
Distributed mesh and graph computations
within PaMPA and PT-Scotch libraries

C. Lachat & F. Pellegrini & C. Dobrzynski
INRIA Bordeaux – Sud-Ouest

Contents

1. Introduction

2. Recent advances on static mapping in Scotch

3. Recent advances on large meshes in PaMPA

4. Conclusion

C. Lachat & F. Pellegrini & C. Dobrzynski – PaMPA & PT-Scotch – September 21, 2015 2

C. Lachat & F. Pellegrini & C. Dobrzynski – PaMPA & PT-Scotch – September 21, 2015 3

1
Introduction

Introduction

• First part
- Numerical simulations need more and more

resources
- Clusters become more and more bigger
- A part of a cluster is used by the program
⇒ Take into account target architecture for
static mapping

• Second part
- Some numerical simulations based on

unstructured meshes
- Remeshing is often required
- Sequential remeshers are limited by the size of

the mesh
⇒ Build parallel remesher with sequential
remesher

C. Lachat & F. Pellegrini & C. Dobrzynski – PaMPA & PT-Scotch – September 21, 2015 4

C. Lachat & F. Pellegrini & C. Dobrzynski – PaMPA & PT-Scotch – September 21, 2015 5

2
Recent advances on static mapping in
Scotch

Context

• Very large scale computers are highly non-uniform
- Hierarchical architectures

- Clusters of multiprocessor blades
- Multi- or even many-core processors

- Mix of the distributed- and shared-memory paradigms
- Communication latency and bandwidth depends on the respective locations of

intercommunicating processes
• Impact on application software

- Data locality is essential to achieve performance
- Target architectures have to be taken into account
- Tighter interaction between software and system components

- Batch scheduler should tell applications what processing elements are assigned for
execution

- Process and/or data placement tools have to take scheduler information into account

C. Lachat & F. Pellegrini & C. Dobrzynski – PaMPA & PT-Scotch – September 21, 2015 6

Static mapping in SCOTCH

• Since its inception in 1992, SCOTCH was designed to compute
process-processor mappings that take into account target topology

T

S

• Communication cost function accounts for distance

fC(τS,T , ρS,T) =
∑

eS∈E(S)

w(eS)|ρS,T (eS)|

C. Lachat & F. Pellegrini & C. Dobrzynski – PaMPA & PT-Scotch – September 21, 2015 7

Dual Recursive Bipartitioning (DRB)

• SCOTCH computes its (initial) mappings by means of the Dual Recursive
Bipartitioning (DRB) algorithm

- Recursive process using a “divide & conquer” approach
- Associates a part of the source graph to each part the target graph

• Until each target subgraph is reduced to a single vertex, do:
- Bipartition target graph
- Use target graph bipartition imbalance to bipartition associated source graph

• During each bipartitioning of source graphs, a partial cost function uses
distance information regarding both internal and external edges so as to
privilege locality

C. Lachat & F. Pellegrini & C. Dobrzynski – PaMPA & PT-Scotch – September 21, 2015 8

Target graph descriptions

• In order to evaluate the partial cost function while (bi)partitioning the
source graph, a target architecture description must provide three
abstractions:

- Domain structure: represents a set of processors in the target architecture
- Domain bipartitioning function: bipartitions a given domain into two disjoint

subdomains
- Domain distance function: provides (an estimate of) the distance between two

domains in the target architecture
• SCOTCH implements two families of target architecture descriptions:

- Decomposition defined
- Can represent very irregular target architectures

- Algorithmically defined
- We will focus on this class during this talk

C. Lachat & F. Pellegrini & C. Dobrzynski – PaMPA & PT-Scotch – September 21, 2015 9

Algorithmically-defined architectures

• Classical architectures are represented on the form of hard-coded
instances of a generic class

- E.g.: mesh2D, hcub, etc.
- Provide all the necessary information thanks to hard-coded routines

• Distances are provided as shortest path length
- E.g.: for mesh2D, Manhattan distance between centers of rectangular domains

• In former SCOTCH implementations, algorithmically-defined architectures
can only describe complete computer systems

- Yet, a part of a torus is not a torus!
- Disconnected parts are not managed, either

• Need for a more generic representation

C. Lachat & F. Pellegrini & C. Dobrzynski – PaMPA & PT-Scotch – September 21, 2015 10

Building a bipartitioning hierarchy through matching

• Recursive matching and coarsening allows one to build a
locality-preserving bipartitioning tree of a (disconnected) part of any
architecture

1 1 0 0

1 1 0 1 1 1 1

02

1

3 1

14 5

• By traversing the coarsening tree from its root, one can build a
locality-preserving bipartitioning tree

1 2

3 35

4

359

8

359

16 17

• Tree is unbalanced but processors are distributed that way!

C. Lachat & F. Pellegrini & C. Dobrzynski – PaMPA & PT-Scotch – September 21, 2015 11

How it works in practice
• Mapping onto 5 processors

- On a complete graph
- On a part of a 4x2 2D mesh architecture

0 2

1 3 4

sub 5 0 4 1 5 7

mesh2 4 2

�

�
�

�

�

k5 m4x2(5)
Edge cut 504 561
Edge dilation on m4x2 804 713

C. Lachat & F. Pellegrini & C. Dobrzynski – PaMPA & PT-Scotch – September 21, 2015 12

C. Lachat & F. Pellegrini & C. Dobrzynski – PaMPA & PT-Scotch – September 21, 2015 13

3
Recent advances on large meshes in PaMPA

Context

• Space discretization:
- mesh

• Finite number of points on which values
of the problem are computed, e.g.:

- temperature
- pressure
- speed,. . .

• Solution precision depends on mesh
quality:

- need for remeshing

• Problems become bigger and more and
more complex
→ Use parallel remesher

C. Lachat & F. Pellegrini & C. Dobrzynski – PaMPA & PT-Scotch – September 21, 2015 14

What is PaMPA

• PaMPA: “Parallel Mesh Partitioning and Adaptation”
• Middleware library managing the parallel repartitioning and remeshing of

unstructured meshes modeled as interconnected valuated entities
• The user can focus on his/her “core business”:

- Solver
- Sequential remesher

- Coupling with MMG3D provided for tetrahedra

PT-Scotch

API

Seq. Qual.
MeasurementRemeshing and redistribution

PaMPA

Physics, solver

Seq.
remesher
MMG3D

Seq.
interpolator

C. Lachat & F. Pellegrini & C. Dobrzynski – PaMPA & PT-Scotch – September 21, 2015 15

Examples

• The same mesh can lead to different enriched graphs
- Depending on the requirements of the numerical schemes

C. Lachat & F. Pellegrini & C. Dobrzynski – PaMPA & PT-Scotch – September 21, 2015 16

Features of version 1.0

• Overlap greater than 1
• Iterators to loop over entities and sub-entities
• Point-to-point or collective communications
• Parallel I/O
• Parallel partitioning

C. Lachat & F. Pellegrini & C. Dobrzynski – PaMPA & PT-Scotch – September 21, 2015 17

Work in progress

• Multigrid:
- described as:

- several distributed meshes
- links between distributed meshes

- Distributed meshes are:
- provided by the user
- produced by recursively coarsening meshes by merging elements and removing

nodes
- Partitioning on the coarsest mesh
- Propagation of the partition to finer levels
- Load-balancing each level
- Computing overlap for all the levels according to the coarsest mesh
- Used in Aerosol software

• Real-time visualisation with ParaView
• Parallel remeshing based on sequential remesher

- coupled with MMG3D
- coupling in progress with TetGen

C. Lachat & F. Pellegrini & C. Dobrzynski – PaMPA & PT-Scotch – September 21, 2015 18

Parallel remeshing: example

• iteration 1

C. Lachat & F. Pellegrini & C. Dobrzynski – PaMPA & PT-Scotch – September 21, 2015 19

Parallel remeshing: example

• iteration 2

C. Lachat & F. Pellegrini & C. Dobrzynski – PaMPA & PT-Scotch – September 21, 2015 20

Parallel remeshing: example

• iteration 3

C. Lachat & F. Pellegrini & C. Dobrzynski – PaMPA & PT-Scotch – September 21, 2015 21

Parallel remeshing: example

• iteration 4

C. Lachat & F. Pellegrini & C. Dobrzynski – PaMPA & PT-Scotch – September 21, 2015 22

Parallel remeshing: example

• at the end

C. Lachat & F. Pellegrini & C. Dobrzynski – PaMPA & PT-Scotch – September 21, 2015 23

Parallel remeshing: global scheme
Iterative process until all tagged elements are remeshed

1b Tagging

2 Identification

3 Extraction 4 Remeshing

5 Reintegration

1a Tagging

C. Lachat & F. Pellegrini & C. Dobrzynski – PaMPA & PT-Scotch – September 21, 2015 24

Parallel remeshing: scalability test (1/2)

Cut of the original cube

• PaMPA coupled with MMG3D4
• Domain space (originally a cube with

graduated isotropic metric) is duplicated
when the number of processor is doubled

• Geometrical partitioning used during
zone identification step

• Remeshing time can be studied without
repartitioning time, because it will be
improved for two reasons:

- For now, reintegration step only do a
local load balancing

- Repartitioning is from scratch (PT-Scotch
v6.1 will take into account the initial
partitioning)

C. Lachat & F. Pellegrini & C. Dobrzynski – PaMPA & PT-Scotch – September 21, 2015 25

Parallel remeshing: scalability test (2/2)

●

●

●

●

200 400 600 800 1000 1400

10
0

20
0

50
0

10
00

Size (in millions of elements)

E
la

ps
ed

 ti
m

e
(in

 s
ec

on
ds

)

●

●

●

●● ●

●

●

Remeshing
Repartitioning
Remeshing minus repartitioning

75 150 300 600

Number of processors

C. Lachat & F. Pellegrini & C. Dobrzynski – PaMPA & PT-Scotch – September 21, 2015 26

C. Lachat & F. Pellegrini & C. Dobrzynski – PaMPA & PT-Scotch – September 21, 2015 27

4
Conclusion

Conclusion

• Recent advances on static mapping in Scotch
- (Disconnected parts of) large architectures can now be represented efficiently

in SCOTCH
- To date, implemented in SCOTCH only, not in PT-SCOTCH
- Released soon in SCOTCH 6.0.5

- PT-SCOTCH is planned to perform parallel static mapping starting from branch
6.1

- Prototype available since the PhD of Sébastien Fourestier, but needs intensive
regression testing before release

• Recent advances on distributed mesh computations with PaMPA
- PaMPA is dedicated to distributed meshes
- We have devised an efficient scheme for parallel remeshing of very large

meshes, which can be coupled with any sequential remesher
- We can achieve the same quality as sequential remeshers
- Release of version 1.0 almost finalized

- Available soon from Inria Gforge
- Work in progress will be available in version 2.0

This research work was partly funded by Investissements d’Avenir (PIA) project ELCI

C. Lachat & F. Pellegrini & C. Dobrzynski – PaMPA & PT-Scotch – September 21, 2015 28

Conclusion
• Recent advances on static mapping in Scotch

- (Disconnected parts of) large architectures can now be represented efficiently
in SCOTCH

- To date, implemented in SCOTCH only, not in PT-SCOTCH
- Released soon in SCOTCH 6.0.5

- PT-SCOTCH is planned to perform parallel static mapping starting from branch
6.1

- Prototype available since the PhD of Sébastien Fourestier, but needs intensive
regression testing before release

• Recent advances on distributed mesh computations with PaMPA
- PaMPA is dedicated to distributed meshes
- We have devised an efficient scheme for parallel remeshing of very large

meshes, which can be coupled with any sequential remesher
- We can achieve the same quality as sequential remeshers
- Release of version 1.0 almost finalized

- Available soon from Inria Gforge
- Work in progress will be available in version 2.0

This research work was partly funded by Investissements d’Avenir (PIA) project ELCI

Thank you for your attention!

C. Lachat & F. Pellegrini & C. Dobrzynski – PaMPA & PT-Scotch – September 21, 2015 29

	Introduction
	Recent advances on static mapping in Scotch
	Recent advances on large meshes in PaMPA
	Conclusion

