Hybrid dimensional Darcy flow in fractured porous medium and parallel implementation in code ComPASS

Feng $Xing^{1,2,3}$

joint work with

Konstantin Brenner^{1,2}, Simon Lopez³, Roland Masson^{1,2}

- (1) Laboratoire J.A. Dieudonné, Université de Nice
- (2) Team COFFEE, INRIA Sophia Antipolis
- (3) Institut BRGM

Goal: develop a parallel prototype to test promising numerical methods on realistic cases

Brief history

- 0. CEMRACS 2012: heat equation as a toy problem. E. Dalissier, C. Guichard, P. Havé, R. Masson, C. Yang.
- 1. Two phase flow in porous media: work on the linear solvers (FVCA 7). *R. Eymard, C. Guichard, R. Masson.*
- 2. Tracer model on a fractured porous media. *R. Masson, F. Xing*

Goal: develop a parallel prototype to test promising numerical methods on realistic cases

Main specifications

- Parallel programming with MPI using Fortran 2003
- General meshes (polyhedral cells, possibly non planar faces)

- Adapted to Finite Volume schemes with d.o.f. at nodes, cells, faces and 'usual' compact stencil
- Connected with scientific computing libraries: METIS, PETSc, Trilinos, VTK

- Tracer problem on discrete fracture network
- Vertex-centered discretisation (VAG)
- Implementation in code ComPASS
- Numerical results

Tracer problem on a Discrete Fracture Network (DFN)

Hybrid dimensional models for DFN [Alboin-Jaffré-Roberts-Serres 2002] $d_f \ll \operatorname{diam}(\Omega)$ continuous pressure u on $\overline{\Omega}$ $\dim(\Gamma)=\dim(\Omega)$ -1

1. Pression equation

$$\operatorname{div}_{\tau}(\mathbf{q}_{f}) + \llbracket \mathbf{q}_{m} \cdot \mathbf{n} \rrbracket = 0 \qquad \qquad \text{on } \Gamma$$

$$\mathbf{q}_m = -\Lambda_m \nabla u$$
 on $\Omega \setminus \overline{\Gamma}$

$$\mathbf{q}_f = -d_f \Lambda_f \nabla_\tau \gamma u \quad \text{ on } \Gamma$$

with the jump $[\![\mathbf{q}_m\cdot\mathbf{n}]\!]=\mathbf{q}_m^+\cdot\mathbf{n}^++\mathbf{q}_m^-\cdot\mathbf{n}^-$

Tracer problem on a Discrete Fracture Network (DFN)

Hybrid dimensional models for DFN [Alboin-Jaffré-Roberts-Serres 2002] $d_f \ll \operatorname{diam}(\Omega)$ continuous pressure u on $\overline{\Omega}$ $\operatorname{dim}(\Gamma)=\operatorname{dim}(\Omega)-1$

1. Pression equation

$$\operatorname{div}_{\tau}(\mathbf{q}_{f}) + \llbracket \mathbf{q}_{m} \cdot \mathbf{n} \rrbracket = 0 \qquad \qquad \text{on } \Gamma$$

$$\mathbf{q}_m = -\Lambda_m
abla u$$
 on $\Omega \setminus \overline{\Gamma}$

$$\mathbf{q}_f = -d_f \Lambda_f
abla_ au \gamma u$$
 on Γ

with the jump
$$\llbracket \mathbf{q}_m \cdot \mathbf{n} \rrbracket = \mathbf{q}_m^+ \cdot \mathbf{n}^+ + \mathbf{q}_m^- \cdot \mathbf{n}^-$$

2. Tracer equation

$$\begin{cases} \partial_t c_m + \operatorname{div}(c_m \mathbf{q}_m) = 0 & \text{on } \Omega \setminus \overline{\Gamma} \\\\ \partial_t (d_f c_f) + \operatorname{div}_\tau (c_f \mathbf{q}_f) + \llbracket c_m \mathbf{q}_m \cdot \mathbf{n} \rrbracket = 0 & \text{on } \Gamma \\\\ c_m^+ = c_f & \text{on } \{ x \in \Gamma \mid \mathbf{q}_m^+ \cdot \mathbf{n}^+ > 0 \} \\\\ c_m^- = c_f & \text{on } \{ x \in \Gamma \mid \mathbf{q}_m^- \cdot \mathbf{n}^- > 0 \} \end{cases}$$

VAG discretization for a tracer problem on a Discrete Fracture Network (DFN)

 \star Discrete Unknowns \star

$$u_{\mathcal{D}} = (u_{\mathcal{K}}, u_{\sigma}, u_{\mathsf{s}}, \mathcal{K} \in \mathcal{M}, \sigma \in \mathcal{F}_{\Gamma}, \mathsf{s} \in \mathcal{V})$$

 $\mathcal{M}:$ cells, $\mathcal{F}_{\Gamma}:$ fracture faces, $\mathcal{V}:$ vertex

*** Discrete Unknowns ***

$$u_{\mathcal{D}} = (u_{\mathcal{K}}, u_{\sigma}, u_{s}, \mathcal{K} \in \mathcal{M}, \sigma \in \mathcal{F}_{\Gamma}, s \in \mathcal{V})$$

 $\mathcal{M}:$ cells, $\mathcal{F}_{\Gamma}:$ fracture faces, $\mathcal{V}:$ vertex

 \star Volume redistribution \star

$$\omega_{\mathcal{K}}, \ \mathcal{K} \in \mathcal{M}, \quad \omega_{\sigma}, \ \sigma \in \mathcal{F}_{\Gamma}, \quad \omega_{s}, \ s \in \mathcal{V}$$

mixing of rocktype \Rightarrow non accurate results

\star Fluxes \star

In the matrix : The fluxes $F_{K,s}(u_D)$, $F_{K,\sigma}(u_D)$ are computed from all the nodes and the fracture faces connected to K.

In the fracture : The fluxes $F_{\sigma,s}(u_D)$ are computed from all the nodes connected to σ .

Mesh decomposition

- \bullet Mesh decomposition by METIS: \mathcal{M}^1 and \mathcal{M}^2
- \bullet One layer ghost cells: $\overline{\mathcal{M}}^1$ and $\overline{\mathcal{M}}^2$

Mesh decomposition

- \bullet Mesh decomposition by METIS: \mathcal{M}^1 and \mathcal{M}^2
- \bullet One layer ghost cells: $\overline{\mathcal{M}}^1$ and $\overline{\mathcal{M}}^2$

- \bullet Vertex: \mathcal{V}^1 and \mathcal{V}^2
- Vertex with ghost: $\overline{\mathcal{V}}^1$ and $\overline{\mathcal{V}}^2$
- \bullet Fracture faces: \mathcal{F}^1 and \mathcal{F}^2
- \bullet Fracture faces with ghost: $\overline{\mathcal{F}}^1$ and $\overline{\mathcal{F}}^2$

VAG discretization of the pressure equation

On each processor *p*, the unknowns are:

$$\overline{u}_{\mathcal{D}}^{p} = \left(u_{\mathcal{K}}, u_{\sigma}, u_{s}, \mathcal{K} \in \overline{\mathcal{M}}^{p}, \sigma \in \overline{\mathcal{F}}_{\Gamma}^{p}, s \in \overline{\mathcal{V}}^{p}\right)$$

On each processor *p*, the equations are:

$$\begin{cases} \sum_{\nu \in \mathcal{V}_{\mathcal{K}} \cup (\mathcal{F}_{\mathcal{K}} \cap \mathcal{F}_{\Gamma})} F_{\mathcal{K},\nu}(u_{\mathcal{D}}) = 0, \ \mathcal{K} \in \overline{\mathcal{M}}^{p} \\ \sum_{\mathbf{s} \in \mathcal{V}_{\sigma}} F_{\sigma,\mathbf{s}}(u_{\mathcal{D}}) + \sum_{\mathcal{K} \in \mathcal{M}_{\sigma}} -F_{\mathcal{K},\sigma}(u_{\mathcal{D}}) = 0, \ \sigma \in \mathcal{F}_{\Gamma}^{p} \\ \sum_{\mathcal{K} \in \mathcal{M}_{s}} -F_{\mathcal{K},\mathbf{s}}(u_{\mathcal{D}}) + \sum_{\sigma \in \mathcal{F}_{\Gamma,\mathbf{s}}} -F_{\sigma,\mathbf{s}}(u_{\mathcal{D}}) = 0, \ \mathbf{s} \in \mathcal{V}^{p} \setminus dof_{Dir} \\ u_{\mathbf{s}} = u_{Dir}, \ \mathbf{s} \in dof_{Dir} \end{cases}$$

VAG discretization of the concentration equation, Upwind scheme

On each processor p, at each time step $n \rightarrow n+1$, the unknowns are:

$$\overline{c}_{\mathcal{D}}^{p,\{n+1\}} = \left(\boldsymbol{c}_{K}^{n+1}, \boldsymbol{c}_{\sigma}^{n+1}, \boldsymbol{c}_{\mathsf{s}}^{n+1}, K \in \overline{\mathcal{M}}^{p}, \sigma \in \overline{\mathcal{F}}_{\Gamma}^{p}, \mathbf{s} \in \overline{\mathcal{V}}^{p} \right)$$

On each processor p, the equations are:

$$\begin{split} |\omega_{K}| \frac{c_{K}^{n+1} - c_{K}^{n}}{\Delta t} + \sum_{\nu \in \mathcal{V}_{K} \cup (\mathcal{F}_{K} \cap \mathcal{F}_{\Gamma})} H_{K,\nu}(c_{\mathcal{D}}^{n}) = 0, \ K \in \mathcal{M}^{p} \\ |\omega_{\sigma}| \frac{c_{\sigma}^{n+1} - c_{\sigma}^{n}}{\Delta t} + \sum_{\mathbf{s} \in \mathcal{V}_{\mathcal{F}}} H_{\sigma,\mathbf{s}}(c_{\mathcal{D}}^{n}) - \sum_{K \in \mathcal{M}_{\sigma}} H_{K,\sigma}(c_{\mathcal{D}}^{n}) = 0, \ \sigma \in \mathcal{F}_{\Gamma}^{p} \\ |\omega_{\mathbf{s}}| \frac{c_{\mathbf{s}}^{n+1} - c_{\mathbf{s}}^{n}}{\Delta t} - \sum_{K \in \mathcal{M}_{\mathbf{s}}} H_{K,\mathbf{s}}(c_{\mathcal{D}}^{n}) - \sum_{\sigma \in \mathcal{F}_{\Gamma,\mathbf{s}}} H_{\sigma,\mathbf{s}}(c_{\mathcal{D}}^{n}) = 0, \ \mathbf{s} \in \mathcal{V}^{p} \setminus dof_{Dir} \\ |c_{\mathbf{s}}| = c_{Dir}, \ \mathbf{s} \in dof_{Dir} \end{split}$$

with the following Explicit Upwind Two Point Fluxes:

$$H_{K,\nu}(c_{\mathcal{D}}^{n}) = c_{K}^{n} F_{K,\nu}(u_{\mathcal{D}})^{+} + c_{\nu}^{n} F_{K,\nu}(u_{\mathcal{D}})^{-}$$
$$H_{\sigma,\mathbf{s}}(c_{\mathcal{D}}^{n}) = c_{\sigma}^{n} F_{\sigma,\mathbf{s}}(u_{\mathcal{D}})^{+} + c_{\mathbf{s}}^{n} F_{\sigma,\mathbf{s}}(u_{\mathcal{D}})^{-}$$

VAG discretization of the concentration equation, MUSCL scheme

On each processor *p*, two steps for $n \rightarrow n + 1$:

A second order MUSCL type reconstruction

$$\overline{c}_{\mathcal{D}}^{p,*} = \{ c_{K,\nu}^*, K \in \overline{\mathcal{M}}^p, \nu \in dof(K) \} \cup \{ c_{\sigma,\nu}^*, \sigma \in \overline{\mathcal{F}}_{\Gamma}^p, \nu \in dof(\sigma) \}$$

Acceptable slopes:

$$\overline{I}_{\mathcal{D}}^{p,*} = (I_{K}^{*}, I_{\sigma}^{*}, I_{\mathsf{s}}^{*}, K \in \overline{\mathcal{M}}^{p}, \sigma \in \overline{\mathcal{F}}_{\Gamma}^{p}, \mathsf{s} \in \overline{\mathcal{V}}^{p})$$

Compute

$$\begin{aligned} H_{K,\nu}(c_{\mathcal{D}}^{p,*}, \overline{I}_{\mathcal{D}}^{p,*}) &= (x_{K}^{n} + \mathcal{P}_{I_{K}^{*}}(c_{K,\nu}^{*} - c_{K}^{n}))F_{K,\nu}(u_{\mathcal{D}})^{+} \\ &+ (x_{\nu}^{n} + \mathcal{P}_{I_{K}^{*}}(c_{K,\nu}^{*} - c_{K}^{n}))F_{K,\nu}(u_{\mathcal{D}})^{-} \end{aligned}$$

and

$$\begin{aligned} H_{\sigma,\nu}(c_{\mathcal{D}}^{p,*},\bar{l}_{\mathcal{D}}^{p,*}) &= \left(x_{\sigma}^{n} + \mathcal{P}_{l_{\sigma}^{*}}(c_{\sigma,\nu}^{*} - c_{\sigma}^{n})\right)F_{\sigma,\nu}(u_{\mathcal{D}})^{+} \\ &+ \left(x_{\nu}^{n} + \mathcal{P}_{l_{\sigma}^{*}}(c_{\sigma,\nu}^{*} - c_{\sigma}^{n})\right)F_{\sigma,\nu}(u_{\mathcal{D}})^{-} \end{aligned}$$

Outline of ComPASS implementation

0. Initialization

- Global to Local Mesh
- VAG scheme transmissivities

1. Pressure equation

• Assembling of non-square linear systems

$$\begin{pmatrix} A^{\rho} & B^{\rho} \\ C^{\rho} & D^{\rho} \end{pmatrix} \begin{pmatrix} U_{\overline{\mathcal{V}}^{\rho} \cup \overline{\mathcal{F}}_{\Gamma}^{\rho}} \\ U_{\overline{\mathcal{K}}^{\rho}} \end{pmatrix} = RHS^{\rho} \qquad \begin{pmatrix} A^{\rho} \in \mathbb{R}^{\mathcal{V}^{\rho} \cup \mathcal{F}_{\Gamma}^{\rho}} \otimes \mathbb{R}^{\overline{\mathcal{V}}^{\rho} \cup \overline{\mathcal{F}}_{\Gamma}^{\rho}} \\ B^{\rho} \in \mathbb{R}^{\mathcal{V}^{\rho} \cup \mathcal{F}_{\Gamma}^{\rho}} \otimes \mathbb{R}^{\overline{\mathcal{M}}^{\rho}} \end{pmatrix} \qquad \begin{pmatrix} C^{\rho} \in \mathbb{R}^{\overline{\mathcal{M}}^{\rho}} \otimes \mathbb{R}^{\overline{\mathcal{M}}^{\rho}} \\ D^{\rho} \in \mathbb{R}^{\overline{\mathcal{M}}^{\rho}} \otimes \mathbb{R}^{\overline{\mathcal{M}}^{\rho}} \end{pmatrix}$$

- Schur complement system $(A^p B^p (D^p)^{-1} C^p) U_{\overline{V}^p \cup \overline{\mathcal{F}}_r^p} = \widetilde{RHS}^p$
- Resolution by PETSc (Trilinos) $\Rightarrow U_{\mathcal{V}^{p} \cup \mathcal{F}_{r}^{p}}$
- Synchronization $\Rightarrow U_{\overline{\mathcal{V}}^p \cup \overline{\mathcal{F}}_r^p}$
- Schur complement $\Rightarrow U_{\overline{K}^p}$

Outline of ComPASS implementation

0. Initialization

- Global to Local Mesh
- VAG scheme transmissivities

1. Pressure equation

• Assembling of non-square linear systems

$$\begin{pmatrix} A^{\rho} & B^{\rho} \\ C^{\rho} & D^{\rho} \end{pmatrix} \begin{pmatrix} U_{\overline{\mathcal{V}}^{\rho} \cup \overline{\mathcal{F}}_{\Gamma}^{\rho}} \\ U_{\overline{\mathcal{K}}^{\rho}} \end{pmatrix} = RHS^{\rho} \qquad \begin{pmatrix} A^{\rho} \in \mathbb{R}^{\mathcal{V}^{\rho} \cup \mathcal{F}_{\Gamma}^{\rho}} \otimes \mathbb{R}^{\overline{\mathcal{V}}^{\rho} \cup \overline{\mathcal{F}}_{\Gamma}^{\rho}} \\ B^{\rho} \in \mathbb{R}^{\mathcal{V}^{\rho} \cup \mathcal{F}_{\Gamma}^{\rho}} \otimes \mathbb{R}^{\overline{\mathcal{M}}^{\rho}} \end{pmatrix} \qquad \begin{pmatrix} C^{\rho} \in \mathbb{R}^{\overline{\mathcal{M}}^{\rho}} \otimes \mathbb{R}^{\overline{\mathcal{M}}^{\rho}} \\ D^{\rho} \in \mathbb{R}^{\overline{\mathcal{M}}^{\rho}} \otimes \mathbb{R}^{\overline{\mathcal{M}}^{\rho}} \end{pmatrix}$$

- Schur complement system $(A^{p} B^{p}(D^{p})^{-1}C^{p})U_{\overline{V}^{p}\cup\overline{\mathcal{F}}_{r}^{p}} = \widetilde{RHS}^{p}$
- Resolution by PETSc (Trilinos) $\Rightarrow U_{\mathcal{V}^{p} \cup \mathcal{F}_{r}^{p}}$
- Synchronization $\Rightarrow U_{\overline{\mathcal{V}}^p \cup \overline{\mathcal{F}}_r^p}$
- Schur complement $\Rightarrow U_{\overline{K}^p}$
- 3. **CFL condition** $\Rightarrow \Delta t$
- 4. Time loop for concentration equation
 - Explicit scheme: $c_{\mathcal{D}}^{n+1} \leftarrow \overline{c}_{\mathcal{D}}^{n}$
 - Synchronization: $\overline{c}_{D}^{n+1} \leftarrow c_{D}^{n+1}$

2D analytical example - Test case presentation

Geometry : 1 planar fracture, $\Omega = (0, 1)^2$

Test case configuration

- Isotropic media, $\Lambda_f = 20 \ \Lambda_m$, $d_f = 0.01$
- 1d linear pressure
- Initial concentration c = 0
- Injection at the left side c = 1

Example mesh

Analytical solution : discrete errors on the solution

2D analytical example - Discrete concentration - mesh $1600 \times 1 \times 1600$

2D analytical example - Discrete errors on the concentration c

Figure: Errors in the matrix domain (left) and in the fracture (right).

3D fracture network with hexahedral mesh

Geometry : 3D network of fractures of $\Omega = (0,1)^3$ with hexahedral meshes

Test case configuration

- Isotropic media, $\Lambda_f = 20 \ \Lambda_m$, $d_f = 0.01$
- non linear pressure
- Initial concentration c = 0
- Injection at the bottom side c = 1

3D fracture network - Discrete concentration - $128^3 \mbox{ cells}$

N_p	2	4	8	16	32	64	128	256	512
GMRES + Boomer AMG	15	15	15	15	15	16	15	15	15
$GMRES + Aggregation \ AMG$	65	70	98	95	59	86	65	91	54
GMRES + ILU(0)	751	707	655	644	648	634	633	624	613
GMRES + ILU(1)	> 1000								
GMRES + ILU(2)	> 1000								
BiCGSTAB + Boomer AMG	9	9	9	9	9	10	9	9	10
BiCGSTAB + ILU(0)	508	476	484	503	473	513	491	487	484
$\frac{\text{BiCGSTAB} + \text{ILU(0)}}{\text{BiCGSTAB} + \text{ILU(1)}}$	508	476	484	503 > 1	473 000	513	491	487	484

Table: Number of iterations vs. number of MPI processes with hexahedral mesh.

Mesh: 2.1×10^6 cells, 2.1×10^6 vertexes and 5.2×10^4 fractures faces

Mesh: $128^3 \Rightarrow$: 2.1×10^6 cells, 2.1×10^6 vertexes and 5.2×10^4 fractures faces

cluster Cicada: http://calculs.unice.fr/ - 72 Cpu nodes: 16 cores (2 Intel Sandy Bridge E5-2670), 64 GB, GCC 4.9.1, OpenMPI 1.8.2, 1 core/MPI

3D fracture network with hexahedral mesh

Figure: Computation times for pressure (left) and computation times for tracer (right) vs. number of MPI processes with hexahedral mesh.

Mesh: 2.1×10^6 cells, 2.1×10^6 vertexes and 5.2×10^4 fractures faces

3D fracture network with tetrahedral mesh

Geometry : 3D network of fractures of $\Omega = (0, 1)^3$ with tetrahedral meshes

Test case configuration

- Isotropic media, $\Lambda_f = 20 \ \Lambda_m$, $d_f = 0.01$
- non linear pressure
- Initial concentration c = 0
- Injection at the bottom side c = 1

3D fracture network with tetrahedral mesh

N_p	2	4	8	16	32	64	128	256	512
GMRES + Boomer AMG	11	12	12	12	12	12	12	12	12
GMRES + ILU(0)	-	725	717	682	667	656	644	629	612
GMRES + ILU(1)	> 1000								
GMRES + ILU(2)	154	153	152	151	149	147	144	142	140
BiCGSTAB + Boomer AMG	8	7	8	8	8	8	8	8	8
BiCGSTAB + ILU(0)	565	513	527	544	535	483	489	483	473
BiCGSTAB + ILU(1)	374	367	432	404	317	382	348	307	271
BiCGSTAB + ILU(2)	104	105	101	103	98	106	97	93	103

Table: Number of iterations vs. number of MPI processes with tetrahedral mesh.

Mesh: 6.2×10^6 cells, 9.7×10^5 vertexes and 7.1×10^4 fracture faces

Figure: Total computation times vs. number of MPI processes with tetrahedral mesh.

Mesh: 6.2×10^6 cells, 9.7×10^5 vertexes and 7.1×10^4 fracture faces

cluster Cicada: http://calculs.unice.fr/ - 72 Cpu nodes: 16 cores (2 Intel Sandy Bridge E5-2670), 64 GB, GCC 4.9.1, OpenMPI 1.8.2, 1 core/MPI

Geology simulation

A real case from S. Lopez (BRGM)

Geology simulation

A real case from S. Lopez (BRGM)

- Multiphase compositional Darcy flux in fracture porous media
 - \diamond N_P phases, N_C components
 - \diamond Model is defined by a matrix of size $\mathit{N_C} \times \mathit{N_P}$
- Applications (S. Lopez at BRGM)
 - \diamond Real case studies, geothermal reservoir simulation in Guadeloupe
- Code
 - ◊ Optimization (OpenMP?)
 - $\diamond \text{ User-friendly interface}$

Thanks for your attention!

This work is also supported by "institut Carnot" (ANR, INRIA, BRGM).

This work was granted access to the HPC and visualization resources of the "Centre de Calcul Interactif" hosted by University Nice Sophia Antipolis.

*** Discrete Unknowns ***

$$u_{\mathcal{D}} = (u_{\mathcal{K}}, u_{\sigma}, u_{\mathbf{s}}, \mathcal{K} \in \mathcal{M}, \sigma \in \mathcal{F}_{\Gamma}, \mathbf{s} \in \mathcal{V})$$

*** Discrete Operators ***

In the matrix : $\forall K \in \mathcal{M}$

$$\Pi_{\mathcal{D}_m} u_{\mathcal{D}}(\mathbf{x}) = \begin{cases} u_{\mathcal{K}} & \text{ for all } \mathbf{x} \in \omega_{\mathcal{K}} \\ u_{\mathbf{s}} & \text{ for all } \mathbf{x} \in \omega_{\mathbf{s}} \end{cases}$$

$$\nabla_{\!\mathcal{D}_m} u_{\!\mathcal{D}} = \nabla_{\mathcal{T}_{\!K,\sigma,e}} u_{\!\mathcal{D}} \ , \ \sigma \in \mathcal{F}_K \ , \ e \in \mathcal{E}_\sigma$$

 $\mathcal{T}_{\mathcal{K},\sigma,e}$: tetrahedron joining cell center $x_{\mathcal{K}}$ to triangle $\mathcal{T}_{\sigma,e}$

 $\forall \! \sigma \! \in \! \mathcal{F} \! \setminus \! \mathcal{F}_{\Gamma} \text{ interpolation of the face unknown } \! u_{\sigma} \! = \! \frac{\sum_{\mathbf{s} \in \mathcal{V}_{\sigma}} u_{\mathbf{s}}}{\operatorname{card}(\mathcal{V}_{\sigma})}$

0

Xσ

In the fracture :
$$\forall \sigma \in \mathcal{F}_{\Gamma}$$

$$\Pi_{\mathcal{D}_{f}} u_{\mathcal{D}}(\mathbf{x}) = \begin{cases} u_{\sigma} & \text{ for all } \mathbf{x} \in \omega_{\sigma} \\ u_{\mathbf{s}} & \text{ for all } \mathbf{x} \in \omega_{\mathbf{s}} \end{cases} \quad \nabla_{\mathcal{D}_{f}} u_{\mathcal{D}} = \nabla_{\mathbf{T}_{\sigma,e}} u_{\mathcal{D}} , e \in \mathcal{E}_{\sigma} \\ T_{\sigma,e} : \text{ triangle joining edge } e \text{ to face center} \end{cases}$$