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Stéphane Lanteri

JAD Laboratory, UNSA
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Nachos project-team

Scientific objectives

At first glance, a methodology-driven project-team

Numerical modeling of physical problems involving waves in interaction with
complex media and irregularly shaped structures

Systems of linear PDEs with variable coefficients

Time-domain and time-harmonic problems

Methodological aspects

Theoretical (properties of numerical methods)

Practical (numerical algorithms and associated software)

Application aspects

Focus on a few applications, preferably related to scientific and technological
challenges of interest to the quality of life in our society

Contribute to a realistic numerical modeling of the underlying physical
phenomena and demonstrate the benefits of the proposed methodologies
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Nachos project-team
Objectives and research directions

High order Discontinuous Galerkin (DG) methods

Formulation and analysis of DG methods on simplicial and mixed
cartesian-simplicial meshes

High order polynomial interpolation

Non-conformity (local h-, p- and hp-adaptivity)

Numerical treatment of complex material models

Numerically efficient solution strategies

Locally implicit time integration methods

Domain decomposition methods

High performance computing

Algorithmics for modern parallel computing platforms

Hybrid MIMD-SIMD parallelization strategies

Large-scale simulations
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Nachos project-team

Computational electromagnetics

System of Maxwell equations

Dispersive propagation media

Applications involve the interaction of electromagnetic waves with,

1 Biological tissues (biocem),

2 Nanoscale objects (nanophotonics).

Computational geoseismics

System of elastodynamic equations

Viscoelastic propagation media

Applications deal with the propagation of seismic waves,

1 Generated by an explosive source (earthquake dynamics),

2 In the subsurface (resource prospection).
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4 DGTD modeling of EM waves interaction with nanostructures
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Computational nanophotonics: some generalities

Modeling context

Nanophotonics or nano-optics is the study of the behavior of light on the nanometer scale

It is considered as a branch of optical engineering which deals with optics, or the interaction
of light with particles or substances, at deeply subwavelength length scales

Refers to phenomena of ultraviolet, visible and near IR light, with a wavelength of
approximately 300 to 1200 nanometers

The interaction of light with these nanoscale features leads to confinement of the
electromagnetic field to the surface or tip of the nanostructure resulting in a region
referred to as the optical near field

Modeling challenges

Metal nanoparticles and metal/dielectric interfaces

Very strong localized EM field enhancements

Local, non-local and possibly non-linear dispersion effects
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Computational nanophotonics: some generalities

A typical physical setting (nanoplasmonics)

SPs are coherent electron oscillations at the interface between any two materials
where the real part of the dielectric function changes sign across the interface

SPs typically exists at a metal-dielectric interface

When SPs couple with a photon, the resulting hybridized excitation is called a surface
plasmon polariton (SPP)

This SPP can propagate along the surface of a metal until energy is lost either via
absorption in the metal or radiation into free space

Schematic representation of an electron density wave propagating along a metal-dielectric
interface. The exponential dependence of the electromagnetic field intensity on the distance away
from the interface is shown on the right. These waves can be excited very efficiently with light in
the visible range of the electromagnetic spectrum.
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Computational nanophotonics: some generalities

Applications

The enabling nature of nanophotonics means that the potential applications of nanophotonics are
expected to be be broad.

Examples applications with potential commercial and/or societal impact are:

1 Nano-engineered photonics materials

2 Nanoscale quantum optics

3 Nanoscale functional imaging

4 Photovoltaics

5 Communications and all-optical signal processing

6 Chemical biosensors

7 Plasmon-enhanced magnetic storage
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Computational nanophotonics: some generalities

Applications: nanoscale functional imaging

Majour photonics needs

Improved imaging tools for biologists, biochemists and materials scientists with 5-10 nm
spatial resolution for individual proteins cell membrane manipulation, and more
sophisticated interfaces for photo-induced life science processes

Faster and more sensitive light detectors

New probes/markers and assays suitable for nanoscale functional imaging (fluorophores,
nanoantennas, surface enhanced Raman spectroscopy [SERS] substrates)

Ultra-compact integrated systems for lab-on-chip applications
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Computational nanophotonics: some generalities

Applications: nanoscale functional imaging

The optical antenna concept is very promising for achieving ultrahigh spatial resolution and
sensitivity, but requires development for real-world applications

From: Tumour targeting: nanoantennas heat up
W. Zhao and J.M. Karp, Nature Materials 8, pp. 453-454, 2009
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Computational nanophotonics: some generalities

Challenges with the simulation of ElectroMagnetic (EM) wave propagation

Geometrical characteristics of the propagation domain:
dimensions relatively to the wavelength,
irregularly shaped objects and singularities.

Physical characteristics of the propagation medium:
heterogeneity and anisotropy,
physical dispersion and dissipation.

Characteristics of the radiating sources and incident fields

PDE model: the system of Maxwell equations

James Clerk Maxwell (1831-1879)
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Time-domain electromagnetics
Overview of existing methods

FDTD: Finite Difference Time-Domain method

Seminal work of K.S. Yee
(IEEE Trans. Antennas Propag., Vol. AP-14, 1966)

Structured (cartesian) meshes

Second order accurate (space and time) on uniform meshes

Advantages
Easy computer implementation

Computationally efficient (very low algorithmic complexity)

Mesh generation is straightforward

Modelization of complex sources (antennas, thin wires, etc.) is well established

Drawbacks
Accuracy on non-uniform discretizations

Memory requirements for high resolution models

Approximate discretization of boundaries (stair case representation)
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Time-domain electromagnetics
Overview of existing methods

Staircaising effect

Simulation of the scattering of a plane wave by a nanosphere. Numerical illustration of
the staircaising effect using a solution method on a uniform cartesian mesh.
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Time-domain electromagnetics
Overview of existing methods

FETD: Finite Element Time-Domain method

Often based on J.-C. Nédélec edge elements
(Numer. Math, Vol. 35, 1980 and Vol. 50, 1986)

Unstructured meshes

Advantages
Accurate representation of complex shapes

Well suited to high order interpolation methods

Drawbacks
Computer implementation is less trivial

Unstructured mesh generation is hardly automated

Global mass matrix

Mass lumped FETD methods

S. Pernet, X. Ferrieres and G. Cohen
IEEE Trans. Antennas Propag., Vol. 53, No. 9, 2005

Hexahedral meshes, high order Lagrange polynomials

Leap-frog time integration scheme

S. Lanteri (Inria) HOSCAR 2014 September 15-18, 2014 17 / 53



Time-domain electromagnetics
Overview of existing methods

FVTD: Finite Volume Time-Domain method

Imported from the CFD community

V. Shankar, W. Hall and A. Mohammadian
Electromag. Vol. 10, 1990

J.-P. Cioni, L. Fezoui and H. Steve
IMPACT Comput. Sci. Eng., Vol. 5, No. 3, 1993

P. Bonnet, X. Ferrieres et al.
J. Electromag. Waves and Appl., Vol. 11, 1997

S. Piperno and M. Remaki and L. Fezoui
SIAM J. Num. Anal., Vol. 39, No. 6, 2002.

Unstructured meshes

Uknowns are cell averages of the field components

Flux evaluation at cell interfaces

Upwind scheme → numerical dissipation

Centered scheme → numerical dispersion (on non-uniform meshes)

Extension to higher order accuracy: MUSCL technique
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Time-domain electromagnetics
Overview of existing methods

DGTD: Discontinuous Galerkin Time-Domain method
F. Bourdel, P.A. Mazet and P. Helluy
Proc. 10th Inter. Conf. on Comp. Meth. in Appl. Sc. and Eng., 1992.

Triangular meshes, first-order upwind DG method (i.e FV method)
Time-domain and time-harmonic Maxwell equations

M. Remaki and L. Fezoui, INRIA RR-3501, 1998.
Time-domain Maxwell equations
Triangular meshes, P1 interpolation, Runke-Kutta time integration (RKDG)

J.S. Hesthaven and T. Warburton (J. Comput. Phys., Vol. 181, 2002)
Tetrahedral meshes, high order Lagrange polynomials, upwind flux
Runge-Kutta time integration

B. Cockburn, F. Li and C.-W. Shu (J. Comput. Phys., Vol. 194, 2004)
Locally divergence-free RKDG formulation

G. Cohen, X. Ferrieres and S. Pernet (J. Comput. Phys., Vol. 217, 2006)
Hexahedral meshes, high order Lagrange polynomials, penalized formulation
Leap-frog time integration scheme

And a steadily increasing number of other works and groups adopting
the method since 2005
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Discontinuous Galerkin Time Domain method

Introducing a commercial FETD solver breaks
new ground in EM field simulation. Based on
the DGTD method, it allows unstructured
geometry-conforming meshes to be used for the
first time in transient EM field simulation.

DGTD is a competitive alternative to traditional
FDTD based methods to solving Maxwell’s
equations in the time domain. The applications
presented here include the electromagnetic
pulse susceptibility of the differential lines in a
laptop computer, the radar signature of a
landmine under undulating ground, the TDR of
a bent flex circuit, and the return loss of a
connector. All of these examples involve
complicated, curved geometries where the
flexibility of the unstructured meshes used in
DGTD provides powerful advantages over
simulation by conventional brick-shaped FDTD
and FIT meshes.

IEEE Microwave Magazine - April 2010
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Time-domain electromagnetics
Discontinuous Galerkin method: basic principles

Problem to be solved

x ∈ Ω ⊂ IRd , t ∈ IR+ , u = u(x, t) , ai = ai (x) scalar real functions

∂u

∂t
+

d∑
i=1

ai
∂u

∂xi
= 0

Weak formulation

<
∂u

∂t
, v >Ω +

d∑
i=1

< ai
∂u

∂xi
, v >Ω= 0

< u , v >Ω =

∫
Ω

uvdx , v being a test function
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Time-domain electromagnetics
Discontinuous Galerkin method: basic principles

Galerkin method

- τh = {K} triangulation of Ω

- Pm(K): polynomials of degree at most m on K

- Approximation space: Vh = {vh ∈ L2(Ω) | ∀K ∈ τh, vh|K ≡ vK ∈ Pm(K)}

For each K ∈ τh find uh ∈ Vh such that:

<
∂uh

∂t
, v >K +

d∑
i=1

< ai
∂uh

∂xi
, v >K= 0 , ∀v ∈ Pm(K)

Integrating by parts (setting a|K ∈ P0(K)):

<
∂uh

∂xi
, v >K = − < uh,

∂v

∂xi
>K + < uhni , v >∂K

< u, v >∂K =

Nf (K)∑
j=1

∂K∩∂Kj

- n = {ni} outward unit normal of ∂K

- Nf (K) = number of faces of K
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Time-domain electromagnetics
Discontinuous Galerkin method: basic principles

Discontinous approximation: uh|K∩Kj not well defined!
⇒ Centered (or upwind) numerical fkux (numerical trace)

Linear algebra

- uh|K (x, t) =

mK∑
j=1

uhj,K (t)ψj,K (x) , mK = dim(Pm(K))

- {ψj,K}, j = 1, . . . ,mK : basis of Pm(K)

MK
∂Uh

K

∂t
=

d∑
i=1

ai

Ri,KU
h
K − ni

Nf (K)∑
j=1

SK ,Kj

Uh
K + Uh

Kj

2




Uh
K = Uh

K (t) = {uhj,K (t)}, j = 1, . . . ,mK

MK [l ,m] = < ψl,K , ψm,K >K

Ri,K [l ,m] = <
∂ψl,K

∂xi
, ψm,K >K

SK ,Kj
[l ,m] = < ψl,K , ψm,Kj

>∂K∩∂Kj

Dimension of local systems: mK ×mK
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Context and objectives of our work

Objectives and planned contributions

Development of a high order DGTD method for nanophotonics/nanoplasmonics

System of 3D Maxwell equations + material models

Geometry conforming mesh

High order collocated interpolation of the physical fields

High performance computing-enabled numerical kernels

Study of numerical analysis issues (stability, convergence)

Implementation in a dedicated software

Validation and evaluation conducted in collaboration with potential users

Starting point

DGTD method for the system of 3D Maxwell equations [2003-2012]

Non-dispersive media

Extensiveley developed for microwave/RF applications

S. Lanteri (Inria) HOSCAR 2014 September 15-18, 2014 24 / 53



Outline

1 Computational nanophotonics: some generalities

2 Time-domain methods for nanophotonics

3 A non-dissipative DGTD method for Maxwell’s equations

4 DGTD modeling of EM waves interaction with nanostructures

S. Lanteri (Inria) HOSCAR 2014 September 15-18, 2014 25 / 53



DGTD method for Maxwell’s equations
Motivations

Continuous P1 interpolation Discontinuous P1 interpolation

Naturally adapted to heterogeneous media and discontinuous solutions

Can easily deal with unstructured, possibly non-conforming meshes (h-adaptivity)

High order with compact stencils and non-conforming approximations (p-adaptivity)

Usually rely on polynomial interpolation but can also accomodate alternative functions
(e.g plane waves)

Yield block diagonal mass matrices when coupled to explicit time integration schemes

Amenable to efficient parallelization

But leads to larger problems compared to continuous finite element methods
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DGTD method for Maxwell’s equations
Motivations

DG for electromagnetic wave propagation in heterogeneous media

Heterogeneity is ideally treated at the element level

Discontinuities occur at material (i.e element) interfaces

Mesh generation process is simplified

Wavelength varies with ε and µ

For a given mesh density, approximation order can be adapted at the
element level in order to fit to the local wavelength

Discretization of irregularly shaped domains

Unstructured simplicial meshes

The basic support of the DG method is the element
(triangle in 2D and tetrahedron in 3D)

Local refinement is facilitated by allowing non-conformity

Non-conformity opens the route to the coupling of different discretization
methods (e.g structured/unstructured)
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DGTD method for Maxwell’s equations
Initial and boundary value problem

Maxwell equations, x ∈ Ω, t > 0
ε∂tE−∇×H = 0

µ∂tH +∇× E = 0

E = E(x, t) and H = H(x, t)

Boundary conditions: ∂Ω = Γa ∪ Γm
n× E = 0 on Γm (metallic boundary)

n× E−
√
µ

ε
n× (H× n) = n× Einc −

√
µ

ε
n× (Hinc × n) on Γa (absorbing boundary)

where (Einc,Hinc) is a given incident field.

Initial conditions

E0 = E(x, 0) and H0 = H(x, 0)
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DGTD method for Maxwell’s equations
Discretization in space

Triangulation of Ω: Ωh ≡ Th =
⋃
τi∈Th

τ i

F0: set of purely internal faces

Fm and Fa: sets of faces on the boundaries Γm and Γa

Approximation space: Vh = {Vh ∈ L2(Ω)3 | ∀i ,Vh|τi ≡ Vi ∈ Ppi (τi )
3}

Variational formulation: ∀~ϕ ∈ Pi = Span(~ϕij , 1 ≤ j ≤ di )



∫∫∫
τi

~ϕ · εi∂tEdω = −
∫∫
∂τi

~ϕ · (H× ~n)ds +

∫∫∫
τi

∇× ~ϕ ·Hdω

∫∫∫
τi

~ϕ · µi∂tHdω =

∫∫
∂τi

~ϕ · (E× ~n)ds −
∫∫∫
τi

∇× ~ϕ · Edω
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DGTD method for Maxwell’s equations
Discretization in space: centered flux DG formulation

Approximate fields: ∀i , Eh|τi ≡ Ei and Hh|τi ≡ Hi

But traces Eh|∂τi∩∂τj and Hh|∂τi∩∂τj are undefined!

Introduce and appropriate treatment on the face aij = τi ∩ ∂τj

In the context of finite volume methods, this leads to the notion of numerical flux

Centered flux : F(W, n)|aij = n · F (
Wi + Wj

2
) = Gn

(
Wi + Wj

2

)
Upwind flux : F(W, n)|aij = G+

n Wi + G−n Wj

The choice of the numerical flux impacts the stability and the convergence
of the scheme
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DGTD method for Maxwell’s equations
Discretization in space: centered flux DG formulation

Integral over ∂τi : E|aik =
Ei + Ek

2
and H|aik =

Hi + Hk

2
(i.e. centered flux)

Assume Γa = ∅ (to simplify the presentation)
and on Γm: Ek|aik

= −Ei|aik
and Hk|aik

= Hi|aik



∫∫∫
τi

~ϕ · εi∂tEidω =
1

2

∫∫∫
τi

(∇× ~ϕ ·Hi +∇×Hi · ~ϕ)dω

− 1

2

∑
k∈Vi

∫∫
aik

~ϕ · (Hk × ~nik )ds

∫∫∫
τi

~ϕ · µi∂tHidω = −1

2

∫∫∫
τi

(∇× ~ϕ · Ei +∇× Ei · ~ϕ)dω

+
1

2

∑
k∈Vi

∫∫
aik

~ϕ · (Ek × ~nik )ds
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DGTD method for Maxwell’s equations
Discretization in space: centered flux DG formulation

Local projections

Ei (x) =
∑

1≤j≤di

Eij ~ϕij(x) and Hi (x) =
∑

1≤j≤di

Hij ~ϕij(x)

Vector representation of local fields

Ei = {Eij}1≤j≤di and Hi = {Hij}1≤j≤di

For 1 ≤ j , l ≤ di :

(Mε
i )jl = εi

∫∫∫
τi

T~ϕij ~ϕjldω and (Mµ
i )jl = µi

∫∫∫
τi

T~ϕij ~ϕjldω

(Ki )jl =
1

2

∫∫∫
τi

(T~ϕij∇× ~ϕil + T~ϕil∇× ~ϕij )dω

For 1 ≤ j ≤ di and 1 ≤ l ≤ dk

(Sik )jl =
1

2

∫∫
aik

T~ϕij (~ϕkl × ~nij )ds
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DGTD method for Maxwell’s equations
Discretization in space: centered flux DG formulation

Local EDO systems

∀τi :


Mε

i

dEi

dt
= KiHi −

∑
k∈Vi

SikHk

Mµ
i

dHi

dt
= −KiEi +

∑
k∈Vi

SikEk

Global EDO system (with d =
∑

i di and metallic boundary only)

Mε dE
dt

= GH and Mµ dH
dt

= −TGE

G = K− A− B

Mε are Mµ block diagonal symmetric definite positive matrices

K is a d × d block diagonal symmetric matrix

A is a d × d block sparse symmetric matrix (internal faces)

B is a d × d block sparse skew symmetric matrix (metallic faces)
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DGTD method for Maxwell’s equations
Leap-Frog based explicit time integration

L. Fezoui, S. Lanteri, S. Lohrengel and S. Piperno
ESAIM: M2AN, Vol. 39, No. 6, 2005
Second order leap-frog time integration scheme, centered fluxes

Formulation: 2nd order Leap-Frog
Mε

(
En+1 − En

∆t

)
= GHn+ 1

2

Mµ

(
Hn+ 1

2 − Hn− 1
2

∆t

)
= −TGEn+1

Stability analysis

Discrete electromagnetic energy

En = TEnMεEn + THn+ 1
2 MµHn− 1

2

Condition for En being a positive definite form

∆t ≤ 2

d2
, with d2 =‖ (M−µ)

1
2 TG (M−ε)

1
2 ‖
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DGTD method for Maxwell’s equations
Further contributions

Higher order leap-frog time schemes
H. Fahs and S. Lanteri
J. Comput. Appl. Math., Vol. 234,2010

Locally implicit time schemes
V. Dolean, H. Fahs, L. Fezoui and S. Lanteri
J. Comput. Phys., Vol. 229, No. 2, 2010

L. Moya, S. Descombes and S. Lanteri
J. Sci. Comp., Vol. 56, No. 1, 2013

Non-conforming triangular meshes
H. Fahs
Numer. Math. Theor. Meth. Appl., Vol. 2, No. 3, 2009

Hybrid structured/unstructured meshes
C. Durochat, S. Lanteri and C. Scheid
Appl. Math. Comput., Vol. 224, 2013

C. Durochat, S. Lanteri and R. Léger
Int. J. Numer. Model., Electron. Netw. Devices Fields, Vol. 27, No. 3, 2014
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DGTD modeling of EM waves interaction with nanostructures

DGTD in nanophotonics

Extensively developed in the recent years

Theoretical Optics and Photonics group, Humboldt-Universität zu Berlin

K. Busch, M. König and J. Niegemann
Discontinuous Galerkin methods in nanophotonics
Laser and Photonics Reviews, Vol. 5, No. 6, 2011
M. König, K. Busch and J. Niegemann
The discontinuous Galerkin time-domain method for Maxwell’s equations
with anisotropic materials
Photonics and Nanostructures - Fundamentals and Applications, Vol. 8, 2010

Theoretical Electrical Engineering Group in Paderborn University

Y. Grynko, J. Förstner and T. Meier
Application of the discontinous Galerkin time domain method
to the optics of metallic nanostructures
AAPP— Physical, Mathematical, and Natural Sciences, Vol. 89 (S1), 2011

TU Dresden, Institut für Angewandte Photophysik

A. Hille, R. Kullock, S. Grafström and L. M. Eng
Improving nano-optical simulations through curved elements
implemented within the discontinuous Galerkin method
J. Comput. Theor. Nanos., Vol. 7, 2010
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DGTD modeling of EM waves interaction with nanostructures
Taking into account local dispersion effects

The Drude dispersion model

Associated to a particularly simple theory that, for a chosen specific frequency range of
interest and a given metallic material, models the optical and thermal properties of the latter

The metal is considered as a static lattice of positive ions immersed in a free electrons gas

Those electrons are considered to be the valence electrons of each metallic atom, that
got delocalized when put into contact with the potential produced by the rest of the
lattice atoms

Frequency dependent permittivity is given by εr (ω) = ε∞ − ω2
d

ω2+iωγd

ε∞ represents the core electrons contribution to the relative permittivity εr

γd is a coefficient linked to the electron/ion collisions representing the friction experienced
by the electrons

ωd =
√

nee2

meε0
(me is the electron mass, e the electronic charge and ne the electronic

density) is the plasma frequency of the electrons
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DGTD modeling of EM waves interaction with nanostructures
Taking into account local dispersion effects

The time-domain Maxwell-Drude equations
∂tB +∇× E = 0

∂tD−∇×H = 0

with the constitutive equations: 
D = ε0ε∞E + P

B = µ0H

Electric and magnetic fields: E = E(x, t) and H = H(x, t)

Electric displacement and magnetic induction: D = D(x, t) and B = B(x, t)

Electric polarization: P = P(x, t)
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DGTD modeling of EM waves interaction with nanostructures
Taking into account local dispersion effects

The time-domain Maxwell-Drude equations
µ0∂tH +∇× E = 0

ε0ε∞∂tE + ∂tP−∇×H = 0

In the frequency domain, the polarization P is linked to the electric field through

the relation P̂ = − ε0ω
2
d

ω2 + iγdω
Ê

Time domain ODE for the polariaztion

∂2P

∂t2
+ γd

∂P

∂t
= ε0ω

2
dE

Dipolar current vector: Jp =
∂P

∂t
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DGTD modeling of EM waves interaction with nanostructures
Taking into account local dispersion effects

The time-domain Maxwell-Drude equations
∂tH = −∇× E

ε∞∂tE = ∇×H− Jp

∂tJp + γdJp = ω2
dE

Boundary condition: ∂Ω = Γa

n× E−
√
µ

ε
n× (H× n) = n× Einc −

√
µ

ε
n× (Hinc × n) on Γa (absorbing boundary)

where (Einc,Hinc) is a given incident field.

Initial conditions

E0 = E(x, 0) , H0 = H(x, 0) and Jp,0 = Jp(x, 0)
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DGTD modeling of EM waves interaction with nanostructures
Taking into account local dispersion effects

ADE-DGTD method based on centered numerical fluxes

Mi

Hn+ 3
2

i − Hn+ 1
2

i

∆t

 = −KiEn+1
i +

∑
k∈Vi

SikEn+1
k

Mε∞
i

(
En+1
i − En

i

∆t

)
= KiH

n+ 1
2

i −
∑
k∈Vi

SikH
n+ 1

2
k −MiJ

n+ 1
2

i

Jn+ 3
2

i − Jn+ 1
2

i

∆t
= ω2

dE
n+1
i −

γd

2

(
Jn+ 3

2
i +Jn+ 1

2
i

)
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DGTD modeling of EM waves interaction with nanostructures
Taking into account local dispersion effects

ADE-DGTD method based on centered numerical fluxes: stability analysis

J. Viquerat, M. Klemm, S. Lanteri and C. Scheid
http://hal.inria.fr/hal-00819758

Discrete electromagnetic energy for the cell Ti

ξni =
1

2

(∫
Ti

H
n+ 1

2
i ·Hn− 1

2
i + ε∞

∫
Ti

En
i · En

i +
1

ω2
d

∫
Ti

J
n+ 1

2
i · Jn−

1
2

i

)

Total energy at a given time tn = n∆t: ξn =

NT∑
i=0

ξni

The fully discrete ADE-DGTD scheme is stable under the CFL condition,

∆t < min

(
h

C
,

2

ωd + γd
,

4ε∞
C
h
− ωd

)
Under CFL condition, the discrete energy ξn can be bounded as,

ξn ≤ ξ0(
1− θ
1 + θ

)n , ∀n ∈ N∗ with θ ≥ 0
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DGTD modeling of EM waves interaction with nanostructures
Taking into account local dispersion effects

ADE-DGTD method based on centered numerical fluxes: a priori convergence

J. Viquerat, M. Klemm, S. Lanteri and C. Scheid
http://hal.inria.fr/hal-00819758

Let (H,E, Jp) ∈ C3
(

[0,T ] , L2 (bΩ)9
)⋂ C0

(
[0,T ] ,Hs+1 (Ω)9

)
Under the CFL condition the following error estimate holds,

max
n∈[0,N]

(∥∥∥∥H(tn+ 1
2

)
−H

n+ 1
2

h

∥∥∥∥2

L2(Ω)3
+ ‖E (tn)− En

h‖2
L2(Ω)3

+

∥∥∥∥Jp (tn+ 1
2

)
− J

n+ 1
2

h

∥∥∥∥2

L2(Ω)3

) 1
2

≤ C
(
∆t2 + hmin(s,k)

) (
‖(H,E, Jp)‖C3([0,T ],L2(Ω)9) + ‖(H,E, Jp)‖C0([0,T ],Hs+1(Ω)9)

)
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DGTD modeling of EM waves interaction with nanostructures
Numerical results in 3D

Nearfield enhancement of a gold nanosphere (R=20 nm)

Incident field: pulse modulated plane wave propagating along Oz

Einc (t) = sin (2πfc (t − 4τ)) e
−
(

t−4τ
τ

)2

ex

ε∞ ω0 γd fc τ
GHz GHz GHz sec

1 1.19× 107 1.41× 105 4.5× 105 2× 10−15

S. Lanteri (Inria) HOSCAR 2014 September 15-18, 2014 45 / 53



DGTD modeling of EM waves interaction with nanostructures
Numerical results in 3D

Nearfield enhancement of a gold nanosphere (R=20 nm)

Mesh # tetrahedra L1
P1

L1
P2

M1 153,517 1.1081× 10−8 8.3051× 10−9

M2 881,154 7.6520× 10−9 6.6986× 10−9

M3 2,338,433 6.6025× 10−9 Not available

DGTD-P2 solution (M2 mesh) Mie solution
Comparison of DGTD and Mie solutions
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DGTD modeling of EM waves interaction with nanostructures
Numerical results in 3D

Nearfield enhancement of a gold nanosphere (R=20 nm)
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Mie and DG 1D plot of the electric field modulus across the dispersive gold nanosphere
for various meshes and approximation ordrers
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DGTD modeling of EM waves interaction with nanostructures
Numerical results in 3D

L-shaped nanospheres waveguide

The L-shaped guide consists of 7 50 nm diameter Au spheres in vacuum

75 nm center-to-center spacing

550 nm×750 nm×400 nm parallelepipedic domain

Silver-Müller absorbing boundary condition

DGTD-Pp and DGTD-PpQk methods

Partial views of the tetrahedral and hybrid hexahedral-tetrahedral meshes
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DGTD modeling of EM waves interaction with nanostructures
Numerical results in 3D

K.-Y. Jung and F. L. Teixeira and R. M. Reano
Au/SiO2 nanoring plasmon waveguides at
optical communication band
J. Lightwave Technol., Vol. 25, No. 9, 2007

F. L. Teixeira
Time-domain finite-difference and finite-element
methods for Maxwell equations in complex
media
IEEE Trans. Antennas and Propag., Vol. 56,
No. 8, 2008

Controur lines of the Ex component
of the electric field

DGTD-P2Q2 solution at time t = 6.02 fs
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DGTD modeling of EM waves interaction with nanostructures
Numerical results in 3D

Controur lines of the Ex component of the electric field
DGTD-P2Q2 (left) and DGTD-P2 (right) solutions at final time tf = 34.13 fs
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DGTD modeling of EM waves interaction with nanostructures
Numerical results in 3D

L-shaped nanospheres waveguide

Dipolar source 75 nm away from the center of the first sphere in the guide

Jx ((x , y , z, t) = δ(x − xs , y − ys , z − zs)f (t) with f (t) =
(

1− e−(t/α)2
)

sin (2πfc t)

Central frequency is fc = 622.65 THz

γ = 2.5× 1016 and α = 2.5833 fs

DGTD-Pp and DGTD-PpQk methods

- # vertices # tetra # hexa # d.o.f
DGTD-P2 222,175 1,306,356 0 13,063,560

DGTD-P2Q2 211,214 706,012 81,280 9,264,660
Characteristics of the tetrahedral and hybrid hexahedral-tetrahedral meshes

- 8 cores 16 cores 32 cores 64 cores 128 cores
DGTD-P2 11420 s (1.0) 5710 s (2.0) 2800 s (4.1) 1455 s (7.8) 762 s (15.0)

DGTD-P2Q2 5680 s (1.0) 2804 s (2.0) 1439 s (3.9) 848 s (6.7) 494 s (11.5)
Performance results: CPU time to reach 1 fs and parallel speedup (in parentheses)
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Closure

Development of a dedicated software suite for nanophotonics (V1.0)

DIOGENeS
DIscOntinuous GalErkin Nano Solver

http://www-sop.inria.fr/nachos/index.php/Main/Software

3D time-domain Maxwell equations

Drude, Drude-Lorentz and generalized dispersion models

High order polynomial interpolation

Unstructured and hybrid cubic/tetrahedral meshes

Affine and curvilinear elements

DG schemes with centered or upwind numerical fluxes

Leap-frog (2nd and 4th order) and optimized Runge-Kutta time schemes

Hybrid MIMD/SMIMD parallelization based on MPI/OpenMP

Ongoing efforts

Non-local dispersion effects (hydrodynamic model)

Non-linear Maxwell equations (Kerr type media)
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Closure

Possible research directions within HOSCAR

There are plenty of problems in nanophotonics that are heterogeneous and multiscale

Optimization (structural and topological) has to be considered as one of the the next steps

Exploit MHM methods in this context

From: Two-dimensional photonic crystal micro-cavities for chip-scale laser applications
Recent optical and photonic technologies, InTech publishing, 2010

Thank you for your attention!
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