
Fourth Brazil-France Workshop on High Performance Computing and Scientific Data
Management Driven by Highly Demanding Applications

Load Balancing Analysis for
Seismic Model -Ondes3D-
on multi GPU platforms

Víctor Martínez!
Philippe Navaux!
Fabrice Dupros - BRGM!
!
Parallel and Distributed Processing Group
(GPPD)!
Federal University of Rio Grande do Sul
(UFRGS)

Fourth Brazil-France Workshop on High Performance Computing and Scientific Data
Management Driven by Highly Demanding Applications

Schedule
❖ Ondes 3D!

❖ Motivation!

❖ Experiments!

❖ Measures!

❖ Results!

❖ TODO

2

Fourth Brazil-France Workshop on High Performance Computing and Scientific Data
Management Driven by Highly Demanding Applications

Ondes 3D - The Model

Stress - Velocity

3

Accelerating a wave propagation code using GPUs 391

Figure 2. Illustration of the spatial stencil of the 3-D fourth-order finite-
difference operator used to approximate spatial derivatives by a discrete
difference between adjacent gridpoints, after discretization of the model in
a grid with elementary grid cells as in Fig. 1.

numerically by using

∂x u
(
i + 1

2 , j, k
)

≃ 9
8

u(i + 1, j, k) − u(i, j, k)
"x

− 1
24

.
u(i + 2, j, k) − u(i − 1, j, k)

"x
. (5)

In practice people often resort to optimized spatial coefficients de-
signed to minimize overall numerical dispersion, for instance those
of Holberg (1987), but this has no influence on the GPU imple-
mentation discussed herein. At the free surface of the model, in the
vertical direction we switch to a second-order spatial operator in
order to be able to implement the free surface condition, as done
classically (see e.g. Moczo et al. 2007). Time evolution is performed
based on a staggered central finite-difference approximation, as in
Virieux (1986).

In regional or local seismology in many cases one is interested
in simulating a semi-infinite medium with a free upper surface.
All the edges of the grid except the top edge are then artificial and
outgoing waves should be absorbed there in order to simulate a semi-
infinite medium. We use the unsplit CPML technique of Komatitsch
& Martin (2007), also analysed by Kristek et al. (2009), which
consists in modifying each spatial derivative along the direction
perpendicular to the absorbing layer, say x, in the following fashion:

∂x̃ = 1
κx

∂x + ψx , (6)

where ψ x is a memory variable whose time evolution is governed
at each time step by an additional equation

ψn
x = bxψ

n−1
x + ax (∂x)n− 1

2 . (7)

This implies that significantly more equations need to be solved
in the PML regions, in particular near the corners of the 3-D grid,
because contributions coming from the PML layers located along x,
y and z are summed there and one memory variable and thus a time
evolution equation is needed for each; but this is acceptable because
the PML regions are small compared to the rest of the model.

Coefficients ax and bx in the PML, which do not vary with time,
are given by

bx = e−(dx /κx +αx)"t (8)

and

ax = dx

κx (dx + κxαx)
(bx − 1), (9)

where κx ≥ 1, dx ≥ 0 and αx ≥ 0 are three real damping coefficients.
We refer the reader to Komatitsch & Martin (2007) for more details.
Note that if a higher-order time scheme were used, one should resort
to an auxiliary differential equation (ADE) implementation of the
PML optimized at grazing incidence instead of a convolutional
implementation, as introduced by Martin et al. (2010).

3 I M P L E M E N TAT I O N O N G R A P H I C S
C A R D S U S I N G C U DA

Let us first summarize a few key concepts regarding programming
GPU graphics cards with CUDA, and then see how to port our
elastic wave propagation code to it.

3.1 A brief summary of GPU programming concepts

For readers not familiar with details of CUDA or GPU program-
ming, let us briefly explain the programming model that supports
the fine-grained parallel architecture of NVIDIA GPUs. Consider-
ing the potentially very high performance increase that one may get
for a wide range of applications by porting them to GPUs, it is of
interest to become familiar with these new programming concepts,
which are significantly different from classical serial programming
in Fortran or C on a CPU. In the glossary of Table 1 we briefly
explain some of the terms most commonly used in the context of
graphics cards and CUDA and that are used several times in the rest
of the article. For more details the reader is referred to the CUDA
documentation (NVIDIA Corporation 2009a) and GPU/CUDA con-
ference tutorials (see e.g. http://gpgpu.org/developer).

The official CUDA documentation (NVIDIA Corporation 2009a)
and publications related to CUDA (see Section 1) often use varying
terminologies, in particular when defining the notion of a computing
‘core’ on GPUs. In this article, we identify each so-called ‘multipro-
cessor’ of a GPU with a ‘Single Instruction, Multiple Data (SIMD)
core’. The individual thread processors within each multiprocessor,
which are called ‘streaming processor cores’ or ‘CUDA cores’ in
NVIDIA literature, share the instruction stream and can therefore
be viewed as arithmetic logic units (ALUs).

The code that gets executed on the GPU is called a calculation
‘kernel’. This kernel is launched on a grid of thread blocks. Threads
inside the same block can be synchronized, but no synchronization
is possible between blocks. The different blocks are placed on the
different multiprocessors by a scheduler that removes stalled blocks
waiting for input to or output from memory and launches thread
blocks that are ready for execution. The same physical multiproces-
sor can execute several blocks, and the order in which blocks are
assigned to multiprocessors is undefined. There is always an im-
plicit synchronization between kernel calls on dependent data (i.e.
when some of the output of one kernel is used as input to the next).

The memory available on the graphics card is distributed between
threads and thread blocks. Each thread has its own registers, whose
access is extremely fast but whose total number is limited. Each
thread block can use a small amount of low-latency on-chip ‘shared
memory’, which can be read from and written to by all the threads

C⃝ 2010 The Authors, GJI, 182, 389–402
Journal compilation C⃝ 2010 RAS

390 D. Michéa and D. Komatitsch

numerical techniques mentioned above for seismic wave propaga-
tion have recently been successfully ported to GPUs, for instance
the spectral-element method by Komatitsch et al. (2009) in the case
of one GPU and by Komatitsch et al. (2010a,b) in the case of a clus-
ter of many GPUs used in parallel, and the discontinuous Galerkin
method by Klöckner et al. (2009).

GPU programming on NVIDIA graphics cards has become
significantly easier with the introduction at the end of 2006 of
the CUDA programming language (NVIDIA Corporation 2009a),
which is relatively easy to learn because its syntax is similar to C.
Regarding FD for seismic reverse time migration in the case of an
acoustic medium with constant density, Abdelkhalek (2007) and
Micikevicius (2009) (from NVIDIA corporation, the developers of
GPU hardware and of CUDA) have recently introduced optimized
implementations. Abdelkhalek et al. (2009) extended it to the acous-
tic case with heterogeneous density. In this article, we use CUDA
to solve the seismic wave equation in the more complex fully het-
erogeneous (including for density) elastic case on several GPUs
used in parallel. We improve upon Micikevicius (2009) by apply-
ing his methodology to the full elastic wave equation and to a real
3-D model, by adding CPML absorbing layers, by making access
to these CPML arrays faster on the GPU by resorting to so-called
‘CUDA texture fetching’ to access them and overcome the limited
amount of shared memory that is available on the GPU hardware,
and finally by using message passing (MPI, see e.g. Gropp et al.
1994) to use several GPUs in parallel efficiently.

2 T H E S E I S M I C WAV E E Q UAT I O N A N D
A C L A S S I C A L F I N I T E - D I F F E R E N C E
D I S C R E T I Z AT I O N

We consider a linear isotropic elastic rheology for the solid medium,
and therefore the seismic wave equation can be written in the strong,
that is, differential, form

ρü = ∇ · σ + f ,

σ = c : ε ,

ε = 1
2

[∇u + (∇u)T], (1)

where u denotes the displacement vector, σ the symmetric, second-
order stress tensor, ε the symmetric, second-order strain tensor, c
the fourth-order stiffness tensor, ρ the density and f an external
source force. The double tensor contraction operation is denoted
by a colon, a superscript T denotes the transpose, and a dot over a
symbol indicates time differentiation. The physical domain of the
model is denoted by " and its outer boundary by #. The material
properties of the solid, C and ρ, can be spatially heterogeneous.

In the classical velocity–stress formulation that is used in most
FD implementations (e.g. Collino & Tsogka 2001; Moczo et al.
2007), one rewrites eq. (1) as a first-order system whose unknowns
are the velocity vector v and the stress tensor σ

ρ∂t v = ∇ · σ ,

∂tσ = c :∇v. (2)

The boundary condition at the free surface of the medium is that
the traction vector τ must be zero everywhere at the surface #, that
is,

τ = σ · n̂ = 0, (3)

where n̂ is the outgoing normal to the surface #.

Figure 1. Elementary grid cell of the 3-D staggered spatial finite-difference
method based on Madariaga (1976) used classically to discretize the equa-
tions of elastodynamics, using the components of the velocity vector v and
of the symmetric stress tensor σ as unknowns. The unknowns are defined
at gridpoints or half way between gridpoints depending on the component
and of the grid axis considered. For Maxwell’s equations a similar staggered
grid was introduced by Yee (1966).

Discretization of the first-order system (2) together with the free
surface boundary condition (3) is then classically performed based
on the staggered grid of Fig. 1, which was introduced for Maxwell’s
equations by Yee (1966) and for the seismic wave equation by
Madariaga (1976). Our goal here is not to describe in detail the
classical finite-difference discretization of the seismic wave equa-
tion written in velocity vector and stress tensor because such a
description can be found in numerous textbooks and articles (see
e.g. Collino & Tsogka 2001, and see Moczo et al. 2007 for a thor-
ough review). Let us just recall that in the finite-difference method
partial spatial derivatives are approximated by discrete operators
involving differences between adjacent gridpoints, as in the stencil
of Fig. 2, which represents the fourth-order spatial operator that we
use in our ‘ONDES3D’ software package (Aochi & Douglas 2006).
As an example, the spatial first derivative ∂xu of a given u(x , y,
z, t) component of a field along the x-axis of a regular 3-D grid is
approximated based upon a Taylor expansion

∂x u
(

x + %x
2

, y, z, t
)

≃ 9
8

u(x + %x, y, z, t) − u(x, y, z, t)
%x

− 1
24

u(x + 2%x, y, z, t) − u(x − %x, y, z, t)
%x

, (4)

where %x is the size of an elementary grid cell along the x-axis,
which means that at a given time t the derivative can be computed

C⃝ 2010 The Authors, GJI, 182, 389–402
Journal compilation C⃝ 2010 RAS

390 D. Michéa and D. Komatitsch

numerical techniques mentioned above for seismic wave propaga-
tion have recently been successfully ported to GPUs, for instance
the spectral-element method by Komatitsch et al. (2009) in the case
of one GPU and by Komatitsch et al. (2010a,b) in the case of a clus-
ter of many GPUs used in parallel, and the discontinuous Galerkin
method by Klöckner et al. (2009).

GPU programming on NVIDIA graphics cards has become
significantly easier with the introduction at the end of 2006 of
the CUDA programming language (NVIDIA Corporation 2009a),
which is relatively easy to learn because its syntax is similar to C.
Regarding FD for seismic reverse time migration in the case of an
acoustic medium with constant density, Abdelkhalek (2007) and
Micikevicius (2009) (from NVIDIA corporation, the developers of
GPU hardware and of CUDA) have recently introduced optimized
implementations. Abdelkhalek et al. (2009) extended it to the acous-
tic case with heterogeneous density. In this article, we use CUDA
to solve the seismic wave equation in the more complex fully het-
erogeneous (including for density) elastic case on several GPUs
used in parallel. We improve upon Micikevicius (2009) by apply-
ing his methodology to the full elastic wave equation and to a real
3-D model, by adding CPML absorbing layers, by making access
to these CPML arrays faster on the GPU by resorting to so-called
‘CUDA texture fetching’ to access them and overcome the limited
amount of shared memory that is available on the GPU hardware,
and finally by using message passing (MPI, see e.g. Gropp et al.
1994) to use several GPUs in parallel efficiently.

2 T H E S E I S M I C WAV E E Q UAT I O N A N D
A C L A S S I C A L F I N I T E - D I F F E R E N C E
D I S C R E T I Z AT I O N

We consider a linear isotropic elastic rheology for the solid medium,
and therefore the seismic wave equation can be written in the strong,
that is, differential, form

ρü = ∇ · σ + f ,

σ = c : ε ,

ε = 1
2

[∇u + (∇u)T], (1)

where u denotes the displacement vector, σ the symmetric, second-
order stress tensor, ε the symmetric, second-order strain tensor, c
the fourth-order stiffness tensor, ρ the density and f an external
source force. The double tensor contraction operation is denoted
by a colon, a superscript T denotes the transpose, and a dot over a
symbol indicates time differentiation. The physical domain of the
model is denoted by " and its outer boundary by #. The material
properties of the solid, C and ρ, can be spatially heterogeneous.

In the classical velocity–stress formulation that is used in most
FD implementations (e.g. Collino & Tsogka 2001; Moczo et al.
2007), one rewrites eq. (1) as a first-order system whose unknowns
are the velocity vector v and the stress tensor σ

ρ∂t v = ∇ · σ ,

∂tσ = c :∇v. (2)

The boundary condition at the free surface of the medium is that
the traction vector τ must be zero everywhere at the surface #, that
is,

τ = σ · n̂ = 0, (3)

where n̂ is the outgoing normal to the surface #.

Figure 1. Elementary grid cell of the 3-D staggered spatial finite-difference
method based on Madariaga (1976) used classically to discretize the equa-
tions of elastodynamics, using the components of the velocity vector v and
of the symmetric stress tensor σ as unknowns. The unknowns are defined
at gridpoints or half way between gridpoints depending on the component
and of the grid axis considered. For Maxwell’s equations a similar staggered
grid was introduced by Yee (1966).

Discretization of the first-order system (2) together with the free
surface boundary condition (3) is then classically performed based
on the staggered grid of Fig. 1, which was introduced for Maxwell’s
equations by Yee (1966) and for the seismic wave equation by
Madariaga (1976). Our goal here is not to describe in detail the
classical finite-difference discretization of the seismic wave equa-
tion written in velocity vector and stress tensor because such a
description can be found in numerous textbooks and articles (see
e.g. Collino & Tsogka 2001, and see Moczo et al. 2007 for a thor-
ough review). Let us just recall that in the finite-difference method
partial spatial derivatives are approximated by discrete operators
involving differences between adjacent gridpoints, as in the stencil
of Fig. 2, which represents the fourth-order spatial operator that we
use in our ‘ONDES3D’ software package (Aochi & Douglas 2006).
As an example, the spatial first derivative ∂xu of a given u(x , y,
z, t) component of a field along the x-axis of a regular 3-D grid is
approximated based upon a Taylor expansion

∂x u
(

x + %x
2

, y, z, t
)

≃ 9
8

u(x + %x, y, z, t) − u(x, y, z, t)
%x

− 1
24

u(x + 2%x, y, z, t) − u(x − %x, y, z, t)
%x

, (4)

where %x is the size of an elementary grid cell along the x-axis,
which means that at a given time t the derivative can be computed

C⃝ 2010 The Authors, GJI, 182, 389–402
Journal compilation C⃝ 2010 RAS

Fourth Brazil-France Workshop on High Performance Computing and Scientific Data
Management Driven by Highly Demanding Applications

Ondes 3D - The Model

Stress - Velocity

3

Accelerating a wave propagation code using GPUs 391

Figure 2. Illustration of the spatial stencil of the 3-D fourth-order finite-
difference operator used to approximate spatial derivatives by a discrete
difference between adjacent gridpoints, after discretization of the model in
a grid with elementary grid cells as in Fig. 1.

numerically by using

∂x u
(
i + 1

2 , j, k
)

≃ 9
8

u(i + 1, j, k) − u(i, j, k)
"x

− 1
24

.
u(i + 2, j, k) − u(i − 1, j, k)

"x
. (5)

In practice people often resort to optimized spatial coefficients de-
signed to minimize overall numerical dispersion, for instance those
of Holberg (1987), but this has no influence on the GPU imple-
mentation discussed herein. At the free surface of the model, in the
vertical direction we switch to a second-order spatial operator in
order to be able to implement the free surface condition, as done
classically (see e.g. Moczo et al. 2007). Time evolution is performed
based on a staggered central finite-difference approximation, as in
Virieux (1986).

In regional or local seismology in many cases one is interested
in simulating a semi-infinite medium with a free upper surface.
All the edges of the grid except the top edge are then artificial and
outgoing waves should be absorbed there in order to simulate a semi-
infinite medium. We use the unsplit CPML technique of Komatitsch
& Martin (2007), also analysed by Kristek et al. (2009), which
consists in modifying each spatial derivative along the direction
perpendicular to the absorbing layer, say x, in the following fashion:

∂x̃ = 1
κx

∂x + ψx , (6)

where ψ x is a memory variable whose time evolution is governed
at each time step by an additional equation

ψn
x = bxψ

n−1
x + ax (∂x)n− 1

2 . (7)

This implies that significantly more equations need to be solved
in the PML regions, in particular near the corners of the 3-D grid,
because contributions coming from the PML layers located along x,
y and z are summed there and one memory variable and thus a time
evolution equation is needed for each; but this is acceptable because
the PML regions are small compared to the rest of the model.

Coefficients ax and bx in the PML, which do not vary with time,
are given by

bx = e−(dx /κx +αx)"t (8)

and

ax = dx

κx (dx + κxαx)
(bx − 1), (9)

where κx ≥ 1, dx ≥ 0 and αx ≥ 0 are three real damping coefficients.
We refer the reader to Komatitsch & Martin (2007) for more details.
Note that if a higher-order time scheme were used, one should resort
to an auxiliary differential equation (ADE) implementation of the
PML optimized at grazing incidence instead of a convolutional
implementation, as introduced by Martin et al. (2010).

3 I M P L E M E N TAT I O N O N G R A P H I C S
C A R D S U S I N G C U DA

Let us first summarize a few key concepts regarding programming
GPU graphics cards with CUDA, and then see how to port our
elastic wave propagation code to it.

3.1 A brief summary of GPU programming concepts

For readers not familiar with details of CUDA or GPU program-
ming, let us briefly explain the programming model that supports
the fine-grained parallel architecture of NVIDIA GPUs. Consider-
ing the potentially very high performance increase that one may get
for a wide range of applications by porting them to GPUs, it is of
interest to become familiar with these new programming concepts,
which are significantly different from classical serial programming
in Fortran or C on a CPU. In the glossary of Table 1 we briefly
explain some of the terms most commonly used in the context of
graphics cards and CUDA and that are used several times in the rest
of the article. For more details the reader is referred to the CUDA
documentation (NVIDIA Corporation 2009a) and GPU/CUDA con-
ference tutorials (see e.g. http://gpgpu.org/developer).

The official CUDA documentation (NVIDIA Corporation 2009a)
and publications related to CUDA (see Section 1) often use varying
terminologies, in particular when defining the notion of a computing
‘core’ on GPUs. In this article, we identify each so-called ‘multipro-
cessor’ of a GPU with a ‘Single Instruction, Multiple Data (SIMD)
core’. The individual thread processors within each multiprocessor,
which are called ‘streaming processor cores’ or ‘CUDA cores’ in
NVIDIA literature, share the instruction stream and can therefore
be viewed as arithmetic logic units (ALUs).

The code that gets executed on the GPU is called a calculation
‘kernel’. This kernel is launched on a grid of thread blocks. Threads
inside the same block can be synchronized, but no synchronization
is possible between blocks. The different blocks are placed on the
different multiprocessors by a scheduler that removes stalled blocks
waiting for input to or output from memory and launches thread
blocks that are ready for execution. The same physical multiproces-
sor can execute several blocks, and the order in which blocks are
assigned to multiprocessors is undefined. There is always an im-
plicit synchronization between kernel calls on dependent data (i.e.
when some of the output of one kernel is used as input to the next).

The memory available on the graphics card is distributed between
threads and thread blocks. Each thread has its own registers, whose
access is extremely fast but whose total number is limited. Each
thread block can use a small amount of low-latency on-chip ‘shared
memory’, which can be read from and written to by all the threads

C⃝ 2010 The Authors, GJI, 182, 389–402
Journal compilation C⃝ 2010 RAS

390 D. Michéa and D. Komatitsch

numerical techniques mentioned above for seismic wave propaga-
tion have recently been successfully ported to GPUs, for instance
the spectral-element method by Komatitsch et al. (2009) in the case
of one GPU and by Komatitsch et al. (2010a,b) in the case of a clus-
ter of many GPUs used in parallel, and the discontinuous Galerkin
method by Klöckner et al. (2009).

GPU programming on NVIDIA graphics cards has become
significantly easier with the introduction at the end of 2006 of
the CUDA programming language (NVIDIA Corporation 2009a),
which is relatively easy to learn because its syntax is similar to C.
Regarding FD for seismic reverse time migration in the case of an
acoustic medium with constant density, Abdelkhalek (2007) and
Micikevicius (2009) (from NVIDIA corporation, the developers of
GPU hardware and of CUDA) have recently introduced optimized
implementations. Abdelkhalek et al. (2009) extended it to the acous-
tic case with heterogeneous density. In this article, we use CUDA
to solve the seismic wave equation in the more complex fully het-
erogeneous (including for density) elastic case on several GPUs
used in parallel. We improve upon Micikevicius (2009) by apply-
ing his methodology to the full elastic wave equation and to a real
3-D model, by adding CPML absorbing layers, by making access
to these CPML arrays faster on the GPU by resorting to so-called
‘CUDA texture fetching’ to access them and overcome the limited
amount of shared memory that is available on the GPU hardware,
and finally by using message passing (MPI, see e.g. Gropp et al.
1994) to use several GPUs in parallel efficiently.

2 T H E S E I S M I C WAV E E Q UAT I O N A N D
A C L A S S I C A L F I N I T E - D I F F E R E N C E
D I S C R E T I Z AT I O N

We consider a linear isotropic elastic rheology for the solid medium,
and therefore the seismic wave equation can be written in the strong,
that is, differential, form

ρü = ∇ · σ + f ,

σ = c : ε ,

ε = 1
2

[∇u + (∇u)T], (1)

where u denotes the displacement vector, σ the symmetric, second-
order stress tensor, ε the symmetric, second-order strain tensor, c
the fourth-order stiffness tensor, ρ the density and f an external
source force. The double tensor contraction operation is denoted
by a colon, a superscript T denotes the transpose, and a dot over a
symbol indicates time differentiation. The physical domain of the
model is denoted by " and its outer boundary by #. The material
properties of the solid, C and ρ, can be spatially heterogeneous.

In the classical velocity–stress formulation that is used in most
FD implementations (e.g. Collino & Tsogka 2001; Moczo et al.
2007), one rewrites eq. (1) as a first-order system whose unknowns
are the velocity vector v and the stress tensor σ

ρ∂t v = ∇ · σ ,

∂tσ = c :∇v. (2)

The boundary condition at the free surface of the medium is that
the traction vector τ must be zero everywhere at the surface #, that
is,

τ = σ · n̂ = 0, (3)

where n̂ is the outgoing normal to the surface #.

Figure 1. Elementary grid cell of the 3-D staggered spatial finite-difference
method based on Madariaga (1976) used classically to discretize the equa-
tions of elastodynamics, using the components of the velocity vector v and
of the symmetric stress tensor σ as unknowns. The unknowns are defined
at gridpoints or half way between gridpoints depending on the component
and of the grid axis considered. For Maxwell’s equations a similar staggered
grid was introduced by Yee (1966).

Discretization of the first-order system (2) together with the free
surface boundary condition (3) is then classically performed based
on the staggered grid of Fig. 1, which was introduced for Maxwell’s
equations by Yee (1966) and for the seismic wave equation by
Madariaga (1976). Our goal here is not to describe in detail the
classical finite-difference discretization of the seismic wave equa-
tion written in velocity vector and stress tensor because such a
description can be found in numerous textbooks and articles (see
e.g. Collino & Tsogka 2001, and see Moczo et al. 2007 for a thor-
ough review). Let us just recall that in the finite-difference method
partial spatial derivatives are approximated by discrete operators
involving differences between adjacent gridpoints, as in the stencil
of Fig. 2, which represents the fourth-order spatial operator that we
use in our ‘ONDES3D’ software package (Aochi & Douglas 2006).
As an example, the spatial first derivative ∂xu of a given u(x , y,
z, t) component of a field along the x-axis of a regular 3-D grid is
approximated based upon a Taylor expansion

∂x u
(

x + %x
2

, y, z, t
)

≃ 9
8

u(x + %x, y, z, t) − u(x, y, z, t)
%x

− 1
24

u(x + 2%x, y, z, t) − u(x − %x, y, z, t)
%x

, (4)

where %x is the size of an elementary grid cell along the x-axis,
which means that at a given time t the derivative can be computed

C⃝ 2010 The Authors, GJI, 182, 389–402
Journal compilation C⃝ 2010 RAS

390 D. Michéa and D. Komatitsch

numerical techniques mentioned above for seismic wave propaga-
tion have recently been successfully ported to GPUs, for instance
the spectral-element method by Komatitsch et al. (2009) in the case
of one GPU and by Komatitsch et al. (2010a,b) in the case of a clus-
ter of many GPUs used in parallel, and the discontinuous Galerkin
method by Klöckner et al. (2009).

GPU programming on NVIDIA graphics cards has become
significantly easier with the introduction at the end of 2006 of
the CUDA programming language (NVIDIA Corporation 2009a),
which is relatively easy to learn because its syntax is similar to C.
Regarding FD for seismic reverse time migration in the case of an
acoustic medium with constant density, Abdelkhalek (2007) and
Micikevicius (2009) (from NVIDIA corporation, the developers of
GPU hardware and of CUDA) have recently introduced optimized
implementations. Abdelkhalek et al. (2009) extended it to the acous-
tic case with heterogeneous density. In this article, we use CUDA
to solve the seismic wave equation in the more complex fully het-
erogeneous (including for density) elastic case on several GPUs
used in parallel. We improve upon Micikevicius (2009) by apply-
ing his methodology to the full elastic wave equation and to a real
3-D model, by adding CPML absorbing layers, by making access
to these CPML arrays faster on the GPU by resorting to so-called
‘CUDA texture fetching’ to access them and overcome the limited
amount of shared memory that is available on the GPU hardware,
and finally by using message passing (MPI, see e.g. Gropp et al.
1994) to use several GPUs in parallel efficiently.

2 T H E S E I S M I C WAV E E Q UAT I O N A N D
A C L A S S I C A L F I N I T E - D I F F E R E N C E
D I S C R E T I Z AT I O N

We consider a linear isotropic elastic rheology for the solid medium,
and therefore the seismic wave equation can be written in the strong,
that is, differential, form

ρü = ∇ · σ + f ,

σ = c : ε ,

ε = 1
2

[∇u + (∇u)T], (1)

where u denotes the displacement vector, σ the symmetric, second-
order stress tensor, ε the symmetric, second-order strain tensor, c
the fourth-order stiffness tensor, ρ the density and f an external
source force. The double tensor contraction operation is denoted
by a colon, a superscript T denotes the transpose, and a dot over a
symbol indicates time differentiation. The physical domain of the
model is denoted by " and its outer boundary by #. The material
properties of the solid, C and ρ, can be spatially heterogeneous.

In the classical velocity–stress formulation that is used in most
FD implementations (e.g. Collino & Tsogka 2001; Moczo et al.
2007), one rewrites eq. (1) as a first-order system whose unknowns
are the velocity vector v and the stress tensor σ

ρ∂t v = ∇ · σ ,

∂tσ = c :∇v. (2)

The boundary condition at the free surface of the medium is that
the traction vector τ must be zero everywhere at the surface #, that
is,

τ = σ · n̂ = 0, (3)

where n̂ is the outgoing normal to the surface #.

Figure 1. Elementary grid cell of the 3-D staggered spatial finite-difference
method based on Madariaga (1976) used classically to discretize the equa-
tions of elastodynamics, using the components of the velocity vector v and
of the symmetric stress tensor σ as unknowns. The unknowns are defined
at gridpoints or half way between gridpoints depending on the component
and of the grid axis considered. For Maxwell’s equations a similar staggered
grid was introduced by Yee (1966).

Discretization of the first-order system (2) together with the free
surface boundary condition (3) is then classically performed based
on the staggered grid of Fig. 1, which was introduced for Maxwell’s
equations by Yee (1966) and for the seismic wave equation by
Madariaga (1976). Our goal here is not to describe in detail the
classical finite-difference discretization of the seismic wave equa-
tion written in velocity vector and stress tensor because such a
description can be found in numerous textbooks and articles (see
e.g. Collino & Tsogka 2001, and see Moczo et al. 2007 for a thor-
ough review). Let us just recall that in the finite-difference method
partial spatial derivatives are approximated by discrete operators
involving differences between adjacent gridpoints, as in the stencil
of Fig. 2, which represents the fourth-order spatial operator that we
use in our ‘ONDES3D’ software package (Aochi & Douglas 2006).
As an example, the spatial first derivative ∂xu of a given u(x , y,
z, t) component of a field along the x-axis of a regular 3-D grid is
approximated based upon a Taylor expansion

∂x u
(

x + %x
2

, y, z, t
)

≃ 9
8

u(x + %x, y, z, t) − u(x, y, z, t)
%x

− 1
24

u(x + 2%x, y, z, t) − u(x − %x, y, z, t)
%x

, (4)

where %x is the size of an elementary grid cell along the x-axis,
which means that at a given time t the derivative can be computed

C⃝ 2010 The Authors, GJI, 182, 389–402
Journal compilation C⃝ 2010 RAS

Fourth Brazil-France Workshop on High Performance Computing and Scientific Data
Management Driven by Highly Demanding Applications

Ondes 3D - The Model

Stress - Velocity

3

Accelerating a wave propagation code using GPUs 391

Figure 2. Illustration of the spatial stencil of the 3-D fourth-order finite-
difference operator used to approximate spatial derivatives by a discrete
difference between adjacent gridpoints, after discretization of the model in
a grid with elementary grid cells as in Fig. 1.

numerically by using

∂x u
(
i + 1

2 , j, k
)

≃ 9
8

u(i + 1, j, k) − u(i, j, k)
"x

− 1
24

.
u(i + 2, j, k) − u(i − 1, j, k)

"x
. (5)

In practice people often resort to optimized spatial coefficients de-
signed to minimize overall numerical dispersion, for instance those
of Holberg (1987), but this has no influence on the GPU imple-
mentation discussed herein. At the free surface of the model, in the
vertical direction we switch to a second-order spatial operator in
order to be able to implement the free surface condition, as done
classically (see e.g. Moczo et al. 2007). Time evolution is performed
based on a staggered central finite-difference approximation, as in
Virieux (1986).

In regional or local seismology in many cases one is interested
in simulating a semi-infinite medium with a free upper surface.
All the edges of the grid except the top edge are then artificial and
outgoing waves should be absorbed there in order to simulate a semi-
infinite medium. We use the unsplit CPML technique of Komatitsch
& Martin (2007), also analysed by Kristek et al. (2009), which
consists in modifying each spatial derivative along the direction
perpendicular to the absorbing layer, say x, in the following fashion:

∂x̃ = 1
κx

∂x + ψx , (6)

where ψ x is a memory variable whose time evolution is governed
at each time step by an additional equation

ψn
x = bxψ

n−1
x + ax (∂x)n− 1

2 . (7)

This implies that significantly more equations need to be solved
in the PML regions, in particular near the corners of the 3-D grid,
because contributions coming from the PML layers located along x,
y and z are summed there and one memory variable and thus a time
evolution equation is needed for each; but this is acceptable because
the PML regions are small compared to the rest of the model.

Coefficients ax and bx in the PML, which do not vary with time,
are given by

bx = e−(dx /κx +αx)"t (8)

and

ax = dx

κx (dx + κxαx)
(bx − 1), (9)

where κx ≥ 1, dx ≥ 0 and αx ≥ 0 are three real damping coefficients.
We refer the reader to Komatitsch & Martin (2007) for more details.
Note that if a higher-order time scheme were used, one should resort
to an auxiliary differential equation (ADE) implementation of the
PML optimized at grazing incidence instead of a convolutional
implementation, as introduced by Martin et al. (2010).

3 I M P L E M E N TAT I O N O N G R A P H I C S
C A R D S U S I N G C U DA

Let us first summarize a few key concepts regarding programming
GPU graphics cards with CUDA, and then see how to port our
elastic wave propagation code to it.

3.1 A brief summary of GPU programming concepts

For readers not familiar with details of CUDA or GPU program-
ming, let us briefly explain the programming model that supports
the fine-grained parallel architecture of NVIDIA GPUs. Consider-
ing the potentially very high performance increase that one may get
for a wide range of applications by porting them to GPUs, it is of
interest to become familiar with these new programming concepts,
which are significantly different from classical serial programming
in Fortran or C on a CPU. In the glossary of Table 1 we briefly
explain some of the terms most commonly used in the context of
graphics cards and CUDA and that are used several times in the rest
of the article. For more details the reader is referred to the CUDA
documentation (NVIDIA Corporation 2009a) and GPU/CUDA con-
ference tutorials (see e.g. http://gpgpu.org/developer).

The official CUDA documentation (NVIDIA Corporation 2009a)
and publications related to CUDA (see Section 1) often use varying
terminologies, in particular when defining the notion of a computing
‘core’ on GPUs. In this article, we identify each so-called ‘multipro-
cessor’ of a GPU with a ‘Single Instruction, Multiple Data (SIMD)
core’. The individual thread processors within each multiprocessor,
which are called ‘streaming processor cores’ or ‘CUDA cores’ in
NVIDIA literature, share the instruction stream and can therefore
be viewed as arithmetic logic units (ALUs).

The code that gets executed on the GPU is called a calculation
‘kernel’. This kernel is launched on a grid of thread blocks. Threads
inside the same block can be synchronized, but no synchronization
is possible between blocks. The different blocks are placed on the
different multiprocessors by a scheduler that removes stalled blocks
waiting for input to or output from memory and launches thread
blocks that are ready for execution. The same physical multiproces-
sor can execute several blocks, and the order in which blocks are
assigned to multiprocessors is undefined. There is always an im-
plicit synchronization between kernel calls on dependent data (i.e.
when some of the output of one kernel is used as input to the next).

The memory available on the graphics card is distributed between
threads and thread blocks. Each thread has its own registers, whose
access is extremely fast but whose total number is limited. Each
thread block can use a small amount of low-latency on-chip ‘shared
memory’, which can be read from and written to by all the threads

C⃝ 2010 The Authors, GJI, 182, 389–402
Journal compilation C⃝ 2010 RAS

390 D. Michéa and D. Komatitsch

numerical techniques mentioned above for seismic wave propaga-
tion have recently been successfully ported to GPUs, for instance
the spectral-element method by Komatitsch et al. (2009) in the case
of one GPU and by Komatitsch et al. (2010a,b) in the case of a clus-
ter of many GPUs used in parallel, and the discontinuous Galerkin
method by Klöckner et al. (2009).

GPU programming on NVIDIA graphics cards has become
significantly easier with the introduction at the end of 2006 of
the CUDA programming language (NVIDIA Corporation 2009a),
which is relatively easy to learn because its syntax is similar to C.
Regarding FD for seismic reverse time migration in the case of an
acoustic medium with constant density, Abdelkhalek (2007) and
Micikevicius (2009) (from NVIDIA corporation, the developers of
GPU hardware and of CUDA) have recently introduced optimized
implementations. Abdelkhalek et al. (2009) extended it to the acous-
tic case with heterogeneous density. In this article, we use CUDA
to solve the seismic wave equation in the more complex fully het-
erogeneous (including for density) elastic case on several GPUs
used in parallel. We improve upon Micikevicius (2009) by apply-
ing his methodology to the full elastic wave equation and to a real
3-D model, by adding CPML absorbing layers, by making access
to these CPML arrays faster on the GPU by resorting to so-called
‘CUDA texture fetching’ to access them and overcome the limited
amount of shared memory that is available on the GPU hardware,
and finally by using message passing (MPI, see e.g. Gropp et al.
1994) to use several GPUs in parallel efficiently.

2 T H E S E I S M I C WAV E E Q UAT I O N A N D
A C L A S S I C A L F I N I T E - D I F F E R E N C E
D I S C R E T I Z AT I O N

We consider a linear isotropic elastic rheology for the solid medium,
and therefore the seismic wave equation can be written in the strong,
that is, differential, form

ρü = ∇ · σ + f ,

σ = c : ε ,

ε = 1
2

[∇u + (∇u)T], (1)

where u denotes the displacement vector, σ the symmetric, second-
order stress tensor, ε the symmetric, second-order strain tensor, c
the fourth-order stiffness tensor, ρ the density and f an external
source force. The double tensor contraction operation is denoted
by a colon, a superscript T denotes the transpose, and a dot over a
symbol indicates time differentiation. The physical domain of the
model is denoted by " and its outer boundary by #. The material
properties of the solid, C and ρ, can be spatially heterogeneous.

In the classical velocity–stress formulation that is used in most
FD implementations (e.g. Collino & Tsogka 2001; Moczo et al.
2007), one rewrites eq. (1) as a first-order system whose unknowns
are the velocity vector v and the stress tensor σ

ρ∂t v = ∇ · σ ,

∂tσ = c :∇v. (2)

The boundary condition at the free surface of the medium is that
the traction vector τ must be zero everywhere at the surface #, that
is,

τ = σ · n̂ = 0, (3)

where n̂ is the outgoing normal to the surface #.

Figure 1. Elementary grid cell of the 3-D staggered spatial finite-difference
method based on Madariaga (1976) used classically to discretize the equa-
tions of elastodynamics, using the components of the velocity vector v and
of the symmetric stress tensor σ as unknowns. The unknowns are defined
at gridpoints or half way between gridpoints depending on the component
and of the grid axis considered. For Maxwell’s equations a similar staggered
grid was introduced by Yee (1966).

Discretization of the first-order system (2) together with the free
surface boundary condition (3) is then classically performed based
on the staggered grid of Fig. 1, which was introduced for Maxwell’s
equations by Yee (1966) and for the seismic wave equation by
Madariaga (1976). Our goal here is not to describe in detail the
classical finite-difference discretization of the seismic wave equa-
tion written in velocity vector and stress tensor because such a
description can be found in numerous textbooks and articles (see
e.g. Collino & Tsogka 2001, and see Moczo et al. 2007 for a thor-
ough review). Let us just recall that in the finite-difference method
partial spatial derivatives are approximated by discrete operators
involving differences between adjacent gridpoints, as in the stencil
of Fig. 2, which represents the fourth-order spatial operator that we
use in our ‘ONDES3D’ software package (Aochi & Douglas 2006).
As an example, the spatial first derivative ∂xu of a given u(x , y,
z, t) component of a field along the x-axis of a regular 3-D grid is
approximated based upon a Taylor expansion

∂x u
(

x + %x
2

, y, z, t
)

≃ 9
8

u(x + %x, y, z, t) − u(x, y, z, t)
%x

− 1
24

u(x + 2%x, y, z, t) − u(x − %x, y, z, t)
%x

, (4)

where %x is the size of an elementary grid cell along the x-axis,
which means that at a given time t the derivative can be computed

C⃝ 2010 The Authors, GJI, 182, 389–402
Journal compilation C⃝ 2010 RAS

390 D. Michéa and D. Komatitsch

numerical techniques mentioned above for seismic wave propaga-
tion have recently been successfully ported to GPUs, for instance
the spectral-element method by Komatitsch et al. (2009) in the case
of one GPU and by Komatitsch et al. (2010a,b) in the case of a clus-
ter of many GPUs used in parallel, and the discontinuous Galerkin
method by Klöckner et al. (2009).

GPU programming on NVIDIA graphics cards has become
significantly easier with the introduction at the end of 2006 of
the CUDA programming language (NVIDIA Corporation 2009a),
which is relatively easy to learn because its syntax is similar to C.
Regarding FD for seismic reverse time migration in the case of an
acoustic medium with constant density, Abdelkhalek (2007) and
Micikevicius (2009) (from NVIDIA corporation, the developers of
GPU hardware and of CUDA) have recently introduced optimized
implementations. Abdelkhalek et al. (2009) extended it to the acous-
tic case with heterogeneous density. In this article, we use CUDA
to solve the seismic wave equation in the more complex fully het-
erogeneous (including for density) elastic case on several GPUs
used in parallel. We improve upon Micikevicius (2009) by apply-
ing his methodology to the full elastic wave equation and to a real
3-D model, by adding CPML absorbing layers, by making access
to these CPML arrays faster on the GPU by resorting to so-called
‘CUDA texture fetching’ to access them and overcome the limited
amount of shared memory that is available on the GPU hardware,
and finally by using message passing (MPI, see e.g. Gropp et al.
1994) to use several GPUs in parallel efficiently.

2 T H E S E I S M I C WAV E E Q UAT I O N A N D
A C L A S S I C A L F I N I T E - D I F F E R E N C E
D I S C R E T I Z AT I O N

We consider a linear isotropic elastic rheology for the solid medium,
and therefore the seismic wave equation can be written in the strong,
that is, differential, form

ρü = ∇ · σ + f ,

σ = c : ε ,

ε = 1
2

[∇u + (∇u)T], (1)

where u denotes the displacement vector, σ the symmetric, second-
order stress tensor, ε the symmetric, second-order strain tensor, c
the fourth-order stiffness tensor, ρ the density and f an external
source force. The double tensor contraction operation is denoted
by a colon, a superscript T denotes the transpose, and a dot over a
symbol indicates time differentiation. The physical domain of the
model is denoted by " and its outer boundary by #. The material
properties of the solid, C and ρ, can be spatially heterogeneous.

In the classical velocity–stress formulation that is used in most
FD implementations (e.g. Collino & Tsogka 2001; Moczo et al.
2007), one rewrites eq. (1) as a first-order system whose unknowns
are the velocity vector v and the stress tensor σ

ρ∂t v = ∇ · σ ,

∂tσ = c :∇v. (2)

The boundary condition at the free surface of the medium is that
the traction vector τ must be zero everywhere at the surface #, that
is,

τ = σ · n̂ = 0, (3)

where n̂ is the outgoing normal to the surface #.

Figure 1. Elementary grid cell of the 3-D staggered spatial finite-difference
method based on Madariaga (1976) used classically to discretize the equa-
tions of elastodynamics, using the components of the velocity vector v and
of the symmetric stress tensor σ as unknowns. The unknowns are defined
at gridpoints or half way between gridpoints depending on the component
and of the grid axis considered. For Maxwell’s equations a similar staggered
grid was introduced by Yee (1966).

Discretization of the first-order system (2) together with the free
surface boundary condition (3) is then classically performed based
on the staggered grid of Fig. 1, which was introduced for Maxwell’s
equations by Yee (1966) and for the seismic wave equation by
Madariaga (1976). Our goal here is not to describe in detail the
classical finite-difference discretization of the seismic wave equa-
tion written in velocity vector and stress tensor because such a
description can be found in numerous textbooks and articles (see
e.g. Collino & Tsogka 2001, and see Moczo et al. 2007 for a thor-
ough review). Let us just recall that in the finite-difference method
partial spatial derivatives are approximated by discrete operators
involving differences between adjacent gridpoints, as in the stencil
of Fig. 2, which represents the fourth-order spatial operator that we
use in our ‘ONDES3D’ software package (Aochi & Douglas 2006).
As an example, the spatial first derivative ∂xu of a given u(x , y,
z, t) component of a field along the x-axis of a regular 3-D grid is
approximated based upon a Taylor expansion

∂x u
(

x + %x
2

, y, z, t
)

≃ 9
8

u(x + %x, y, z, t) − u(x, y, z, t)
%x

− 1
24

u(x + 2%x, y, z, t) − u(x − %x, y, z, t)
%x

, (4)

where %x is the size of an elementary grid cell along the x-axis,
which means that at a given time t the derivative can be computed

C⃝ 2010 The Authors, GJI, 182, 389–402
Journal compilation C⃝ 2010 RAS

Fourth Brazil-France Workshop on High Performance Computing and Scientific Data
Management Driven by Highly Demanding Applications

Motivation

4

Fourth Brazil-France Workshop on High Performance Computing and Scientific Data
Management Driven by Highly Demanding Applications

Motivation

4

Is performance loss caused by poor load balancing?!
Is the unbalanced problem correlated with communication time and memory usage?

Fourth Brazil-France Workshop on High Performance Computing and Scientific Data
Management Driven by Highly Demanding Applications

Experiments
❖ Guane-1 (Colombia)!

❖ 16 nodes!

❖ 84 Intel Xeon E5640.!

❖ 128 GPUs TESLA FERMI
M2050.!

❖ Increasing the number of GPUs,
until to get unbalanced load.!

❖ Executed with MPI - Charm++

5

Fourth Brazil-France Workshop on High Performance Computing and Scientific Data
Management Driven by Highly Demanding Applications

Measures

6

Fourth Brazil-France Workshop on High Performance Computing and Scientific Data
Management Driven by Highly Demanding Applications

Measures

6

Fourth Brazil-France Workshop on High Performance Computing and Scientific Data
Management Driven by Highly Demanding Applications

Measures

7

Fourth Brazil-France Workshop on High Performance Computing and Scientific Data
Management Driven by Highly Demanding Applications

Measures

7

Fourth Brazil-France Workshop on High Performance Computing and Scientific Data
Management Driven by Highly Demanding Applications

Measures

7

Fourth Brazil-France Workshop on High Performance Computing and Scientific Data
Management Driven by Highly Demanding Applications

Measures

7

Fourth Brazil-France Workshop on High Performance Computing and Scientific Data
Management Driven by Highly Demanding Applications

Measures

7

Fourth Brazil-France Workshop on High Performance Computing and Scientific Data
Management Driven by Highly Demanding Applications

Measures

7

Fourth Brazil-France Workshop on High Performance Computing and Scientific Data
Management Driven by Highly Demanding Applications

Measures

7

Fourth Brazil-France Workshop on High Performance Computing and Scientific Data
Management Driven by Highly Demanding Applications

Measures

7

Fourth Brazil-France Workshop on High Performance Computing and Scientific Data
Management Driven by Highly Demanding Applications

Measures

7

Fourth Brazil-France Workshop on High Performance Computing and Scientific Data
Management Driven by Highly Demanding Applications

Results (Correlation)

8

Fourth Brazil-France Workshop on High Performance Computing and Scientific Data
Management Driven by Highly Demanding Applications

Results (Correlation)
❖ Memory:!

❖ GPU load - Memory
utilization: 0.88.

8

Fourth Brazil-France Workshop on High Performance Computing and Scientific Data
Management Driven by Highly Demanding Applications

Results (Correlation)
❖ Memory:!

❖ GPU load - Memory
utilization: 0.88.

❖ Communication:!

❖ GPU load - Communication
time: -0.30.!

❖ STD load - Communication
time: -0.71.

8

Fourth Brazil-France Workshop on High Performance Computing and Scientific Data
Management Driven by Highly Demanding Applications

Results
❖ Unbalanced load:!

❖ GPUs with lower load are using less memory than the others with
higher load.!

❖ GPUs have high rates of communication.!

❖ GPUs are solving the inner space on the grid.!

❖ GPUs are solving the lowest values on Y axis.!

❖ Charm++!

❖ Same behavior: We have only information of CPUs load.

9

Fourth Brazil-France Workshop on High Performance Computing and Scientific Data
Management Driven by Highly Demanding Applications

TODO
❖ We need to increment memory utilization and to reduce

communication: it is necessary to send fragments of the 3D grid
instead to a 2D tile, in the sense that it will have more data and
less communication to find the nearest values to calculate the
stencil (12 points).!

❖ To exploit the advantages of process virtualization on load
balancing will be necessary. This optimization could be done with
concurrent execution (Fermi) and dynamic parallelism (Kepler).!

❖ StarPU implementation for better scheduling.

10

Fourth Brazil-France Workshop on High Performance Computing and Scientific Data
Management Driven by Highly Demanding Applications

Load Balancing Analysis for
Seismic Model Ondes3D
on multi GPUs platforms

Víctor Martínez!
Philippe Navaux!
Fabrice Dupros!
!
Parallel and Distributed Processing Group
(GPPD)!
Federal University of Rio Grande do Sul
(UFRGS)

Merci! Obrigado! Thanks! ¡Gracias!

