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@ heterogeneous and/or anisotropic materials (e.g. geosismics, composite
materials)

@ linear elastodynamic waves
@ MHM method as a candidate (F. Valentin)
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Potential approaches

@ mixed displacement/stress formulation (second order in time)
o time discretization first, then MHM strategy
o time/space MHM method
@ velocity/stress formulation (first order in time)
— our choice
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Displacement formulation

Findu: (0,T) x Q — RY (d = 2,3), such that

pogu—divCE(u)=f, in(0,T)xQ,
u=0, on(0,7)x0dQ, (1)
u=uy, ou=vy fort=0 inQ,

@ p:=p(x),x € Q, mass density, uniformally bounded.
@ linearized strain tensor E(u) := 1 (Vu+V'u)

o ( stiffness (or elastic) tensor (fourth-rank, symmetric), time
independent, uniformally positive and bounded

@ ¢ := CE(u) stress tensor (2nd-rank, symmetric)
e A := C ' fourth-rank compliance tensor (same properties as C)
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Displacement formulation - Unicity and regularity results

Vo = [H ()1, H=[L2(Q)% Vo= [H (),

If ug € Vo, vo € H, f,04 € [L2(]0, T[xQ)]® then
(1) has a unique weak solution u with

o ucl=(0,T; V),

o u €L™(0,T;H),

ou €L~(0,T;V,).

cf. Duvaut-Lions, Inequalities in Mechanics and Physics, Springer-verlag, 1976
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The velocity/stress formulation

@ v:=0u, 6:=CE(u)
@ Findv: (0,T)x Q — R, such that

pdiv—dive=f, in(0,T)xQ,
0/6—CE(v)=0,in(0,T)xQ,
v=0, on(0,T)x0Q,
v=vy, 6=00:=C E(ug) att=0 inQ,

2nd equation replaced by 496 — E(v) = 0.

lrm= W @i

Marie-Héléne Lallemand-Tenkeés, Frédéric Valentin A MHM method for time-domain linear elastodynamics



Introduction/Framework
Foundations of the MHM approach
Spatial semi-discretization Motivation
Time integration step Classical formulations
The MHM algorithm
Conclusion

Existence and unicity of the solution couple (v,0)

@ S := set of symmetric second-rank tensors
@ S:=H(div,Q)NS
If
@ Gy €S,
o vo € [H(Q)°,
o fic WH([0,T]),Vi=1,...,d
then (2) has a unique solution (v,6) and

6 c Co[o, T];S)nC' ([0, T]; L3(;S) ,
ve CO([0, T [Hy ()19 N ([0, To]: [L2()]9) -

(J. Lee, thése (D. N. Arnold), Mixed methods with weak symmetry for time dependent problems of elasticity and viscoelasticity, 2012)
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Weak formulation associated with (2)

@ Ty an arbitrary given regular discretization of Q = Uxcz, K;
@ Functional space notations (fixed t, space) M = R9*9 :

Vi={ve[3(Q)Y, ve[H (K VK € Ty},

H(div, Ty) = {t € [(2(Q)NM , T € H(div,K) , VK € Ty} ,
W = H(div,7) NS ,

A= {tf |y, te W, Ke Tyy = | H'2(0K),

Q:={qe[2(Q) qe [LZ(K)]",KVE;HQ T .
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The classical weak formulation associated with (2)

For any fixed t in (0, T), find (v,6) € V x W, such that
(patva W)TH + (6? f(W))TH - Z (GnK s W|3K)aK = (f7 W)TH s
KGTH (3)
(400, 'c)TH —(E(v), 'c)TH =0,

V(w,T) e VX W.
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The classical hybrid weak formulation associated with (3)

For any fixed t in (0, T), find (v,6,A) € V x W x A, such that

(porv, W)q, + (0, E(W))g, + Y (0 wiak)ak = (f,w)g,

KeTy
(A9:6,1)q, — (E(v),T)g, =0, (4)
Z (:u7v|K)E)K =0,
Kedy

V(w,T,u) € Vx W xA.

= A= —0on"surdK, VYK
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Global/local formulation derived from (4) - 1

(4) is equivalent, for any fixed t € (0, T), to find (v,6,1) € VX W x A
satisfying
@ the global problem

(:uvv)a‘TH = Z (luvv)aK:Ov VM€A7 (5)
KeTy

@ the local (independent) problems on each K € Iy
(Pov, W)y + (0, E(W)), + (A, Wlak)ak = (T, W), , Yw € V(K), (8)
(ﬂat6>T)K_(£(v)7T)K:Oa VT e W(K) . (7)

with v(0) = vo, 6(0) = Go.
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Remark

The local problem (6)-(7) has the following formulation (at least in the
distribution sense)

pov—dive=f, in (0,T)xK,
Adio—E(v)=0, in(0,T)xK,
on=—-LA, on (0,T)x0K,
Vv=vVy, and 6=0p,inKatt=0.

= If A is known, that can be solved since f, vq and 6, are given.
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Idea : split the solution couple (v,G) as

o v:=vi+vf , O:= o* +of and solve accordingly each elementwise
local problem,
@ write down consequently the corresponding global problem
° (v7‘,0‘7‘2 and (vf,6") respectively defined by the splitting operators
Pand P :
o Piue N P(u) = (P'(u), P°()) = (v*.0*) € V x W
o Prqe Q— P(a)=(P'(a),P°(q)) = (vI,0%) € Vx W
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Definition of the splitting operators

@ Pand P are defined from (6) and (7)

@ P and P are bounded linear operators and respectively defined locally
on each K € 7y by

(pa[Pv:uv W)K+ (Pcuﬂ £(w))K = 7(:“7 w)aK ) vw € V(K) ’
(20:P%u, ) — (E(P'W), 1), =0, Vte W(K): o
8

and

{ (patévq,w)K—i—(ﬁ’“g,f(w))K:(q,w)K, vw e V(K), )
(29:/°q,1), — (E(P'q).1), =0, VieW(K);

for any given u € A and any given q € Q with initial conditions
o P'u(0) =0, P°u(0) =0,
e PVq(0) = vp and P°q(0) = op.
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"strong formulation" of (8) and (9) with (A, f)

@ From (8) :
pov* —dive* =0, in (0,T)x K,
40,6* —E(V)=0, in(0,T)xK,
on=—-L, on (0,T)xdK,
v’~=o, andckza,inKattzo.
@ From (9)

povf —dive' =f, in (0,T)xK,
296" —ENV)=0, in(0,T)xK,
o'n“ =0, on (0,T)x0K,
vi=vy, ande'=0;p,inKatt=0.

Marie-Héléne Lallemand-Tenkes, Frédéric Valentin
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Summary before any discretization

Find (A,v = v* +vf,6 = 6" +-6') € A x V x W such that
@ Global problem

Z( ) ==Y (u, V), YueN; (12)

KeTy KeTy

@ Local splitted independent problems derived from (8) and (9) with (A, f)

{(Par" W)t (6" E(w)) e = —(h, why, YW e V(K),
(200" ,7) (f(vk) T)K—O, V’ce W(K);

and

(pov',w), + (6", E(w)), = (f,w),, Ywe V(K),
{(ﬂatcf,'c)K (f(v)'c)K 0, Vte W(K).
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Approximation of A

A uniquely determines v 6% in V x W. Let Ay be some FE space
approximating A. The coupled global/local problems to be solved are

o for any fixed t in (0, T), find Ay(t) € An, such that

Y (™) == X (V)

KeTy KeTy

with VA = PVAy, vf .= PV,
@ approximation of (v,6) by (vy,04), with

vp=v* vl oyi=cM+0o .

L
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How getting (Vy,G4) ?

(v, ™), (v!,6") are respectively solutions of

{ (patka ’ W)K—|- (67"" ) Z(w))K =—(Ay, W)y, Ywe V(K), (14)
(Ad6* ,T), — (E(V*),T), =0, Vte W(K);

with v*(0) = 0, 6*(0) = 0, and

pov' W (f,w),, Ywe V(K),
{ Eﬂatc ng gf(v‘) t)iK—O, VTKE W(K) ; (15)

with v(0) = vo, 67(0) = 60, in every K in Ty
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Approximations of V(K) and W(K)

Let us assume we are given some stable FE pair (V4(K), Wh(K)) with
Tn(K). Suppose it is of continuous Galerkin type. We define

Vhi= P Vo(K)CV, Wh:= P Wa(K)C W.
Kedy KeTy

(vH,04) are approximated by (V4,64 4), With
. A f . A f
\ VhH+Vh, O'H_’h.:GhH#*Gh,

where each splitted component is defined by the discrete linear operators P
and P, and are solutions of the discrete equivalent systems associated with
(14) and (15).

The global problem is written by : for any fixed t in (0, T), find Ay € Ay such
that

Y ¥ (mwevi), o ==X X (Vi € Au.

KeTy keTh(K) KeTy keTh(K) G Wy Qs

(16)
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0-scheme

— (1= 8)ts + 68y, 0€]0,1].
@ Global problem : find A}, € Ay such that

L ) ('UH’ xH)akmaK:_Z )y (Mm"?")am,{, Vuy € Ny

KeTy keIn(K) KeTy keIn(K)
(17)

@ Local problem (A}, dependent) for (vz ,02‘”)

pv,, sWp) +6 ch‘"“',f(wh) = — My Wh), » YWh € Vi(K),
K
(ﬂlch”,th) —G(Z( }‘n),'ch)K =0, VT, € Wh(K),

%t

(18)

7‘/—/* 7‘/—/*

with v, 0,0, .
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0-scheme ...

o Local problem (f dependent) for (v©",6"")

Ait (pv;;mwh)K—i—G (0‘;;”7 z(wh))K = (f, w,,),d—Ait(pv’,L,fh1 ,wh>K
~(1-0) (o, E(wn)) .
Alt (a0} ) ~6(BW @), =(1-0) (B @),
a1 (Ah ),
for all (wp,Th) € Va(K) X Wh(K), with vL’O =vg and 620 = 0)p. o
Coa= Wy B
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n

How getting vi;” : O'i;” and Ay, ?

Let {\|lj}1§,-§dim/\H be a basis of Ay, {¢j}1§j§dim v, @ basis of V}, and
{(pj}1§/-§dim w, be a basis of Wj,. At each time step, we want to find

{Bf}1§j§dimLH such that
=2 By,
J

Then it can be shown that
x
W= ZB/"I/ , NP =Tyl ) eV,
:ZB/ X, A =TORN() € Wy,
]

and

Y Y e)e, x'= )Y Yo

KkeTh(K) | KkeTh(K) m

= o @
for all K € T4.
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CGFE MHM algorithm with 6-scheme

1 | INITIALIZATION

Set v¥, , = v and 6%, , = 6 where Vo, 6 are the initial conditions.

2 ’ BASIS FUNCTION COMPUTATION ‘
Given the basis functions y; of A(K), for each K € 74, solve the following
local problems to get (N;,%;) € Va(K) x Wh(K), foralli=1,...,dmAy(K)

A%(pn,-7¢,'),(+9(x,-7£(¢,)),< =— (¥, 9))5 > VO € Va(K),
ﬁ(ﬂxn@j),{—e(f(m),tp/)}( =0, Vg, € Wh(K) .
&:,H,’q/_ ()
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CGFE MHM algorithm with 8-scheme . ..

3 [Twe urommive
Don=1to N

(3.1) CompUTE (v}",6%") € Vh(K) x Wi(K), for each K € Ty, from

1 n n

E(p"; 7¢7>K+6(6;7 7Z(¢7)>K :(f7¢}()K+ ( Hh7¢])
~(1-0) (ofin . @), -

At (’%” ’(Pf) <£(V ok (P/) At ('%Hh ’(Pf)
+(1-6) (B, <p,)

for all (¢;,9;) € Va(K) x Wh(K).

&; Sra 2] &

Marie-Héléne Lallemand-Tenkes, Frédéric Valentin A MHM method for time-domain linear elastodynamics



Introduction/Framework
Foundations of the MHM approach
Spatial semi-discretization

Time integration step

The MHM algorithm

Conclusion

CGFE MHM algorithm with 8-scheme . ..

(3.2) GET THE DEGREES OF FREEDOM OF A}, € Ay by solving the following
global problem

dimAy n
Y B (WMo, = — (i v >aer’ Vi=1,....dmAy.
=

(3.3) UPDATE (V[ 4,6, ) from

dimAy ¢ dimAy ¢
n __ n n n __ n N
vie= Y, B/m;+vy" and of,= ) Bx;+o;",
= =

diml\H

M= Z Bf‘l’p
j=t
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Conclusion and perspectives

@ A general framework for MHM strategy to solve elastodynamic
equations in heterogeneous anisotropic media.

@ MHM is very attractive as being an additive multi-level method allowing
both parallelism and adaption.

@ Important questions concerning FE space pair for v and 6, since
symmetry of the stress tensor should be preserved and both
compatibility and stability should be ensured.

@ MHM restricted to heterogeneous but isotropic case with stress tensor
vectorization formulation, DG solver and Leapfrog scheme.
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