EXPLORING ADAPTIVE TECHNIQUES IN HPC WORKFLOWS

<u>Vítor Silva</u>

Ph.D. Student at COPPE/UFRJ silva@cos.ufrj.br

Advisor: Marta Mattoso

Co-advisor: Daniel de Oliveira

Internship at LIRMM (INRIA)

Member of SBC (Brazilian Computer Society)

Scientific Workflow Scenario

Problems about Scientific Workflow Parallel Execution

Volatility of computational resources
 Churn event

□ Failure occurrences at runtime

- Many computational tasks are processing data in parallel
- Parameter sweep may present failure in some combinations
- Difficulties in debugging failures
 - Log analysis
 - Difficulties in identifying data-flow involved in a specific failure

Desired Characteristics for the Scientific Workflow Parallel Execution

- Volatility of computational resources
 Churn event
- Failure occurrence
 - Many computation
 - Parameter sweeper may present failure in some combinations
- 🔎 Difficulties in debu
 - Log analysis
 - Difficulties in ident failure

Reliability and reproducibility of experiments

Adaptability

allel

fic

Demeter: an Adaptive Execution Strategy

- An strategy for <u>adaptive parallel execution</u> of scientific workflows
 - Clusters environments
 - Distributed management of the provenance data
 - Queries of provenance data at runtime
 - Adaptations
 - Addition or removal of computational resources
 - Support to failure tolerance

Chiron: Parallel Workflow Execution Engine

Chiron

- Its engine is <u>dataflow oriented</u> by a <u>workflow relational</u> <u>algebra</u>
- Apps: CFD, Risers and Uncertainty Quantification (UQ)
- Strong provenance support
- User steering at runtime
- 🗖 But, ...
 - Execution is controlled by <u>one master component</u>
 - Do not support adaptations in resource allocation

OGASAWARA, E., DIAS, J., SILVA, V., et al., 2013, "Chiron: A Parallel Engine for Algebraic Scientific Workflows", Concurrency and Computation, v. 25, n. 16, pp. 2327–2341.

Chiron: Parallel Workflow Execution Engine

Chiron

- Its engine is <u>dataflow oriented</u> by a <u>workflow relational</u> <u>algebra</u>
- Apps: CFD, Risers and Uncertainty Quantification (UQ)
- Strong provenance support
- User steering at runtime
- 🗖 But, ...

OGASAWARA, E., DIAS, J., SILVA, V., et al., 2013, "Chiron: A Parallel Engine for Algebraic Scientific Workflows", Concurrency and Computation, v. 25, n. 16, pp. 2327–2341.

Experiment: Montage workflow

Synthetic Montage workflow

- Astronomy application to blend astronomical images
- A kind of benchmark in parallel workflow execution evaluations
- Our input dataset was based on the experiments of Vöckler et al. (2011)

VÖCKLER, J.-S., JUVE, G., DEELMAN, E., et al., 2011, "Experiences using cloud computing for a scientific workflow application". In: Proceedings of the 2nd International Workshop on Scientific Cloud Computing, pp. 15–24, New York, NY, USA.

Environment to Execute Montage Workflow

- Uranus SGI Altix ICE 8400
 - Cluster environment
 - NACAD / COPPE / UFRJ
 - One of the current Intel[®] Parallel Computing Centers
 - 128 CPUs Intel Xeon: 640 Cores (64 nodes)
 - 1.28 TBytes of RAM memory (distributed)
 - Storage: SGI InfiniteStorage NAS (72 TBytes)

Experimental Results: Montage workflow

Exploring Workflow Fragments during Internship at INRIA

Development during internship (Oct-Dec/2013)

joint work with Ji, Pacitti, Valduriez (INRIA); Oliveira (UFF) and Mattoso (UFRJ)

- Partition workflow into several <u>fragments</u> in order to execute in multiple cloud sites
- Publication of a paper [1]
- Opportunities to explore workflow fragments
 - Use <u>different parallel execution strategies</u> for each fragment
 - Generate optimized execution plan, based on workflow fragments

[1] Liu, J.; Silva, V.; Pacitti, E.; Valduriez, P.; Mattoso, M., "Scientific Workflow Partitioning in Multisite Cloud". In: 3rd Workshop on Big Data Management in Clouds, Proc. of the Europar 2014.

Next steps in PhD

- Profiling Chiron with Demeter
- □ More adaptive support
- □ Experiments in new Oil & Gas applications with UQ
- Workflow big data distributed management
- Supporting index and queries in binary data

THANK YOU! EXPLORING ADAPTIVE TECHNIQUES IN HPC WORKFLOWS

Vítor Silva

Scientific Workflows in HPC

- □ The same problems of parallel programs
 - Volatility of computational resources
 - Failure occurrences at runtime
 - Difficulties in debugging failures
- □ However, ...
 - SWfMS can take over debugging by taking advantage from "knowing" what is behind workflow tasks and dataflow
 - Queries about activities that presented failures
 - Adjustments in parameters or workflow modeling

Background (1)

□ Workflow fragment (proposed by Ogasawara et al.)

A workflow W includes a set of activities $Y = \{Y_1, ..., Y_n\}$. Given $Y_i \mid (1 \le i \le n)$, let $R = \{R_1, ..., R_m\}$ be the input relation set for activity Y_i , then $Input(Y_i) \supseteq R$. Also, let T be the output relation set produced by activity Y_i , then $Output(Y_i) \supseteq T$. We denote the dependency between two activities as $Dep(Y_j, Y_i) \iff \exists R_k \in Input(Y_j) \mid R_k \in Output(Y_i)$. Additionally, a fragment of a workflow, fragment for short, is a subset F of the activities of a workflow W, such that either F is an unitary set or $\forall Y_j \in F, \exists Y_i \in F \mid (Dep(Y_i, Y_j)) \lor (Dep(Y_j, Y_i))$.

□ Activation

$F_1 = \{Y_1, Y_2\}; F_2 = \{Y_3, Y_4\}; W = F_1 U F_2$

Given a workflow W, a set $X = \{x_1, ..., x_k\}$ of activations is created for its execution. Each activation x_i belongs to a particular activity Y_j , which is represented as $Act(x_i) = Y_j$.

E. Ogasawara, J. Dias, D. Oliveira, F. Porto, P. Valduriez, and M. Mattoso, "An Algebraic Approach for Data-Centric Scientific Workflows," *Proc. of VLDB Endowment*, vol. 4, no. 12, pp. 1328–1339, 2011.

Background (2)

Dataflow strategy

First Activity First (FAF) x First Tuple First (FTF)

Dispatching strategy

Static x Dynamic

given a workflow W, an associated workflow activations set $X=\{x_1, ..., x_k\}$ is evaluated according to a schedule. The schedule of activations depends on the dataflow strategy assigned to the corresponding workflow fragment. Thus, given a fragment F_i and a dataflow strategy DS_i , a mapping function $DSF(F_i, DS_i)$ assigns a dataflow strategy to a fragment of the workflow. In this context, given a set of activations $X'=\{x_1, ..., x_m\}$ associated to a fragment F_i , a dataflow strategy (DS_i) imposes a partial activation order among activations of X'

E. Ogasawara, J. Dias, D. Oliveira, F. Porto, P. Valduriez, and M. Mattoso, "An Algebraic Approach for Data-Centric Scientific Workflows," *Proc. of VLDB Endowment*, vol. 4, no. 12, pp. 1328–1339, 2011.

Chiron - Algebraic Operators

- Program invocation
 - Map (1:1)
 - SplitMap (1: n)
 - **Reduce** (n : 1)
 - □ Filter (1: 0-1)
- Relational algebra expressions
 - **\square** SRQuery \rightarrow Single Relation Query
 - $\blacksquare MRQuery \rightarrow Multiple Relation Query$