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MapReduce Overview 

Programming model and framework 

• Developed by Google for big data parallel processing in data centers 

– e.g., PageRank algorithm, inverted indexes 

• Used in combination with other Google services (GFS, BigTable,…) 

• Hadoop: an open-source implementation of MapReduce 

Design requirements 

• Executed on commodity clusters 

• Failures are the norm rather than the exception 

Goal 

• Automatic parallelization and distribution and fault tolerance 

Principle 

• Data locality: move computation to data 
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Programming model 

Data consists of key-value pairs (tuples) 

Functions 

• map: (k1,v1)  list(k2,v2) 

– Processes input key-value pairs 

– For each input pair produces a set of intermediate pairs  

• reduce: (k2,list(v2))  list(k3,v3) 

– Receives all the values for a given intermediate key 

– For each intermediate key produces a set of output pairs 
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MapReduce Example 

Wordcount: count the frequency of each word in a big file 

 
map(key, value) 

// key: offset, value: a line 

for each word w  

  emit(w,1) 

 

reduce(key, values) 

// key: a word, values: list of counts 

count = 0 

for each v in values 

  count += v 

emit(key, count) 
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MapReduce Job Execution 

split0 

split1 

split2 

Map0 

Map1 

Map2 

Reduce0 

chunk0 

chunk1 

chunk0 

part, sort & comb 

part, sort & comb 

part, sort & comb 

Reduce1 

sort 

sort 

copy 

file_in1 

file_in2 

HDFS HDFS 

(k1,v1) list(k2,v2) (k2,list(v2)) (k2,list(v2)) (k3,list(v3)) 

shuffle 

file_out1 

file_out2 

Intermediate Keys (IKs) 

Input 



 
8 Improving the MapReduce Big Data  Processing Framework         Miguel Liroz 

Architectural view 
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Architectural view 
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Architectural view 
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Architectural view 
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Shuffle Phase 

Partitioning, sorting and transfer of data between map and reduce 

Steps 

• In the map task 
– Intermediate pairs are partitioned into R fragments 

– By default part(key) = hash(key) mod |R| 

– Pairs are sorted by key within each partition 

• In the reduce task 
– Pairs with the same key are merged into a single (k2, list(v2)) pair and sent to 

the reduce function 
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Fault-Tolerance 

Failures are the norm rather than the exception in large-
scale data centers 

Failure of workers 
• Periodic heartbeat messages to the master 

– Finished map task and map and reduce tasks in progress are 
rescheduled 

Failure of the master 
• Periodic checkpoints to the DFS 

Slow workers (stragglers) 
• When all tasks are scheduled, running task are 

speculatively rescheduled in idle workers 



OUR CONTRIBUTIONS 
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Overview 

Shuffle overhead 

• MRPart: minimizing data transfers between mappers 

and reducers 

Skew prevention 

• FP-Hadoop: parallelization of reduce phase with a 

multi-iteration intermediate phase 

Experiment workflow 

• hadoop_g5k: available tool for repeatable tests in 

Grid5000 platform 
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1. MR-Part: Improving Reduce Locality 

Motivation 

• The shuffle phase may involve big data transfers 

• During shuffle, nodes are competing for bandwidth 

• Result: some jobs are slowed down while this phase is 

completed 

Ideal case 

• No data transfer 

– All values for an intermediate key are produced in the same 

worker 

– They are assigned to a reduce task executed by the same 

worker 
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Motivation 
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Given a file F and a set of MR jobs  Goal: minimize shuffle data transfer  

Partitioning input data 

• Tuples generating the same IK are placed together 

• Rationale: they all go to the same reducer 
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Reduce3 
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MR-Part Approach 
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Experiments 

Environment 
• Grid5000 

Comparison 
• Native Hadoop (NAT) 

• Hadoop + reduce locality-aware scheduling (RLS) 

• MR-Part (MRP) 

Benchmark 
• TPC-H, MapReduce version 

Parameters 
•  Data size, cluster size, bandwidth 

Metrics 
• Transferred data 

• Latency (response time) 
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Percentage of Transferred Data 

Different type of queries Varying cluster and data size 
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Varying bandwidth 
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2. FP-Hadoop: Making Reduce Phase More Parallel 

Parallelization in map phase 

• Input data is divided into splits of similar size 

• Map tasks are scheduled in free workers 

– Each map tasks consumes one of the splits 

Parallelization in the reduce phase 

• Intermediate keys are assigned to reduce task 

depending on a function  

• Size of reduce tasks cannot be defined a priori 

– Even with ideal partitioning function, keys with a lot of values still 

produce overloaded splits  
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2. FP-Hadoop: Making Reduce Phase More Parallel 
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Main Idea of FP-Hadoop 

Reduce input data is divided into splits (IR splits) 

• The size of the splits is bounded  

• Splits are consumed in the same way as in the map phase 

Reduce function is divided into two functions 

• Intermediate reduce: parts that can be done in parallel 

– Eventually it can be executed in multiple phases 

• Final reduce: performs the final grouping 
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Main Idea of FP-Hadoop 
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FP-Hadoop approach 

A modified scheduler is injected into MR framework 

• The scheduler selects a subset of values of each key 

and creates an IR split 

• IR split is assigned to an IR task and allocated in a 

worker 

• This process can be repeated several times 

• At the end, a final reducer regroups the values of each 

key 
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Experiments 

Environment 
• Grid5000 

Comparison 
• Native Hadoop (NAT) 

• FP-Hadoop (FPH) 

Benchmark 
• Top-k query (sort, pagerank, inverted index) 

• Synthetic data set, Wikipedia data 

Parameters 
•  Data size, cluster size, Skew, FPH conf parameters 

Metrics 
• Latency (response time) 

 

 



 
34 Improving the MapReduce Big Data  Processing Framework         Miguel Liroz 

Results 

Synthetic dataset, top-k query Wikipedia stats, top-k query 

Comparison with native Hadoop 
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Results 
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Results 
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3. hadoop_g5k: Repeatable tests in Grid5000 

Experimental evaluation in Grid5000 platform 
• French grid infrastructure deployed over 11 sites 

• Aims to provide “highly reconfigurable, controllable and 
monitorable experimental platform to its users” 

 

Hadoop_g5k 
• A tool to facilitate repeatable tests with Hadoop in the Grid500 

platform 

• Publicly available 

 

 

 

  

 

 

 

https://github.com/mliroz/hadoop_g5k 



CONCLUSION 
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Summary 

Overview of MapReduce 

Contributions 

• Proposed prototypes: 

– MR-Part: reducing data transfer in shuffle phase 

– FP-Hadoop: making reduce phase more parallel 

• Hadoop_g5k: repeatable experiments in Grid5000 

 



 
40 Improving the MapReduce Big Data  Processing Framework         Miguel Liroz 

Beyond MapReduce 

Great interest of industry in MapReduce 

• Amazon Elastic MapReduce, MapR, Cloudera, 

Hortonworks, IBM BigInsights 

Hadoop ecosystem 

• HBase, Hive, Pig, YARN, Mahout, Oozie 

Post-Hadoop frameworks 

• Google Dremel 

• Apache Spark 
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Thank you 
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