

CORSE Compiler Optimizations and Runtime SystEms

Corse Leader : Fabrice Rastello

https://team.inria.fr/corse/

6 Corse Members + 8 PhDs + 3 Post-Docs

- Fabrice Rastello (CR1 INRIA)
 - Loop transformations, register allocation, LLVM
- Florent Bouchez Tichadou (MCF UJF)
 - Static Single Assignment (SSA), compiler backend
- François Broquedis (MCF Grenoble INP)
 - Runtime Systems, OpenMP, Memory Management
- Frédéric Desprez (DR1 INRIA)
 - Parallel Algorithmic, Numerical Libraries
- Ylies Falcone (MCF UJF)
 - Runtime Verfication, Enforcement, Monitoring
- Jean-François Méhaut (PR UJF)
 - Runtime Systems, Low Power Computing, Debugging

Corse Team Overview

Research Domain

- Compiler Optimization and Runtime Systems for Performance and Energy Efficiency

Issues

 Scalability needs Heterogeneity/Complexity : tradeoff between Specific Optimizations and Programmability/Portability

Target architectures

 Multi/Many cores, General Purpose Processors, Accelerators, GPU, Low Power Architectures

Applications

- Geophysics, Material Physics, Embedded Multimedia

Approach

Combine Static/Dynamic & Compiler/Runtime

Corse Research Directions

Static/Dynamic Compiler Analysis

- Hybrid and extensible byte-code
- Hybrid compilation, trace/static analysis
- Instruction scheduling, computing and IO complexities

Runtime Systems and Interfaces with compilers

- Load balancing with compiler analysis information
- Memory management (affinity)
- Scheduling and load balancing directed by power management

Interactive debugging, properties monitoring

- Debugging with programming models
 - Gdb, OpenMP, OmpSs,
- Dynamic monitoring of program properties

Compiler Optimizations : What and When ?

- What work a compiler typically performs to optimize ?
 - Analyze the source code (e.g. dependences, ranges, aliasing)
 - Emit the binary code from the Intermediate Representation (IR), Static Single Assignment (SSA)
 - Transform/Optimize the code (register allocation, loop unrolling)
- When (analyze, emit, transform)
 - Ahead-of-Time (static)
 - At install/load time
 - At runtime (with the runtime systems)

Compiler/static – Runtime/dynamic

- Static/ahead-of-time
 - Analysis: find (always) true facts (aliasing checking)
 - Optimizations: fine grain code transformation, regular code

Dynamic/runtime

- Runtime Systems: handle irregularities, data-dependent behaviors, execution environments, Load Balancing
- Profiling/observation: find probable facts, perform statistics

The Runtime System may help the Compiler...

#pragma omp task

```
for ( int i = 0; i < n ; i++) d [I] = s [I] ;
```

#pragma omp task

```
if (d+n <= s || s+n <= d || d == s)

par_for ( int i = 0; i < n ; i++) d [I] = s [I] ;

else

for ( int i = 0; i < n ; i++) d [I] = s [I] ;
```

Code cloning

- Compiler: Aliasing Analysis for optimization
- Generate optimized versions, one for each possible context, <u>binary code cloning</u>
- Compiler has to generate predicates

Binary

 Runtime system checks the predicate and launches the task with the adequate version

Compiler may also help the Runtime System...

/* b x b x b Blocked matrix-matrix multiply*/ for (I = 0, I < n; I += b) for (J = 0 ; J < n ; J+= b) for (K = 0 ; K < n ; K += b) C [I..I+b, J..J+b] += A [I..I+b, K..K+b] * B [K..K+b, J..J+b] ;

- Static Complexity Analysis
 - Arithmetic intensity
 - $F = 2n^3$
 - Memory access (cache size S)
 - $n^2 << S : Q = 3n^2$
 - $n x b << S : Q = n^{3}/b$
 - $b x b << S : Q = 2 n^{3}/b$
 - $B << S : Q = n^3$
 - Otherwise : $Q = 2 n^3$
 - F, Q metrics transmitted to the runtime system
 - Metrics help the load balancing decisions

Corse software

Compilers

- Plugins in existing compilers (mostly LLVM), new LLVM passes
- Specification and TIREX toolbox (SSA Intermediate Representation)

Runtime Systems

- New load balancers (Charm++, OpenMP, Erlang,...)
- Unconventional computing platforms : Kalray MPPA, FPGA, PIM (Processor in Memory)

Interactive debugging, properties monitoring

- Debugging with programming models
 - Gdb, OpenMP, OmpSs, Temanejo
- Dynamic monitoring of program properties

End-to-End Solutions for Applications

- BOAST : DSL for computing kernels (wavelets, stencils,...)
- Geophysics (SPECFEM, Ondes3D), Material Physics (BigDFT)

Corse Collaborations with Brazil

• UFRGS (P. Navaux), Porto Alegre

- LICIA (CNRS INRIA International Lab)
- ExaSE (INRIA Associated Team)
- Joint Laboratory on Exascale Computing (JLESC) : INRIA, BSC, UIUC, ANL, Juelich,
- HPC GA project (FP7 Marie Curie IRSES)
- HPC4E (H2020 EUB Project) : WP2 Disruptive Exascale Computer Architecture

• UFMG (F. Pereira), Belo Horizonte

- Prospiel (INRIA Associated Team)
- Diogo Sampaio's PhD Thesis
- USP (A. Goldman), Sao Paulo
 - Runtime Systems, Actor Programming
 - PhD students : E. Francesquini, R. Goncalves
- PUC Minas (H. Freitas), Belo Horizonte
- UFSC (M. Castro, L. Pilla), Florianapolis

Laboratoire d'Informatique de Grenoble

J-F. Méhaut UJF-CEA-INRIA/LIG

High Performance Computing Geophysics Applications (HPC GA)

Seventh Framework Programme (FP7) Marie Curie Actions, PEOPLE International Research Staff Exchange Scheme (IRSES)

01/01/2012 12/31/2014

Agenda

Introduction

- FP7 PEOPLE IRSES programme
- HPC GA project (PIRSES-GA-2011-295217)

Wave Propagation on manycore processors

- Wave propagation models
- Kalray/MPPA architecture
- Performance/Power Results

Conclusion

- HPC GA Results

FP7 PEOPLE IRSES Programme Objectives

- Attract/retain numerous, well-trained, motivated researchers in Europe
- Development of adequate and broad skills for both the private and public sector
- Strengthen international dimension
- No age limits for project participants (mobility):
 - Early stage researchers (ESR) : Post-graduate students <4Y
 - Experienced Researchers (ER) : Post-doc 4-10Y, senior post-doc >10Y
- Duration of exchange : maximum of 12 months
- EU contribution to mobility cost : <u>2100 Euros/month</u>

FP7 IRSES objectives

- To establish or deepen partnerships between research organisations within Member States/Associated Countries and organisations in countries covered by the European Neighbourhood policy and Countries with S&T Agreements through a joint programme of exchange of researchers
- Countries with EU agreements on S&T
 - Argentina, Brazil, Chile, Mexico...

HPC GA summary (01/2012 - 12/2014)

 Challenges of designing high performance geophysics simulations for massively parallel architectures

- Pluridisciplinary project
 - Geophysics
 - Applied Mathematics
 - Computer Science
- 2 EU Countries
 - France and Spain
- 2 Countries with S&T agreements
 - Brazil and Mexico

HPC GA consortium

• INRIA (France) : O. Aumage, J. Diaz, J-F. Méhaut

- Grenoble and Bordeaux : Computer Science, Runtime Systems
- Pau : Applied Mathematics

• UFRGS (Brazil, Porto Alegre) : P. Navaux, L. Farina

- Computer Science, Runtime Systems
- Applied Mathematics, Numerical Methods

• BCAM (Spain, Bilbao) : E. Zuazua, E. Akhmatskaya

- Applied Mathematics, Numerical Methods
- UNAM (Mexico) : V. Atienza, J. Tago
 - Geophysics

• BRGM (France, Orléans) : F. Dupros, H. Aochi

- French Geoscience Institute

• UJF-ISTerre (France, Grenoble) : E. Chaljub

Grenoble Geoscience Lab

Universidad Nacional Autónoma de México

HPC GA workpackages

Workpackage	Title	Leader
WP0	Management	INRIA
WP1	Runtime for New HPC platforms	UFRGS
WP2	Numerical Models	BCAM
WP3	Adaptation of Seismic and Tsunami Applications for Manycore Architectures	BRGM
WP4	Wave Propagation in Complex Media	UNAM

HPC GA scientific workpackages

• WP1 : Runtimes for new HPC platforms

- Participants : UFRGS, INRIA (Grenoble, Bordeaux)
- Tasks : NUMA Hierachies, GPU programming, Low Power procesors, I/O and Data Management

WP2 : Numerical Methods

- Participants : BCAM, INRIA (Pau), UFRGS
- Tasks : Elasto-acoustic coupling

• WP3 : Geophysics Applications and Manycore Architectures

- Participants : BRGM, UJF-ISTerre, UNAM, INRIA
- Tasks : Performance evaluation, code optimization
- WP4 : Wave progagation in complex media
 - Participants : UNAM, UJF-ISTerre, BRGM
 - Tasks : sedimentary basins, Site/city interaction (Mexico)

Laboratoire d'Informatique de Grenoble

Seismic Wave Propagation

Site effects associated with strong motion

Earth's surface

« SITE EFFECTS»

Local: few meters, 20-40 sec

Wave radiation

Seismic Fault

« **PROPAGATION** »

Regional : tens of km, 20-40 sec National : hundreds of km > few mins Global : Earth > several hrs

« SOURCE »

Magnitude 6 : average of 10 km < 10 seconds

Seismic Wave Propagation Models

- Used to predict the consequences of future earthquakes
- Seismic waves are represented by a set of elastodynamics equations;
 - Solved by implementing the explicit finite difference method;

Seismic Wave Propagation (Ondes3D, BRGM)

- Simulation composed by time steps
- In each time step (3D simulation)
 - The first triple nested loop computes
 the velocity components
 - The second loop reuses velocity result of the previous time step to update the stress field

4th-order stencil

Manycore architectures

- Industrial Collaboration with a SME
 - Kalray (http://www.kalray.eu)

MPPA

MANYCORE

- French fabless semiconductor and software compagny founded in 2008
- France (Grenoble, Paris), USA (California), Japan (Tokyo)
- Compagny developing and selling a new generation of manycore processors

• MPPA-256

- Multi-Purpose Processor Array (MPPA)
- Manycore processor : 256 cores on a single chip
- Low Power Consumption [5W 11W]

Kalray MPPA-256 architecture

- 256 cores (PEs) @ 400 MHz : 16 clusters, 16 PEs per cluster
- PEs share 2MB of memory
- Absence of cache coherence protocol inside the cluster
- Network-on-Chip (NoC): communication between clusters
- 4 I/O subsystems : 2 connected to external memory

 A master process runs on an RM of one of the I/O subsystems

- The master process spawns slave processes
- One slave process per cluster

- The slave process run on the PE0 and may create up to 15 threads, one for each PE
- Threads share 2 MB of memory

- Communications take the form of remote writes
- Data travel through the NoC

Challenging issues with MPPA

Memory

- Real seismic simulation data don't fit in 2MB per cluster
- No cache coherency
- Data transferts from/to the DRR explicitly managed by the programmer

Data transfers

- Specific API to perform data movements
- Asynchronous data transfers to overlap communications with computations

• NoC

- Data transfers should match the NoC topology to reduce communication costs
- Send few data transfers containing large amount of data is better than several data transfers containing few data

Overview of Parallel Execution on MPPA-256

• **Two-level tiling scheme** to exploit the memory hierarchy of MPPA-256

Results : MPPA vs Multicore and manycore platforms

Intel Xeon E5

- Sandy Bridge-EP with 8 cores at 2.4 GHz
- 32 GB of DDR3

NVIDIA Quadra K4000 GPU

- Kepler architecture
- 768 CUDA cores at 800 MHz
- 3GB of main memory

Results - Input problem size of 2 GB

Results - Input problem size of 2 GB

Results - Input problem size of 2 GB

Kalray/MPPA Roadmap

- Multi-MPPA co-processor
 - Kalray recently (SC) announced a multi-MPPA board that features four MPPA-256 processors with less than 50 W of power consumption

- 4 MPPA-256@400MHz
 - 1 TFLOPS SP /300 GFLOPS DP
 - 32 bit architecture
 - 32 GB DDR3 1600 MT/s
- TURBOCARD3 : available 3Q'15
 - 4 MPPA-256@800MHz
 - 3,2 TFLOPS SP / 1,6 TFLOPS DP
 - 64 bit architecture
 - 64 GB DDR3 2133 MT/s, 8 channels

26th International Symposium on Computer Architecture and High Performance Computing

Paris, France

Best Paper Award

to

"Márcio Castro, Fabrice Dupros, Emilio Francesquini,

Jean-François Méhaut and Philippe Navaux"

for the paper

"Energy Efficient Seismic Wave Propagation Simulation on a Low-power Manycore Processor"

General chair

PC Chairs

Sweath

2014

HPC GA Results

About 30 joint publications

- Journals (15) : JPDC, FCGS, ParCo, IJPP, Cluster Computing, Journal of Geophysical Research, Seismological Research Letters, Journal of Computational and Applied Mathematics, Mathematical Modeling,...
- Conferences (15), 1 Best Paper Award (SBAC PAD 2014)
- 2 Best PhD Thesis Awards (in Computer Architecture and HPC)
 - 2013 Marcio Castro (INRIA)
 - 2014 Laercio Pilla (UFRGS/INRIA)

Cotutelle PhD (UFRGS/University of Grenoble)

- 3 UFRGS and INRIA
 - Laercio Pilla,
 - Joao Lima
 - Francieli Boito

HPC GA Results (2)

- ESR students became Associate Professor
 - Laercio Pilla (UFRGS/INRIA) → University Federal of Santa Catarina (UFSC)
 - Marcio Castro (INRIA/UFRGS) → University Federal of Santa Catarina (UFSC)
 - Joao Lima (UFRGS/INRIA) → University Federal of Santa Maria (UFSM)
 - Josue Tago (UNAM/UJF) → University National Autonoma of Mexico (UNAM)

HPC GA Mobility

- UFRGS → INRIA
 - 24 missions (5 ER, 19 ESR)
- INRIA → UFRGS
 - 7 missions (4 ER, 3ESR)
- UNAM → INRIA/UJF
 - 6 missions (4 ER, 2 ESR)

Laboratoire d'Informatique de Grenoble

Thank you !