
A review of NACAD’s developments within 
HOSCAR and future perspectives on H2020 

Alvaro Coutinho 
alvaro@nacad.ufrj.br 

 
 
 

High Performance Computing Center 
COPPE/Federal University of Rio de Janeiro 

www.nacad.ufrj.br 



Contents 
q  Who we are and what we do! 

q  Multiphysics   
–  Algorithms and Simulation Software 

–  Moving boundaries 

–  Adaptive Mesh Refinement and Coarsening 

q  Pushing the limits 
–  Exploring the Stochastic Space 

–  Parallel Mesh Generation 

q  Future perspectives 
–  HPC4E, new infrastructure, new collaborations 



WHO WE ARE AND  
WHAT WE DO 



COPPE/UFRJ Innovation Ecosystem 



NACAD´s Mission  

q  High Performance Computing in Engineering and Computer 
Science 

q  To provide and operate infrastructure for advanced computing 

q  Develop and support multidisciplinary projects R & D of 

relevance, especially in: 

–  Energy: Oil and Gas, Electric 

–  Civil, Mechanical and Materials Engineering  

–  Environment, Meteorology and Oceanography 

–  Computing, Database and Data Mining 

–  Biological Sciences 



IBM SP2 

Timeline 

Year 

Machines 

Intel iPSC2 

Cluster de PCs 

Cray J90 

SGI 350/450 

SGI Altix ICE 

Sun Galileu 

1988 1990 1995   1999 2005 2010 

640Mflops, 8 procs 

65Tflops, 7K cores 

COPPE NCP I 

InfoCluster 
Itautec 

1st Brazilian supercomputer vendor 

1st Supercomputer built in Brazil 

COPPE’s new machine 2015-206 
253 Compute Nodes 6072 Cores (506 Processadors 
Intel Xeon Haswell E5-2670V3 12-Cores 
2.3GHz)16.192GB Mem DDR4 



HPC Center Systems 
NetApp Storage 500TB 

Dell’s Tiled Wall Display+ 
RV Facility at Lamce at the Tech Park 

SGI UV2000 

SGI Altix ICE-8400 

Galileu, Oracle Server #1 LA 2010 
Memory 21TB, Storage 200TB at Lamce, Tech Park 

SGI Altix 450 Cluster Dell 

Machines located at NACAD 



NACAD’s Main Academic Partners 



NACAD’s Industrial Partners 



NACAD’s on HOSCAR 

q  App Track 
–  Multiphysics  

–  Uncertainty 

Quantification 

–  Enabling Technologies 
•  Mesh generation, solvers, 

visualization 

q  Big Data Track 
–  Scientific Workflows  

–  Databases 

–  Provenance 

–  User steering 

–  Dynamic Loops 

 

This talk 

Mattoso’s talk 



MULTIPHYSICS 
 



Motivation 
Salt Tectonics 

Green water on ship decks 

Underwater turbidite currents 



Governing PDE’s: Fluids 

q  Incompressible Flows 

q  Incompressible Navier-Stokes equations  
–  Hypothesis: NS is valid for ALL scales 

T�AFSM 

Navier–Stokes Equations of Incompressible Flows 

Momentum balance in Eulerian frame 

Incompressibility constraint 



Governing Equations for Solids and Structures 

q  Equation of motion on a Lagrangian framework 

q  Material law:  

q  Difficulties: nonlinear material law, geometric nonlinearities, contact, 
absorbing bcs 

 

ρ ∂2u
∂t 2

−∇.σ + f = 0 in Ω× I

u = g in Γg × I
σ ⋅n = h in Γh × I
u x,0( ) = u0 x( ) x∈Ω
!u x,0( ) = !u0 x( ) x∈Ω

σ = C :ε

Courtesy of J. Alves, COPPE 



General Weak Formulation for Governing Equations 

 

Find U∈V such that ∀W∈V :

B W,U( ) = W,F( )

Remarks: 
 
•  Boundary conditions are built in V 
•  (.,.) is the standard notation for inner product è eqs weakly satisfied 
•  B for Lagrangian equations is the standard Galerkin method 
•  For Eulerian equations B has to be modified 
•  Modifications account for convection, velocity-pressure coupling, shocks 
•  Weak formulation amenable to multiscale decomposition  V =V h ⊗ ′V

B Wh ,Uh + ′U( ) = Wh ,F( )
B ′W ,Uh + ′U( ) = ′W ,F( )

U = Uh + ′U
W =Wh + ′W

Fine scale 

Coarse scale 



RBVMS Formulation for the Incompressible Navier-Stokes 
Equations 



ALE-RBVMS Formulation for the Incompressible Navier-
Stokes Equations 

Adapted from Bazilevs, Takizawa & Tezduyar  



Finite Element Method 

q  Unstructured grid method 
characterized by: 

–  Discontinuous data  

–  Gather/scatter operations 

–  Random memory access 

–  Data dependencies 

q  Main Computational Kernels 
for Implicit Time Marching 

–  Forming system matrix and RHS 

–  Solving linearized systems by 

preconditioned Krylov solvers 

Mesh Edges 

node i 

Sparse matrix 
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Mesh-based Solution Techniques for Moving Boundaries 

q  Interface Tracking (ALE) 
–  Accurate 

–  Coarse mesh computation 

–  Small deformation 

–  Mesh moving 

–  Mesh distortion/remeshing 

q  Interface Capturing (VOF, LS, PF) 
–  Mesh fixed 

–  No remesh needed 

–  Flexible 

–  Large Deformation, breaks and cusps 

–  Additional equation 
–  Refined mesh 

Source of 
problem 



Scalar Transport 

T�AFSM 

Advection–Diffusion Equation 

ϕ is a scalar being transported (marker function: VoF, LS, Phase-Field) 
u is a given velocity field  
ν is the diffusion coefficient  
VoF and LS: pure advection for marker function  
 
 
Fluid properties: 

Boundary conditions 

  

ρ = ρ
0
+ ρ

1
− ρ

0( )H φ( )
µ = µ

0
+ µ

1
− µ

0( )H φ( )



FEM for Transport 

T�AFSM 

Stabilized Formulation 

SUPG stabilization 

Stabilization prevents spurious oscillations in convection dominated flows 



Discontinuity capturing for transport equation 

CAU and YZβ discontinuity capturing From Bazilevs et al, IJNMF, 2007 
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See also: Elias et al, IJNMF, 2007, 2008 

From Galeão and do Carmo CMAME, 1988 



Interface capturing:  
VOF or Pseudo-Concentration 

( )1 01µ φµ φ µ= + −( )1 01ρ φρ φ ρ= + −
source of problem 

from Navier-Stokes 
   

∂φ
∂t

+u.∇φ = 0



VOF Challenges 

q  Interface tends to smooth according to the marking function transport 
–  Stabilized formulation helps to diminish this effect à but does not completely solve 
 

q  Surface tension is not easy to be modeled in VOF methods since it depends on the 
interface curvature 



Interface capturing: Level Set 

( ) ( )( )1 01H Hµ φ µ φ µ= + −( ) ( )( )1 01H Hρ φ ρ φ ρ= + −0 0
( )

1 0
if

H
if

φ
φ

φ
<⎧

= ⎨ ≥⎩t
φ φ∂ + ⋅ =
∂

u 0∇
from Navier-Stokes 
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Interface Curvature:  



Level set challenges 

q  Computing curvature is not that difficult 
q  Computing and keeping sign distance functions in 

unstructured grids is not easy! Redistancing is necessary. 
q  Is possible to avoid redistancing by solving directly Eikonal’s 

equation 

We propose a new method based on the Fast 
Marching Method concepts for the Eikonal 
equation.  

 

More details in: Renato N. Elias, Marcos A. D. 
Martins,  Alvaro L. G. A. Coutinho, Simple finite 
element based computation of distance 
functions in unstructured grids, IJNME, Volume 
72(9): 1095–1110, 2007 

 
∇φ =1



Computing signed distance functions  
in TET4 meshes 

q  We impose the satisfaction of Eikonal´s 
equation at element level, using FEM data 
structures: algorithm O(nnodes) 

q  Small errors (<1%) in a narrow band 

q  Alternative to Ray Tracing in Tomography 
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Enforcing Mass Conservation on VoF and LS 

q  mass lost/gained are found comparing the initial mass plus the inlet 
and outlet fluxes, at the end of each time step.  

q  values to be added or removed are made proportional to the 
absolute value of the normal velocity of the interface given by 

    
un = u ⋅ ∇φ

∇φ



Interface capturing: Phase Field (Diffuse Interface) 

( ) ( )( )1 01H Hµ φ µ φ µ= + −( ) ( )( )1 01H Hρ φ ρ φ ρ= + −0 0
( )

1 0
if

H
if

φ
φ

φ
<⎧

= ⎨ ≥⎩t
φ φ∂ + ⋅ =
∂

u 0∇
from Navier-Stokes 

   

∂φ
∂t

+u.∇φ −γ ∂W
∂φ

= 0

W is a total free energy providing the interface  
dissipation mechanism 
Smooth transition region of length η between two bulk phases 
 

Interface thickness  



Rigid Body Motion 

Newton Euler equations 

General Coupling Scheme 

Fluid flow 
NS + Incompressibility 

Mesh Movement 
BVP  

VOF/LS Method 
Interface capturing 



Coupling Scheme: Overview 
Given   FLUID 

        Rigid Body 

( )
ntφP,,meshuu,

( )
ntθx,

Time Loop 

SOLVE TRANSPORT PART 
 

Compute Mesh velocity 
        BVP 1+nt

meshu

Compute the FORCE / MOMENT 

( )
ntMF,

Informations needed 

SOLVE  FLUID  PART 
Compute Fluid Variables 

  Navier-Stokes 
( )

1
P

+ntu,

Compute BODY MOTION 

( )
1+ntθx,

SOLVE  SOLID PART 

n     n+1 

1+nt
φCompute Marking function VOF/LS   



Coupling Scheme: Staggered - Predictor/Corrector 

Ref.: A New Staggered Scheme for Fluid- Structure Interaction – 2013 Dettmer, Peric  (Int. J. for Num. Meth. In 
Eng.)  

Beginning 
Time loop 

Time 
N 

Rigid Body 

( ) ),(
1

P
1n

P
1n +++

=Ω MFftnx,

FLUID 

( )
1

P),(
+++ =
n

CC
tf u,1n1n MF

1-nn
P
1n FF)1(F PP ττ −+=+Predictor 

Corrector 

1=Pτ
2/1=Cτ

N+1 

),( 1n1n ++ MF

( ) P
1n1n1n +++ −+= F1FF C

C
C ττ



EdgeCFD® 
Fluid Flow/Free-surface/FSI Solver 

q  General: 
–  Edge based data structure. “EDE has been proving to be more efficient than other FEM data structures like CSR or EBE” 
–  Segregated predictor-multicorrector time marching; 

–  Adaptive time stepping with PID controller; 

–  Supports hybrid parallelism (MPI, OpenMP or both at the same time); 

–  Unstructured grids with linear tetrahedra for velocity, pressure and scalar transport; 

–  Mesh partitioning performed by Metis or ParMetis; 
–  Best data reordering defined by EdgePack® in a preprocessing phase; 

–  Thermal-flow coupling with Boussinesq approximation; FSI 

–  Input/Output file formats: ANSYS/Ensight/Paraview, neutral files, Xdmf/hdf5 

q  Incompressible/Compressible Flow: 
–  SUPG/PSPG/LSIC stabilized finite element method in Eulerian or ALE frames 

–  Fully coupled u-p system (4-dofs/5-dofs per node/non-symmetric); 

–  Inexact Newton-GMRES; 

–  LES (Smagorinsky, Dynamic Smagorinsky), ILES, RB-VMS 

–  Newtonian or non-Newtonian flows (Power Law, Bingham and Hershel-Buckley) 

q  Transport 
–  SUPG/CAU/YZBeta stabilized finite element method in Eulerian and ALE frames 

–  Supports free-surface flows through Volume-Of-Fluid and Level-Sets.  
–  (UFMM) Unstructured Fast Marching Method for fast computation of signed distance functions 

–  PDD: Parallel dynamic deactivation. “Restrict the computation only in regions with high solution gradients” 
Particulate gravity flow 

Floating bodies 

Wave-structure interaction 



q  Ansys Classic, ICEM-CFD, CFX and/or GMSH 

–  Computational model 

–  Mesh Generation 

q  Preprocessor (EdgeCFDPre) 

1.  Takes a serial mesh; 

2.  Creates partitions with Metis (could be Scotch…) 

3.  Extracts edges and reorders data with EdgePack 

4.  Stores data prepared to solver 

q  Solver (EdgeCFDSolver) 

q  ParaView, VisIt, Ensight 

–  Visualization: Ensight, Xdmf/HDF5 or Parallel VTK 

Work%low	  
management	  and	  

provenance	  by	  Chiron	  

Blue:	  “Home	  made”	  code	  
Green:	  Third	  party	  code	  

EdgeCFD Software Stack 



libMesh  

q  High level interface for finite 
element analysis (Kirk et al., Eng. 
with Computers, 2006) 

q  Support adaptive mesh refinement 
and coarsening (AMR/C) 

q  Keep focus on the physical problem 
instead of the computational 
aspects related to the adaptive 
mesh refinement/coarsening and 
parallel computing 

q  Developed initially at UT Austin 

q  Available at:           

http://libmesh.github.io/ 
libMesh interfaces 



AMR/C  

q  libMesh utilizes a statistical scheme 
(Kirk et al., Eng. with Computers, 
2006) 

–  Kelly’s error estimator 

q  As the simulation goes on, the 
statistical distribution of the error 
spreads and then the refinement 
and coarsening begin 

q  As the solution reaches equilibrium, 
the error distribution reaches 
steady state and then the adaptive 
process stops 

Probability density function. Kirk et al., 2006 

More details in:  



Three-dimensional deformation problem 

2-level h-FGMRES for a sparse N × N matrix partitioned over  
16 cores, with 4 Jacobi Blocks at each level for preconditioning. 

T=0 T=1.5 T=3 

D.R. de Bruycker, J.J. Camata, A.L.G.A. Coutinho

x� z plane. In this case, a sphere is entrained by vortices and stretched out very thinly, before
the flow times return the sphere to its original form. Following LeVeque (1996), the velocity
field is given by

u

x

= 2sin2(⇡x)sin(2⇡y)sin(2⇡z)g(t) (7)
u

y

= �sin(2⇡x)sin2(⇡y)sin(2⇡z)g(t) (8)
u

z

= �sin(2⇡x)sin(2⇡y)sinm2(⇡z)g(t). (9)

The time dependent function g(t) is the same presented by Equation 6 and it is used to reverse
the flow field at time T/2 so that the initial data should be recovered at time T . The problem
comprises a sphere of radius 0.15 centered at (0.35, 0.35, 0.35) in a unit domain. In this test,
we use a structured mesh with 150⇥ 150⇥ 150 linear hexahedra, totalizing 3,375,000 elements
and 2,442,951 nodes.

Figure 5 show the sphere configuration at three different time steps. The flow field forms
rotating vortices, which squeeze the sphere transforming the surface in a very slim and stretched
shape (see Figure 5, center). At this stage, the interface forming both sides of the stretched
shape can become as thin as the grid size, causing the collapse of some regions of the surface
and consequent volume loss. Following the procedure employed for the previous example we
have compared our volume loss/gain. Here, loss volume is close to 0.63% and this value was
similar for all tested methods.

Figure 5: Three-dimensional Deformation Problem: sphere volume at t = 0, T/2 and T .

4.1 Comparison of BiCGStab and IBiCGStab

In order to make a comparison between the parallel performance of BiCGStab and IBiCGStab,
both methods were applied to the first test case for a number of varying parameters. The meth-
ods are preconditioned using the ILU preconditioner, applied in parallel through Block-Jacobi
preconditioning. Tests are run for different levels of fill-in of ILU, being ILU(0), ILU(1) and
ILU(2). For all those cases the methods have been tested using the natural ordering scheme,
as well as the Reverse Cuthill-McKee (RCM) ordering. All combinations of these parameters
have been tested for an increasing number of cores counts, i.e. 16, 32, 64 and eventually on 128
cores. Table 1 lists the resulting CPU times for the linear iterations when using BiCGStab and
in table 2 the results for IBiCGStab are shown.

CILAMCE 2014
Proceedings of the XXXV Iberian Latin-American Congress on Computational Methods in Engineering

Evandro Parente Jr (Editor), ABMEC, Fortaleza, CE, Brazil, November 23-26, 2014

Mesh: 150X150X150 Hex 8 
3,375,000 elements 
SUPG FEM libMesh+Petsc 

Performance of GMRES(30), h-FGMRES(30) with  
16 Jacobi-Blocks and IBiCGStab (all with ILU(0)) 

McInnes, L. C., Smith, B., Zhang, H., & Mills, R. T. (2014). Hierarchical Krylov and nested Krylov methods  
for extreme-scale computing. Parallel Computing, 40(1), 17–31. 



Fixed FPSO Model Test 

q  Pure waves 

q  Steepness range (2 to 8%) 

q  Periods based on the 
natural periods 

q  Irregular waves based on 
Santos Basin conditions 

q  Transient waves (not shown 
on the table) 

Experiments on TPN USP 



Fixed FPSO 

q  Computational Domain (scale 1:100) 
–  Tank parameterized from average wave length λ related to waves of period 12,5s (λ=244m) and 

15,0s (λ=348m). 

–  Thus, the computational domain is suitable for simulations up to 15 seconds.  

 

 

 

Mesh size: 591,292 nodes and 3,470,734 tetrahedra  

Wave probe 

Pressure gauge 



Fixed FPSO / Frontal Wave R8 
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Figura 3.10. Malha de Elementos finitos: 591292 nós e 3470734 elementos tetraédricos. 

A primeira simulação apresentada consiste da propagação da onda R8 na direção x, 
de incidência frontal, portanto, sobre o FPSO fixo. Este caso é reportado por F180WR8. A 

Figura 3.11 apresenta o campo de pressão e a superfície livre da simulação nos instantes 

t = 7,00, 7,25, 7,50 e 7,75 s. 

             
(a)                                                         (b) 

           
(c)                                                       (d) 

Figura 3.11. Snapshots da incidência frontal da onda R8 sobre o FPSO. Campo de pressão e 
superfície livre. Em t = 7,00 (a), 7,25 (b), 7,50 (c) e 7,75 s (d). 

 

Pressure and wave elevation snapshots at (a) t=7.0s (b) t=7.25s (c) t=7.5s (d) t=7.75s 



Fixed FPSO / Frontal WR8 
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Com base nos gráficos das Figuras 3.14 e 3.15 pode-se dizer que os resultados 

obtidos com o EdgeCFD estão em boa concordância com os resultados de referência.  

Para o cálculo das forças provocadas pela onda regular incidente sobre os blocos 

posicionados no convés do FPSO, foi utilizada uma sequencia específica de filtros do 

Paraview. A força é definida pelo produto da pressão pela área, integrada na superfície de 

todo o bloco observado. A Figura 3.16 apresenta a intensidade da força frontal do trem de 

ondas sobre o bloco I para o caso F180WR8.  

 

Figura 3.16. Comparação da intensidade da força sobre o bloco I com os dados experimentais para o 
caso F180WR8. 

Apesar da diferença entre as resoluções temporais, verifica-se que a ordem de 

grandeza da magnitude da força e a frequência dos impactos são equivalentes. 

Os valores negativos observados para a força podem estar associados ao retorno do 

fluido e interação deste com o lado oposto do bloco. Provavelmente, por conta dos sinais 

atribuídos pelo Paraview aos sentidos dos vetores.   

Vale mencionar que os resultados obtidos com o EdgeCFD foram atingidos com 

malhas grosseiras. As malhas utilizadas nos experimentos numéricos de referência 

possuem o dobro de elementos em metade do domínio, pois consideram a simetria dos 

resultados. 
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Test Case: Ship Simulation 
Simulation 4 d.o.f.:  3 rotations 1 vertical translation 
Comparison between Subiterative and Explicit-Implicit Schemes  



q  Total free energy in terms phase field variable  
–  Double-well function 

 

 

q  Allen-Cahn model is derived by assuming that the 
dissipation effect is described through a gradient flow 
mechanism 

–  interfacial thickness 

–  elastic relaxation time 
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Allen-Cahn Phase Field Model 



 

q  Lagrange multiplier related to the constant volume 
constraint  

   

d
dt

φdΩ = 0
Ω
∫

  

∂φ
∂t

+u ⋅∇φ = −γ ∂W
∂φ

+ ξ( t)
⎛
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⎠⎟

Conservative Allen-Cahn Phase Field Model 



q  Navier-Stokes equation:  
–  Body force depending on the phase-field 

parameter 

–  Surface tension too 

 

q  Conservative Allen-Cahn equation:  
–  Lagrange multiplier corresponding to the 

constant volume constraint 

   

∂u
∂t

+u∇u+∇p− 1
Re

∇2u + λ∇ ⋅ ∇φ ⊗∇φ( ) = Riφ

∇ ⋅u = 0

   

∂φ
∂t

+u ⋅∇φ = γ ∇2φ − 1
4η2

f φ( ) + ξ( t)
⎛

⎝⎜
⎞

⎠⎟

∂
∂t

φdΩ
Ω
∫ = 0

Allen-Cahn Navier-Stokes Model 



q  SUPG Finite Element Formulation 

q  Residual-Based AC FEM Formulation 

A RESIDUAL-BASED ALLEN–CAHN PHASE FIELD MODEL

The first five integrals in (22) arise from the Galerkin weak formulation for the Navier–Stokes
equations. The sixth integral represents the Galerkin formulation for the continuity equation. The
summation over the elements gathers the streamline upwind and pressure stabilizations over the
residual of the momentum equations. Finally, lh is the discretized load vector, and I is the identity
matrix.

The streamline upwind and pressure stabilization parameter, !SUPS, is obtained from [39] and
defined as follows

!SUPS D

2
4
 
2
kuhk
le

!2
C 9

!
4

le2Re

"235
! 12

(23)

The non-dimensional stabilization parameters are local (element level), then the velocity modulus
kuhk is calculated for each element e, and le is an element length measure ([39]).

For the non-dimensional globally conservative Allen–Cahn model, we adopt the same assump-
tions, so taking again Sh! and V h! as the finite-dimensional trial solution and weight functions spaces
for " as well Shu as the finite-dimensional trial solution for the velocity field, the stabilized FEM
formulation can be written as follows: Find "h 2 Sh! such as, 8wh 2 V h! ,

Z
"

wh
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@t
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#
r2"h " f h C %h

$!
d#e D 0

(24)

The first three integrals in (24) arise from the Galerkin weak formulation where f h and %h are the
discrete form of the double-well function derivative and Lagrange multiplier. Note that the term cor-
responding to the hydrophilic forces has been integrated by parts in the usual manner. The integral
into the summation over the elements is the SUPG stabilization. The non-dimensional stabilization
parameter is computed similarly to (23), that is

!SUPG D
!

le

2kuhk

"
(25)

4. RESIDUAL-BASED ALLEN–CAHN MODEL

The required additional physical parameters in the phase field models are one of the drawbacks of
their application because such parameters are usually obtained experimentally. One possibility to
overcome this difficulty is to infer the field variables based on the problem dynamics. DC operators
can be interpreted as a heterogeneous nonlinear diffusive term that helps to capture the flow dynam-
ics and to reduce spurious local oscillations in regions where high gradients of the transported scalar
are present. Assuming that the elastic relaxation time $ can be interpreted as a variable diffusive
coefficient such that $ D $."/ and that the thickness & is related to the mesh resolution, we will see
in the text below that it is possible to develop a less parameter dependent phase field model.

The YZˇ DC for advection dominated problems term proposed by [31] has been quite success-
fully utilized in fluid flow problems in which scalar equations are coupled together with the flow
equations, for example, where buoyancy effects are important. As said in the introductory section,
the YZˇ operator is dependent on the residual of the transport equation. This characteristic allows
the application of a nonlinear diffusivity only where the phase field equation residual is non-null.
Indeed, it will be shown that for free-surface problems, this term is null outside the interface area.
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A RESIDUAL-BASED ALLEN–CAHN PHASE FIELD MODEL

Also, one must notice that the local dynamic elastic relaxation is a more general approach to the
classical Allen–Cahn’s phase field model, because it is less parameter dependent and good results
may be achieved without requiring model tuning. Thus, the resulting weak formulation for the
residual-based Allen–Cahn model reads
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Figure 2. Geometry and initial condition for the chemical convection benchmark.

Figure 3. Initial mesh for the chemical convection benchmark.
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The YZˇ DC operator requires the calculation of a parameter (named is this work ı as in [31]),
which is a function of the transported scalar (and its residual), and it may be written as follows:

YZˇ D
nelX
eD1

Z
!e
ı
!
!h
"
rwh ! r!h d" (26)

Returning to Equation 24 and looking into the second integral in it, one can see that the weak
formulation of Allen–Cahn’s phase field model considers a DC-like operator of the form

ACDC D
nelX
eD1

Z
!e
#rwh ! r!hd" (27)

Based on Equations (26) and (27), we may associate the hydrophilic term in the weak formulation
to a DC-like form. This consideration allows the application of a nonlinear local diffusivity only
where the phase field equation residual is non-null. Consequently, it can be easily shown that for
free-surface problems, this term must be null outside the interface. Following the YZˇ derivation,
the ı parameter can be calculated as follows:
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where the constant ˇ controls the nonlinearity of the DC term, Re.!h/ is the element-level residual
of the phase field advective–diffusive–reactive transport equation, and nsd stands for the spatial
dimension. If the elastic relaxation time # is taken as a local variable and assumed to be equal to
ı.!h/, then

#e.!h/ D
.le/ˇ

#Pnsd
iD1

ˇ̌
ˇ @"h@xi

ˇ̌
ˇ2
$ˇ=2!1

2ˇ
jRe.!h/j (29)

where #e
%
!h
&

is the element-level dynamic elastic relaxation time.
Equation (29) considers the dynamics of the flow through the phase field gradient without

requiring additional field parameters. The parameter ˇ may be chosen as 1 or 2 depending on
the desired scheme. Note that for both values, the units are consistent with the non-dimensional
Allen–Cahn phase field model. We consider that ˇ D 1. The direct consequence of this choice is
that #e.!h/ vanishes where the gradient of the phase field is null, and this consideration is con-
sistent with the free-surface boundary condition applied to regions outside the transitional zone.

Figure 1. Statistical refinement scheme.
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Salt Tectonics with AC Phase-Field Model in libMesh 
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Phase Field Model for the Numerical Simulation of Salt Tectonics

Both the residual-based Allen-Cahn model and the Stokes equation are implemented in (Kirk et al., 2006).
Mesh refinement in can be accomplished by element subdivision (h-refinement), increasing the local polyno-
mial degree (p-refinement) as well a combination of both methods (hp-refinement). uses a statistical refine-
ment/coarsening scheme based on the ideas presented in Carey (1997) in which the mean and the standard deviation of
the error indicator “population” are computed. This scheme is suitable for evolution problems where, in the beginning, a
small error is evenly distributed. Throughout the simulation the error distribution spreads and the AMR/C process starts.
If the solution approaches its steady state, the distribution of error also reaches the steady state, stopping the AMR/C
process.

3. NUMERICAL RESULTS

In this section we present the results of a numerical simulation of a two layer problem. The 2D non-dimensional
physical domain has width 10 and height 3. The salt layer is completely covered by a heavier material. In the center of
the horizontal domain we create a small geometric perturbation over the salt top surface starting at x = 4.5 given by the
following sinusoidal function y (x) = h

s

0.5 sin (⇡x/l
s

) where h
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= 0.75 is the salt layer thickness and l
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= 1 the the
perturbation length.

The Fig 1 shows the geometric domain for the initial configuration. The material and reference parameters are sum-
marized in Tab. 1

Figure 1. Initial domain: salt (blue) and overburden (red) layers.

Table 1. Physical parameters

Definition Symbol Value Unit
Reference Length L1 1000.0 m

Time scale T1 1.0 My
�

3.15576 · 1013s
�

Salt viscosity µ
s

1.0 · 1018 Pa.s
Salt density ⇢

s

2000.0 kg/m3

Overburden viscosity µ
b

1.0 · 1018 Pa.s
Overburden density ⇢

b

2600.0 kg/m3

Gravity acceleration g 9.81 ms�2

Reference values for viscosity and density are the data from the overburden material. Therefore the Reynolds number
is Re =

⇢1L

2
1

T1µ1
and the square of the Froude number is Fr =

L1
T

2
1g

. For both non-dimensional quantities we compute
Re ⇡ 8.245 · 10�23 and Fr2 ⇡ 1.025 · 10�25. To prevent numerical problems by using such small values, we compute
the ratio between the square of Froude and Reynolds numbers, Fr2/Re ⇡ 1.243 · 10�3 which multiplies the viscous
terms of the Stokes equation.

The phase field variable is taken as � = 1 for the overburden layer � = �1 for the salt. The dimensionless time step
size is �t = 0.001, which gives a physical time interval of one thousand years. The nonlinear tolerance for both Stokes
and transport solutions is set ntol = 1.0 ⇥ 10

�3 and the linear solver tolerance is ltol = 1.0 ⇥ 10

�6. Computations are
performed on the SGI Altix 8400 at the High Performance Computing Center of COPPE/UFRJ using 64 cores.

Figure 2 shows the evolution of the salt diapir after 1, 5, 10, 25, 50 and 60 My.

4. CONCLUSIONS

We have implemented the residual-based AllenâĂŞCahn phase field stabilized finite element model for the simulation
of the dynamics of a single salt. The salt layer is completed buried by an overburden layer. We considered constant
rheological parameters for both materials. Neglecting temperature effects, the system evolution is modelled as a two-fluid
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Figure 2. Single diapir evolution: (a) Geological time =1My, (b) Geological time =5My, (c) Geological time =10My,
(d) Geological time =25My, (e) Geological time =50My and (f) Geological time =60My.

Stokes system with a moving interface described by the Allen-Cahn phase-field model. Parallel adaptive simulations for
a two-layer systems shows the effectiveness of the present approach. Future works include consideration of temperature
effects and more complex physical rheologies and geometries.
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elasticâĂŞplastic solids”. International Journal of Plasticity, Vol. 65, pp. 269–296.

Hudec, M. and Jackson, M., 2007. “Terra infirma: Understanding salt tectonics”. Earth-Science Reviews, Vol. 82, pp.
1–28.

Kirk, B.S., Peterson, J.W., Stone, R. and Carey, G.F., 2006. “Libmesh: a C++ library for parallel adaptive mesh refine-
ment/coarsening simulations”. Journal Engineering with Computers, Vol. 22, pp. 237–254.

Koyi, H., 1998. “The shaping of salt diapirs”. Journal of Structural Geology, Vol. 20, pp. 321–338.

Massimi, P., Quarteroni, A., Saleri, F. and Scrofani, G., 2007. “Modeling of salt tectonics”. Computer Methods in Applied

Mechanics and Engineering, Vol. 197, pp. 281–293.



UNCERTAINTY 
QUANTIFICATION IN SEISMIC 
IMAGING  

Exploring the Stochastic Space 



Motivation 
q  Seismic imaging is one of the most computational demanding activities in Oil and Gas industry 

q  Involves massive data acquisition, computing, storage and visualization  

q  Oil companies are one of the main industries on TOP500 list (June 2015): 

 

 
q  Besides, according to U. Rüde, SIAM News, 2015: 

“Extreme-scale systems will provide the computational power to move from qualitative simulation to predictive simulation, and 

from predictive simulation to optimization, parameter identification, and inverse problems; they will make stochastic 

simulations possible and allow us to better quantify uncertainties.” 
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1 - Seismic Imaging in E&P Process 

Area of Interest 



Focus on RTM (Reverse Time Migration) 

 2 forward models (acoustic or elastic wave propagation) 

Forward model: Compute the time the wave takes to reach each point of the subsurface. 

Reverse model: The receiver is now a source à time reversing 

IMAGING CONCEPT: forward and reverse waves arrive at the same time à there is a “good 
chance” (probable) to be a reflector 

 

 

 

 

1 - Seismic Imaging in E&P Process 

Input Ouput 

Tomography uses  approximations of wave propagation: 
Ray Tracing or Eikonal equation (model errors) 
 
Data can have some measurements errors  
(seismograms noise data). 

 

Uncertainties in the input data of 
the migration algorithm: propagation 
need to be understood and mitigated 



Step 1: Building an input data-driven model for imaging 

2 - Uncertainty quantification in seismic imaging 

RV: Random Vector (discrete field) 
 



Step 2: propagation of uncertainties in RTM 

2 - Uncertainty quantification in seismic imaging 

Probabilistic Framework 
Uncertainty  

Quantification 
Deterministic calculation: 

Optimized RTM Code 

Stochastic Collocation  
q Reduces the number of RTM (deterministic simulations) 
q Reduces interpolation error 



q  Computing needs for conventional RTM (3D TTI, 1000 shots): one RTM 
runs in 5h on 102 Intel Xeon Phi, and thousands of RTMs are needed for 

UQ. 

q  Main challenges to scale to real problem: 

–  Optimizing RTM Kernels 

–  UQ: Stochastic collocation methods with dimension reduction vs MC methods. 

–  Manage the computations: Scientific Workflow Management System 
needed to support the intensive (at least) two-level parallel computations è 

Chiron SWfMS [3]. 

–  Draw insights from the results: how to visualize UQ on an seismic image? 

[3] Dias, J., et al. "Data-centric iteration in dynamic workflows." Future Generation Computer Systems (2014). (227 downloads since 
publication) 

Challenges in Uncertainty Quantification in Seismic 
Imaging 



Chiron: a parallel workflow execution engine 

q  Dataflow oriented engine by a workflow relational algebra [4] 

q  Non intrusive:  workflow system supports several parallel numerical 
apps 

q  Strong Provenance support 
–  Online data analysis 

–  Convergence tracking 

–  Visualization of partial results 

q  Dynamic interference on loop parameters 

q  Applications:  
–  Life sciences, Computational Fluid Dynamics (CFD), Uncertainty Quantification 

(UQ) in Particle Laden Flows and Seismic Imaging 

 [4] OGASAWARA, E., DIAS, J., SILVA, V., et al., 2013, "Chiron: A Parallel Engine for Algebraic Scientific Workflows",  
Concurrency and Computation, v. 25, n. 16, pp. 2327–2341. 



Nodes with p cores 

Subsurface 
Generation Split Shots Parallel 

RTM 
velocity_model_i velocity_model_i 

 partitioned in  
N parts 

node-x node-x 

node-z 

./create_subsurface ./split_shots mpirun –n N 
RTM 

RTM algorithm 
executed with 

N cores for 
sample i 

Sample 
i 

M samples  
(collocation points) 

processed in 
parallel 

node-x 

N 
velocity_model_i 

 partitions 

Chiron RTM Workflow Many-level Parallel Execution 



Chiron’s distributed architecture 

q  A decentralized approach (d-Chiron) for managing provenance data 

•  Fully distributed multi-master database 

•  Horizontal data partitioning 

q  Evaluation 
–  Synthetic workflow composed of three activities 

•  Average time of 30,240 activity executions (i.e. tasks): ~64s 

–  HPC environment: StRemi Cluster from Grid 5000 (Rennes region) 

•  88 CPUs AMD Opteron 6164 HE 1.7GHz: 1008 cores (42 nodes) 

–  Performance evaluation 

•  Elapsed time à d-Chiron: 38 minutes, Chiron (centralized approach): ~215 minutes 

•  Efficiency à d-Chiron: ~86.39% (high overhead: storing tasks in database) 



Some remarks: 

¨  Chiron’s Profiler 
–  Development of a strategy to gather and query performance data while scientific 

workflows are executing 

–  We achieved an efficiency of 93% using Endeavour Cluster (Intel, #92 TOP500, Jun 15) 
with 1,046 cores 

•  Chiron with a single provenance database 
•  Synthetic workflow with three activities 

q  New Chiron’s architecture 
–  Improvements to obtain better performances on more cores 

q  Limitations in relation to the HPC environments 
–  RTM workflow execution using large core counts 
–  Storage capacity can be very limiting for a large-scale data app like RTM 

•  In Endeavour cluster, we are limited to ~60GB 

•  In SGI ICE at COPPE we produced ~300 GB of files using a small dataset 



RTM Stencil 

do k , Nz 
     do j , Ny 
          do i , Nx 

      new_P(i,j,k)    =     2  *     curr_P(i   ,j  ,k  )  -   old_P(i   ,j  ,k  )  +         C(I  ,j  ,k  )  * (  a0  *  curr_P(i   ,j  ,k  ) +    
        a1 * (   curr_P(i-1,j  ,k  ) + curr_P(i+1,j  ,k  ) + curr_P(i  ,j-1,k  ) + curr_P(i  ,j+1,k  ) + curr_P(i  ,j  ,k-1) + curr_P(i  ,j  ,k+1)   )   + 

        a2 * (     curr_P(i-2,j  ,k  ) + curr_P(i+2,j  ,k  ) + curr_P(i  ,j-2,k  ) + curr_P(i  ,j+2,k  ) + curr_P(i  ,j  ,k-2) + curr_P(i  ,j  ,k+2)   )   + 
        a3 * (   curr_P(i-3,j  ,k  ) + curr_P(i+3,j  ,k  ) + curr_P(i  ,j-3,k  ) + curr_P(i  ,j+3,k  ) + curr_P(i  ,j  ,k-3) + curr_P(i  ,j  ,k+3)   )   + 

        a4 * (   curr_P(i-4,j  ,k  ) + curr_P(i+4,j  ,k  ) + curr_P(i  ,j-4,k  ) + curr_P(i  ,j+4,k  ) + curr_P(i  ,j  ,k-4) + curr_P(i  ,j  ,k+4)   )   + 
        a5 * (     curr_P(i-5,j  ,k  ) + curr_P(i+5,j  ,k  ) + curr_P(i  ,j-5,k  ) + curr_P(i  ,j+5,k  ) + curr_P(i  ,j  ,k-5) + curr_P(i  ,j  ,k+5)   )   + 

        a6 * (   curr_P(i-6,j  ,k  ) + curr_P(i+6,j  ,k  ) + curr_P(i  ,j-6,k  ) + curr_P(i  ,j+6,k  ) + curr_P(i  ,j  ,k-6) + curr_P(i  ,j  ,k+6)   )   + 
        a7 * (   curr_P(i-7,j  ,k  ) + curr_P(i+7,j  ,k  ) + curr_P(i  ,j-7,k  ) + curr_P(i  ,j+7,k  ) + curr_P(i  ,j  ,k-7) + curr_P(i  ,j  ,k+7)   )   + 
        a8 * (   curr_P(i-8,j  ,k  ) + curr_P(i+8,j  ,k  ) + curr_P(i  ,j-8,k  ) + curr_P(i  ,j+8,k  ) + curr_P(i  ,j  ,k-8) + curr_P(i  ,j  ,k

+8)   )     
          enddo 

     enddo 
enddo 

16th 
order 3D Acoustic Isotropic 61 Flops 

Computational Optimizations for RTM kernels 
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Roofline Models for Xeon E5 and Xeon Phi 7210 

Computational optimizations for RTM kernels 

Samuel Williams, Andrew Waterman, and David Patterson. 2009. Roofline: an insightful visual performance  
model for multicore architectures. Commun. ACM 52, 4 (April 2009), 65-76 
 

RTM algorithm classified as memory bound, low arithmetic intensity,  
memory also a bottleneck   



14th Taylor 

16th Convol. 

Computational optimizations for RTM kernels 

D. L. Costa, A. L. G. A. Coutinho, B. S. Silva, J. J. Silva, L. Borges, A Trade-off Analysis 
Between High-order Seismic RTM and Computational Performance Tuning,PANACM 2015 
 
§C. Andreolli, P. Thierry, L. Borges, G. Skinner, C. Yount, Characterization and Optimization  
Methodology applied to Stencil Computations, Chapt 23, J. Reinders& & J. Jeffers, High Performance Parallelism 
Pearls, MK, 2015 

Optimizations: parallelization, vectorization, thread affinity, memory alignment, 
padding, prefetching, loop unrolling (just for Xeon E5) and  
cache blocking (just for Xeon Phi).  

Intel’s max§: 209  
Intel’s max§: 226  



PARALLEL MESH 
GENERATION 



Linear Octrees   
Ø  Octrees	  are	  hierarchical	  data	  structures	  that	  decompose	  a	  three-‐

dimensional	  space	  in	  regular	  cubes,	  called	  octants.	  

Ø  Linear	  Octree	  
Ø  complete	  list	  of	  leaf	  nodes,	  
Ø  octants	  are	  encoded	  by	  a	  scalar	  key:	  Morton	  Code.	  

	  

Ø  Advantages:	  
Ø  Efficient	  memory	  use	  
Ø  Op@mized	  tree	  traversal	  
Ø  Absence	  of	  pointers:	  more	  performance	  on	  

sequen@al	  access	  and	  less	  communica@on	  
overhead	  in	  parallel	  implementa@on	  



Non-conforming octree based mesh generation 

ü  Refine elements that intercept the immersed boundary. 
ü  Surfaces are given by a triangulation, typically obtained from 

CAD package as STL files. 
ü  Finding interceptions is based on bounding box trees. 

ü  2:1 balancing constrain ensure that no neighbor octants 
differentiated in more than one level. 

ü  Partitioning  is done just splitting the octree array in equal parts 
among the cores 

ü  Non-Conforming Mesh 

See more: Camata JJ, Coutinho ALGA. Parallel implementation and performance analysis of a linear octree finite elementmesh 
generation scheme. Concurrency and Computation: Practice and Experience 2013; 25(6):826–842, doi:10.1002/cpe.2869. 

Hanging nodes are formed when there are two neighbor 
octants of different depth levels as their intersection is 

reduced to half-edges or a section of a face 



Conforming Technique 

Ø  Frey	  and	  George	  (2000)	  propose	  a	  method	  where	  

ü  	  Irregular	  octants	  are	  decomposed	  in	  6	  pyramidal	  
elements	  by	  inser@ng	  a	  central	  node	  

ü  	  Nine	  templates	  are	  defined	  for	  face	  triangula@on	  
ü  All	  faces	  nodes	  are	  connected	  with	  the	  central	  node	  

 

 

 

Octant	  pyramidal	  	  
decomposi@on	  	  

Pyramid	  base	  triangula@on	  templates:	  red	  dots	  represent	  the	  
	  exis@ng	  hanging	  nodes	  in	  each	  face.	  	  



Conforming Technique 

Ø  Frey	  and	  George	  (2000)	  scheme	  advantages:	  

ü  It	  does	  not	  require	  modifica@ons	  in	  the	  octree	  construc@on	  
ü  Embarrassing	  parallel	  (does	  not	  need	  neighboring	  

informa@on)	  
ü  Availability	  of	  templates	  for	  all	  possible	  hanging	  nodes	  

configura@on	  

Because of its simplicity and the use of local mesh modifications, 
with potential low impact on parallel implementations this 

scheme is a good option to be incorporated in the our parallel 
octree mesher! 



Performance Analysis on SDumont 

•  Weak	  scalability:	  offshore	  model	  

–  Analysis	  performed	  from	  64	  to	  16,384	  cores	  (@me	  in	  secs)	  

Cores Octree 
levels 

Mesh Size 
#elements 

 Total Time 
(BULL MPI) 

Total Time 
(Intel MPI) 

64 11 296,394,446 29.80 29.29 
256 12 1,182,028,956 38.18 37.63 

1024 13 4,725,678,648 50.13 49.61 
4096 14 18,895,327,518 74.94 70.63 

16384 15 75,519,891,076 133.74 -- 

-  Able to generate meshes up to 75 billion elements.  
-  Additional refinement levels increase runtime in about 20%.  
-  Last run shows highest increase in runtime. 



Performance Analysis 

Main thread  activity 

Floating-point  operations 

Memory usage 

•  Main thread activity 
•  67% in CPU usage 
•  33 % in MPI communications 

•  Floating-point Operations: 
•  Floating point operations are concentrated in computing geometrical interceptions with 

the input STL file.  
•  Memory Usage: 

•  Continuous memory consumption growth due to the octree refinement 
•  Sudden growth observed at the end could be explained by the meshing routine  

Profiles obtained by Allinea MAP 
Execution on 1024 cores 

See more: Ghisi IT, Camata JJ, Coutinho ALGA. Impact of tetrahedralization on parallel conforming octree mesh generation. 
IJNMF, 2014; 75(11):800–814, doi:10.1002/fld.3918. 



CONCLUDING REMARKS AND 
DISCUSSION 



 

q  We reviewed NACAD’s activities. Challenges? 

q  Multiphysics 
–  Multiphysics problems have been addressed using 2 software platforms: EdgeCFD and libMesh 

–  Simulation of complex systems combining multiple physical phenomena is one of the main 
motivations for extreme computing 

–  Solvers, AMR/C challenging problems particularly at large core counters 

q  UQ in Seismic Imaging 
–  We have tested and implemented a UQ framework for seismic imaging: Tomography+Migration, 

what about FWI? 

–  Visualization of Uncertainty in Seismic Images beyond distance based metrics ? How? Entropy? 

–  Getting insights from UQ: Data analytics? 

–  Managing the complexity of sampling stochastic space 

•  Issues: data management, fault tolerance, data provenance, etc  

–  Stencil optimizations, half-precision, improving arithmetic intensity, I/O Optimization 

q  Parallel Mesh Generation 
–  Scale-up a parallel octree mesh generation scheme 

–  Build a new solver for it? Using immersed boundary techniques?  
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