H}, \nabla \times v)_K = (\mathbf{J}, v)_K - (\boldsymbol{\lambda}, v)_{\partial K}, \\ (\mu \,\partial_t \mathbf{H}, w)_K + (\nabla \times \mathbf{E}, w)_K = 0. \end{cases}$

S. LANTERI, R. LÉCER, C. SCHEID, D. PAREDES, F. VALENTIN Hoscar Workshop - Sophia Antipolis - 2015/09/21

Weak-form of Maxwell's equations

$$\begin{cases} (\varepsilon \,\partial_t \mathbf{E}, v) - (\nabla \times \mathbf{H}, v) = (\mathbf{J}, v) & \text{for all } v \in V, \\ (\mu \,\partial_t \mathbf{H}, w) + (\nabla \times \mathbf{E}, w) = 0 & \text{for all } w \in V. \end{cases}$$

 $\sim \sim \sim$

H > 0, Tessalation \mathcal{T}_H of Ω .

Hybridization and localization

$$\begin{cases} (\varepsilon \,\partial_t \mathbf{E}, v)_K - (\mathbf{H}, \nabla \times v)_K = (\mathbf{J}, v)_K - (\boldsymbol{\lambda}, v)_{\partial K}, \\ (\mu \,\partial_t \mathbf{H}, w)_K + (\nabla \times \mathbf{E}, w)_K = 0. \end{cases}$$

S. LANTERI, R. LÉCER, C. SCHEID, D. PAREDES, F. VALENTIN Hoscar Workshop - Sophia Antipolis - 2015/09/21

Weak-form of Maxwell's equations

$$\begin{cases} (\varepsilon \,\partial_t \mathbf{E}, v) - (\nabla \times \mathbf{H}, v) = (\mathbf{J}, v) & \text{for all } v \in V, \\ (\mu \,\partial_t \mathbf{H}, w) + (\nabla \times \mathbf{E}, w) = 0 & \text{for all } w \in V. \end{cases}$$

 $\sim \sim \sim$

H > 0, Tessalation \mathcal{T}_H of Ω .

Hybridization and localization

$$\begin{cases} (\varepsilon \,\partial_t \mathbf{E}, v)_K - (\mathbf{H}, \nabla \times v)_K = (\mathbf{J}, v)_K - (\boldsymbol{\lambda}, v)_{\partial K}, \\ (\mu \,\partial_t \mathbf{H}, w)_K + (\nabla \times \mathbf{E}, w)_K = 0. \end{cases}$$

 $(\mu, \mathbf{E})_{\partial \mathcal{T}_H} = 0 \text{ for all } \mu \in \mathbf{\Lambda}.$

S. LANTERI, R. LÉCER, C. SCHEID, D. PAREDES, F. VALENTIN Hoscar Workshop - Sophia Antipolis - 2015/09/21

Weak-form of Maxwell's equations

$$\begin{cases} (\varepsilon \,\partial_t \mathbf{E}, v) - (\nabla \times \mathbf{H}, v) = (\mathbf{J}, v) & \text{for all } v \in V, \\ (\mu \,\partial_t \mathbf{H}, w) + (\nabla \times \mathbf{E}, w) = 0 & \text{for all } w \in V. \end{cases}$$

 $\sim \sim \sim$

Hybridization and localization

H > 0, Tessalation \mathcal{T}_H of Ω .

$$\begin{cases} (\varepsilon \partial_t \mathbf{E}, v)_K - (\mathbf{H}, \nabla \times v)_K = (\mathbf{J}, v)_K - (\boldsymbol{\lambda}, v)_{\partial K}, \\ (\mu \partial_t \mathbf{H}, w)_K + (\nabla \times \mathbf{E}, w)_K = 0. \end{cases}$$

 $(\mu, \mathbf{E})_{\partial \mathcal{T}_{H}} = 0 \quad \text{for all } \mu \in \mathbf{\Lambda}.$

< 6 b

 $\sim \sim \sim$

S. LANTERI, R. LÉCER, C. SCHEID, D. PAREDES, F. VALENTIN Hoscar Workshop - Sophia Antipolis - 2015/09/21 MHM for time-domain electromagnetics

Weak-form of Maxwell's equations

$$\begin{cases} (\varepsilon \,\partial_t \mathbf{E}, v) - (\nabla \times \mathbf{H}, v) = (\mathbf{J}, v) & \text{for all } v \in V, \\ (\mu \,\partial_t \mathbf{H}, w) + (\nabla \times \mathbf{E}, w) = 0 & \text{for all } w \in V. \end{cases}$$

 $\uparrow \sim \text{Proved}!$

Hybridization and localization

$$\begin{cases} (\varepsilon \,\partial_t \mathbf{E}, v)_K - (\mathbf{H}, \nabla \times v)_K = (\mathbf{J}, v)_K - (\boldsymbol{\lambda}, v)_{\partial K}, \\ (\mu \,\partial_t \mathbf{H}, w)_K + (\nabla \times \mathbf{E}, w)_K = 0. \end{cases}$$

 $(\mu, \mathbf{E})_{\partial \mathcal{T}_{\mathbf{H}}} = 0 \text{ for all } \mu \in \Lambda.$

- Weak form on the skeleton of a coarse mesh \mathcal{T}_H of size H.
- Solution of element-wise $(K \in \mathcal{T}_H)$ independent boundary value problems driven by Lagrange multipliers.
- ▶ Cell K is deemed a "macro-element".

・ロト ・同ト ・ヨト ・ヨト

Splitting **E** and **H**

• Unknowns are split between a **J** and λ part:

 $\mathbf{E} = \mathbf{E}^{\mathbf{J}} + \mathbf{E}^{\lambda},$ $\mathbf{H} = \mathbf{H}^{\mathbf{J}} + \mathbf{H}^{\lambda}.$

(1) Contribution of the current

$$\begin{cases} (\varepsilon \partial_t \mathbf{E}^{\mathbf{J}}, v)_K - (\mathbf{H}^{\mathbf{J}}, \nabla \times v)_K = (\mathbf{J}, v)_K & \text{for all } v \in V, \\ (\mu \partial_t \mathbf{H}^{\mathbf{J}}, w)_K + (\nabla \times \mathbf{E}^{\mathbf{J}}, w)_K = 0 & \text{for all } w \in V, \end{cases}$$
(1) + (2)

(2) Contribution of the hybrid variable

initial local weak problem.

$$\begin{cases} (\varepsilon \,\partial_t \mathbf{E}^{\lambda}, v)_K - (\mathbf{H}^{\lambda}, \nabla \times v)_K = -(\lambda, v)_{\partial K} & \text{for all } v \in V, \\ (\mu \,\partial_t \mathbf{H}^{\lambda}, w)_K + (\nabla \times \mathbf{E}^{\lambda}, w)_K = 0 & \text{for all } w \in V. \end{cases}$$

S. LANTERI, R. LÉGER, C. SCHEID, D. PAREDES, F. VALENTIN Hoscar Workshop - Sophia Antipolis - 2015/09/21

MHM for time-domain electromagnetics

< 6 b

Discretization 1/2: Discretize the space of $\lambda \rightsquigarrow \Lambda$.

- Choose $\Lambda_H \subset \Lambda$, with dim $(\Lambda_H) < +\infty \rightsquigarrow$ Seek $\lambda_H \in \Lambda_H$.
- Decompose on a basis $(\boldsymbol{\psi}_i)$

$$oldsymbol{\lambda}_H = \sum_{i=1}^{\dim \Lambda_H} eta_i oldsymbol{\psi}_i.$$

• Seek \mathbf{E}^{λ_H} and \mathbf{H}^{λ_H} of the form:

$$\mathbf{E}^{\lambda_H} = \sum_{i=1}^{\dim \Lambda_H} eta_i oldsymbol{\eta}_i^{\mathbf{E}} ext{ and } \mathbf{H}^{\lambda_H} = \sum_{i=1}^{\dim \Lambda_H} eta_i oldsymbol{\eta}_i^{\mathbf{H}},$$

with

$$\begin{cases} (\varepsilon \partial_t \boldsymbol{\eta}_i^{\mathbf{E}}, v)_K - (\boldsymbol{\eta}_i^{\mathbf{H}}, \nabla \times v)_K = -(\boldsymbol{\psi}_i \mathbf{n} \cdot \mathbf{n}^K, v)_{\partial K} & \text{for all } v \in V, \\ (\mu \partial_t \boldsymbol{\eta}_i^{\mathbf{H}}, w)_K + (\nabla \times \boldsymbol{\eta}_i^{\mathbf{E}}, w)_K = 0 & \text{for all } w \in V. \end{cases}$$
(1)

Finally, in each K, $\mathbf{E} = \sum_{i=1}^{\dim \Lambda_{\mathbf{H}}} \beta_i \eta_i^{\mathbf{E}} + \mathbf{E}^{\mathbf{J}}$ and $\mathbf{H} = \sum_{i=1}^{\dim \Lambda_{\mathbf{H}}} \beta_i \eta_i^{\mathbf{H}} + \mathbf{H}^{\mathbf{J}}$.

 $\sim \sim \sim$

イロト イポト イヨト イヨト

Discretization 2/2: Discretizing the space V.

▶ For each $K \rightsquigarrow V_h(K)$ discretization space of V e.g. Discontinuous Galerkin.

S. LANTERI, R. LÉGER, C. SCHEID, D. PAREDES, F. VALENTIN Hoscar Workshop - Sophia Antipolis - 2015/09/21

Discretization 2/2: Discretizing the space V.

▶ For each $K \rightsquigarrow V_h(K)$ discretization space of V e.g. Discontinuous Galerkin.

Fine mesh in each K

MHM for time-domain electromagnetics

< 61 b

Discretization 2/2: Discretizing the space V.

• For each $K \rightsquigarrow V_h(K)$ discretization space of V e.g. Discontinuous Galerkin.

A family of local, discrete independent problems stated on macro-elements K:

$$\begin{split} & (\varepsilon \partial_t \boldsymbol{\eta}_i^{\mathbf{E}}, v)_K - (\boldsymbol{\eta}_i^{\mathbf{H}}, \nabla \times v)_K = -(\boldsymbol{\psi}_i \mathbf{n} \cdot \mathbf{n}^K, v)_{\partial K} \quad \forall v \in V_h(K), \\ & (\mu \partial_t \boldsymbol{\eta}_i^{\mathbf{H}}, w)_K + (\nabla \times \boldsymbol{\eta}_i^{\mathbf{E}}, w)_K = 0 \quad \forall w \in V_h(K). \end{split}$$

 $\eta_i^{\mathbf{E}}, \eta_i^{\mathbf{H}} \rightsquigarrow$ are seeked in $V_h(K)$ for each $i \in [1, \dim(V_h(K))]$ \hookrightarrow lead to \mathbf{E}^{λ_H} , \mathbf{H}^{λ_H}

Discretization 2/2: Discretizing the space V.

- For each $K \rightsquigarrow V_h(K)$ discretization space of V e.g. Discontinuous Galerkin.
- A family of **local**, discrete independent problems stated on macro-elements K

< 口 > < 同 >

Discretization 2/2: Discretizing the space V.

- ▶ For each $K \rightsquigarrow V_h(K)$ discretization space of V e.g. Discontinuous Galerkin.
- \blacktriangleright A family of **local**, discrete independent problems stated on macro-elements K
- ▶ A global, discrete coarse problem stated on the skeleton of \mathcal{T}_H

$$(\mu_H, \mathbf{E}^{\lambda_H})_{\partial \mathcal{T}_{\mathcal{H}}} = -(\mu_H, \mathbf{E}^{\mathbf{J}})_{\partial \mathcal{T}_H} \quad \forall \mu_H \in \mathbf{\Lambda}_{\mathbf{H}},$$

S. LANTERI, R. LÉCER, C. SCHEID, D. PAREDES, F. VALENTIN Hoscar Workshop - Sophia Antipolis - 2015/09/21 MHM for time-domain electromagnetics

Discretization 2/2: Discretizing the space V.

- For each $K \rightsquigarrow V_h(K)$ discretization space of V e.g. Discontinuous Galerkin.
- \triangleright A family of **local**, discrete independent problems stated on macro-elements K
- A global, discrete coarse problem stated on the skeleton of \mathcal{T}_H

S. LANTERI, R. LÉGER, C. SCHEID, D. PAREDES, F. VALENTIN Hoscar Workshop - Sophia Antipolis - 2015/09/21

Time Integration: two strategies so far 1/2

Implicit: θ -scheme

► K-locally:

$$\begin{cases} \left(\varepsilon \frac{\mathbf{E}^{n} - \mathbf{E}^{n-1}}{\Delta t}, v\right)_{K} - \theta(\mathbf{H}^{n}, \nabla \times v)_{K} - (1 - \theta)(\mathbf{H}^{n-1}, \nabla \times v)_{K} = (\mathbf{J}^{n}, v)_{K} \\ - (\boldsymbol{\lambda}^{n}, v)_{\partial K}, \\ \left(\mu \frac{\mathbf{H}^{n} - \mathbf{H}^{n-1}}{\Delta t}, w\right)_{K} + \theta(\nabla \times \mathbf{E}^{n}, w)_{K} + (1 - \theta)(\nabla \times \mathbf{E}^{n-1}, w)_{K} = 0 \end{cases}$$
(2)

S. LANTERI, R. LÉGER, C. SCHEID, D. PAREDES, F. VALENTIN Hoscar Workshop - Sophia Antipolis - 2015/09/21

< 3 MHM for time-domain electromagnetics

< ∃ >

< (T) >

Time Integration: two strategies so far 2/2

Explicit: Second order Leap-Frog

► K-locally:

$$\begin{cases} \left(\varepsilon \frac{\mathbf{E}^{n+1} - \mathbf{E}^n}{\Delta t}, v\right)_K - (\mathbf{H}^{n+1/2}, \nabla \times v)_K = (\mathbf{J}^{n+1/2}, v)_K - (\boldsymbol{\lambda}^{n+1/2}, v)_{\partial K} \\ \left(\mu \frac{\mathbf{H}^{n+3/2} - \mathbf{H}^{n-1/2}}{\Delta t}, w\right)_K + (\nabla \times \mathbf{E}^{n+1}, w)_K = 0 \end{cases}$$
(3)

▶ Writing the time dependencies of splitted unknowns leads, for the lambda part, to:

$$\frac{1}{\Delta t} (\varepsilon \mathbf{E}^{\lambda, n}, v)_K = -(\boldsymbol{\lambda}^{n+1/2}, v)_{\partial K}, \tag{4}$$

• No $\eta^{\mathbf{H}}$ is considered, and we have

$$\frac{1}{\Delta t} (\varepsilon \,\boldsymbol{\eta}_i^{\mathbf{E}}, v)_K = -(\boldsymbol{\psi}_i \mathbf{n} \cdot \mathbf{n}^K, v)_{\partial K} \quad \text{for all } v \in V \tag{5}$$

S. LANTERI, R. LÉGER, C. SCHEID, D. PAREDES, F. VALENTIN Hoscar Workshop - Sophia Antipolis - 2015/09/21

< 61 b

The Leap-Frog 2 MHM Algorithm

▶ The MHM-LF2 algorithm:

for $k = 1, N_K$ do ! Loop on Macro-elements for $j = 1, N_{\lambda_H}$ do ! Loop on the edge basis-functions Solve (5) for $\eta_j^{\mathbf{E}}$ with ψ_j end for end for

while $t < T_{end}$ do $t = t + \Delta t$ for $k = 1, N_K$ do ! Loop on Macro-elements Determine $\mathbf{E}_{n+1}^{\mathbf{J}}|_{L}$ from $\mathbf{E}_{n}|_{k}$, $\mathbf{H}_{n+1/2}|_{L}$ and $\mathbf{J}_{n+1/2}|_{L}$ end for Assemble $\mathbf{E}_{n+1}^{\mathbf{J}}\Big|_{k=1, N_{t}}$ to the right-hand side of the global problem Solve the global problem to retrieve $\mathbf{E}_{n+1}^{\lambda}$; $\mathbf{E}_{n+1} = \mathbf{E}_{n+1}^{\lambda} + \mathbf{E}_{n+1}^{J}$ for $k = 1, N_K$ do ! Loop on Macro-elements Determine $\mathbf{H}_{n+3/2}|_{k}$ from $\mathbf{H}_{n+1/2}|_{k}$ and $\mathbf{E}_{n+1}|_{k}$ end for end while

イロト イポト イラト イラ

The Leap-Frog 2 MHM Algorithm

The MHM-LF2 algorithm: "Expensive" loops are parallel!

for $k = 1, N_K$ do ! Loop on Macro-elements for $j = 1, N_{\lambda_H}$ do ! Loop on the edge basis-functions Solve (5) for $\eta_j^{\mathbf{E}}$ with ψ_j end for end for while $t < T_{end}$ do $t = t + \Delta t$ for $k = 1, N_K$ do ! Loop on Macro-elements Determine $\mathbf{E}_{n+1}^{\mathbf{J}}|_{L}$ from $\mathbf{E}_{n}|_{k}$, $\mathbf{H}_{n+1/2}|_{L}$ and $\mathbf{J}_{n+1/2}|_{L}$ end for Assemble $\mathbf{E}_{n+1}^{\mathbf{J}}\Big|_{k=1, N_{h}}$ to the right-hand side of the global problem Solve the global problem to retrieve $\mathbf{E}_{n+1}^{\lambda}$; $\mathbf{E}_{n+1} = \mathbf{E}_{n+1}^{\lambda} + \mathbf{E}_{n+1}^{J}$ for $k = 1, N_K$ do ! Loop on Macro-elements Determine $\mathbf{H}_{n+3/2}|_{k}$ from $\mathbf{H}_{n+1/2}|_{k}$ and $\mathbf{E}_{n+1}|_{k}$ end for end while

イロト イポト イラト イラ

The θ -scheme MHM Algorithm

• The MHM- θ -scheme algorithm: "Expensive" loops are parallel!

for $k = 1, N_K$ do ! Loop on Macro-elements for $j = 1, N_{\lambda_H}$ do ! Loop on the edge basis-functions Solve (1) for $\eta_{j}^{\mathsf{E},\mathsf{H}}$, with ψ_{j} end for end for while $t < T_{end}$ do $t = t + \Delta t$ for $k = 1, N_K$ do ! Loop on Macro-elements Determine $\mathbf{E}_{n+1}^{\mathbf{J}}|_{k}$ and $\mathbf{H}_{n+1}^{\mathbf{J}}|_{k}$ from $\mathbf{E}_{n}|_{k}$, $\mathbf{H}_{n}|_{k}$ and $\mathbf{J}_{n}|_{k}$ end for Assemble $\mathbf{E}_{n+1}^{\mathbf{J}}\big|_{k=1...N_k}$ to the right-hand side of the global problem Solve the global problem Retrieve $\mathbf{E}_{n+1}^{\boldsymbol{\lambda}}$; $\mathbf{E}_{n+1} = \mathbf{E}_{n+1}^{\boldsymbol{\lambda}} + \mathbf{E}_{n+1}^{\mathbf{J}}$, and $\mathbf{H}_{n+1}^{\lambda}$; $\mathbf{H}_{n+1} = \mathbf{H}_{n+1}^{\lambda} + \mathbf{H}_{n+1}^{\mathbf{J}}$, end while

S. LANTERI, R. LÉGER, C. SCHEID, D. PAREDES, F. VALENTIN Hoscar Workshop - Sophia Antipolis - 2015/09/21

MHM for time-domain electromagnetics

• 周 ▶ < 3 ▶ < 4 ₽ ▶</p>

Modeling context and challenges

MHM: formulation & algorithm

Numerical Results

Concluding remarks

S. LANTERI, R. LÉCER, C. SCHEID, D. PAREDES, F. VALENTIN Hoscar Workshop - Sophia Antipolis - 2015/09/21 MHM for time-domain electromagnetics

イロト イポト イヨト イヨト

20/25

э

(2D) Matlab implementation by D. PAREDES

Eigenmode of a cavity

- Access to an analytical solution
- ▶ Example: 2 macro-elements, \mathbb{P}_5 elements for the edges, \mathbb{P}_2 for the fields

S. LANTERI, R. LÉCER, C. SCHEID, D. PAREDES, F. VALENTIN Hoscar Workshop - Sophia Antipolis - 2015/09/21

(2D) Matlab implementation by D. PAREDES

Eigenmode of a cavity

- Access to an analytical solution
- ▶ Example: 2 macro-elements, \mathbb{P}_5 elements for the edges, \mathbb{P}_2 for the fields

S. LANTERI, R. LÉCER, C. SCHEID, D. PAREDES, F. VALENTIN Hoscar Workshop - Sophia Antipolis - 2015/09/21

(2D) Matlab implementation by D. PAREDES

Eigenmode of a cavity

- Access to an analytical solution
- Convergence results

 \mathbb{P}_1 elements for the edges, \mathbb{P}_3 for the electromagnetic field, LF2 time-scheme.

Modeling context and challenges

MHM: formulation & algorithm

Numerical Results

Concluding remarks

S. LANTERI, R. LÉCER, C. SCHEID, D. PAREDES, F. VALENTIN Hoscar Workshop - Sophia Antipolis - 2015/09/21 MHM for time-domain electromagnetics

イロト イポト イヨト イヨト

24 / 25

э

Concluding remarks

Current status

- ▶ Writing a 2D Fortran code
- Explicit & implicit time-schemes
 - Moving on to nanophotonics-oriented models & test-cases
 - Experiment with simple parallelism

Longer term objectives: the HOMAR⁵ associate team

- Progress on the formulation / theroretical study of MHM-DGTD methods for more complex, Maxwell-based models
- ▶ Progress towards implementation of such methods in the 3D case
- ▶ Demonstrate their capability to leverage modern HPC architectures

⁵http://www-sop.inria.fr/nachos/index.php/Main/HOMAR<</td>
□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <