
Improving the MapReduce Big

Data Processing Framework

Miguel Liroz Gistau, Reza Akbarinia, Patrick

Valduriez
INRIA & LIRMM, Montpellier, France

In collaboration with

Divyakant Agrawal, UCSB

Esther Pacitti, UM2, LIRMM & INRIA

4th Wrokshop of Project HOSCAR

SOPHIA ANTIPOLIS - MÉDITERRANÉE

2 Improving the MapReduce Big Data Processing Framework Miguel Liroz

Contents

MapReduce Overview

Contributions

• MRPart: reducing data transfers in shuffle phase

• FP-Hadoop: making reduce phase more parallel

• hadoop_g5k: repeatable tests in Grid5000 platform

Conclusions

• Beyond MapReduce

MAPREDUCE OVERVIEW

4 Improving the MapReduce Big Data Processing Framework Miguel Liroz

MapReduce Overview

Programming model and framework

• Developed by Google for big data parallel processing in data centers

– e.g., PageRank algorithm, inverted indexes

• Used in combination with other Google services (GFS, BigTable,…)

• Hadoop: an open-source implementation of MapReduce

Design requirements

• Executed on commodity clusters

• Failures are the norm rather than the exception

Goal

• Automatic parallelization and distribution and fault tolerance

Principle

• Data locality: move computation to data

5 Improving the MapReduce Big Data Processing Framework Miguel Liroz

Programming model

Data consists of key-value pairs (tuples)

Functions

• map: (k1,v1) list(k2,v2)

– Processes input key-value pairs

– For each input pair produces a set of intermediate pairs

• reduce: (k2,list(v2)) list(k3,v3)

– Receives all the values for a given intermediate key

– For each intermediate key produces a set of output pairs

6 Improving the MapReduce Big Data Processing Framework Miguel Liroz

MapReduce Example

Wordcount: count the frequency of each word in a big file

map(key, value)

// key: offset, value: a line

for each word w

 emit(w,1)

reduce(key, values)

// key: a word, values: list of counts

count = 0

for each v in values

 count += v

emit(key, count)

7 Improving the MapReduce Big Data Processing Framework Miguel Liroz

MapReduce Job Execution

split0

split1

split2

Map0

Map1

Map2

Reduce0

chunk0

chunk1

chunk0

part, sort & comb

part, sort & comb

part, sort & comb

Reduce1

sort

sort

copy

file_in1

file_in2

HDFS HDFS

(k1,v1) list(k2,v2) (k2,list(v2)) (k2,list(v2)) (k3,list(v3))

shuffle

file_out1

file_out2

Intermediate Keys (IKs)

Input

8 Improving the MapReduce Big Data Processing Framework Miguel Liroz

Architectural view

Worker

Worker

Master

Client

HDFS

Local disk

Local disk

chunk0

chunk1

chunk0

file_in1

file_in2

Submit job

9 Improving the MapReduce Big Data Processing Framework Miguel Liroz

Architectural view

Master

Client

split0

split1

split2

chunk0

chunk1

chunk0

file_in1

file_in2

HDFS Input

Create splits

Worker

Worker

Local disk

Local disk

10 Improving the MapReduce Big Data Processing Framework Miguel Liroz

Architectural view

Worker

m0

Worker

m1

m2

Client

split0

split1

split2

chunk0

chunk1

chunk0

file_in1

file_in2

HDFS Input

Local disk

Local disk

Master Schedule map tasks

11 Improving the MapReduce Big Data Processing Framework Miguel Liroz

Architectural view

Worker

m0

Worker

m1

m2

Master

Client

split0

split1

split2

chunk0

chunk1

chunk0

file_in1

file_in2

HDFS Input

Local disk

Local disk

Map task execution

12 Improving the MapReduce Big Data Processing Framework Miguel Liroz

Architectural view

Worker

m0

Worker

m1

m2

Worker

Worker

Client

split0

split1

split2

chunk0

chunk1

chunk0

file_in1

file_in2

HDFS Input

Local disk

Local disk

Master Schedule reduce tasks

13 Improving the MapReduce Big Data Processing Framework Miguel Liroz

Architectural view

Worker

m0

Worker

m1

m2

Worker

r0

Worker

r1

Client

split0

split1

split2

chunk0

chunk1

chunk0

file_in1

file_in2

HDFS Input

Local disk

Local disk

Master Schedule reduce tasks

14 Improving the MapReduce Big Data Processing Framework Miguel Liroz

Architectural view

Worker

m0

Worker

m1

m2

Worker

r0

Worker

r1

Master

Client

split0

split1

split2

chunk0

chunk1

chunk0

file_in1

file_in2

HDFS Input

Local disk

Local disk

Fetch map outputs

15 Improving the MapReduce Big Data Processing Framework Miguel Liroz

Architectural view

Worker

m0

Worker

m1

m2

Worker

r0

Worker

r1

Master

Client

split0

split1

split2

chunk0

chunk1

chunk0

file_in1

file_in2

HDFS Input

file_out1

file_out2

Output

Local disk

Local disk

Reduce task execution

16 Improving the MapReduce Big Data Processing Framework Miguel Liroz

Shuffle Phase

Partitioning, sorting and transfer of data between map and reduce

Steps

• In the map task
– Intermediate pairs are partitioned into R fragments

– By default part(key) = hash(key) mod |R|

– Pairs are sorted by key within each partition

• In the reduce task
– Pairs with the same key are merged into a single (k2, list(v2)) pair and sent to

the reduce function

Map0

Map1

Map2

Reduce
0

part, sort & comb

part, sort & comb

part, sort & comb

Reduce
1

sort

sort

copy

17 Improving the MapReduce Big Data Processing Framework Miguel Liroz

Fault-Tolerance

Failures are the norm rather than the exception in large-
scale data centers

Failure of workers
• Periodic heartbeat messages to the master

– Finished map task and map and reduce tasks in progress are
rescheduled

Failure of the master
• Periodic checkpoints to the DFS

Slow workers (stragglers)
• When all tasks are scheduled, running task are

speculatively rescheduled in idle workers

OUR CONTRIBUTIONS

19 Improving the MapReduce Big Data Processing Framework Miguel Liroz

Overview

Shuffle overhead

• MRPart: minimizing data transfers between mappers

and reducers

Skew prevention

• FP-Hadoop: parallelization of reduce phase with a

multi-iteration intermediate phase

Experiment workflow

• hadoop_g5k: available tool for repeatable tests in

Grid5000 platform

20 Improving the MapReduce Big Data Processing Framework Miguel Liroz

1. MR-Part: Improving Reduce Locality

Motivation

• The shuffle phase may involve big data transfers

• During shuffle, nodes are competing for bandwidth

• Result: some jobs are slowed down while this phase is

completed

Ideal case

• No data transfer

– All values for an intermediate key are produced in the same

worker

– They are assigned to a reduce task executed by the same

worker

21 Improving the MapReduce Big Data Processing Framework Miguel Liroz

Motivation

Map0

Map1

Map2

Map3

Reduce1

Reduce0

Map0

Map1

Map2

Map3

Reduce1

Reduce0

Ideal case

Worker 2

Worker 1

Worker 2

Worker 1

Normal situation

Colors represent tuples producing same IK (Intermediate Key)

22 Improving the MapReduce Big Data Processing Framework Miguel Liroz

Given a file F and a set of MR jobs Goal: minimize shuffle data transfer

Partitioning input data

• Tuples generating the same IK are placed together

• Rationale: they all go to the same reducer

Reduce3

Main Idea of MR-Part

Reduce0

Reduce1

Reduce2

P1

Map0

Map1

Map2

Map3

Worker 1

Worker 2

Worker 3

Worker 4

Transferred

data

P1

23 Improving the MapReduce Big Data Processing Framework Miguel Liroz

Reduce3

Main Idea of MR-Part

Reduce0

Reduce1

Reduce2

P2

Map0

Map1

Map2

Map3

Worker 1

Worker 2

Worker 3

Worker 4

Transferred

data

P1 P2

0

Given a file F and a set of MR jobs Goal: minimize shuffle data transfer

Partitioning input data

• Tuples generating the same IK are placed together

• Rationale: they all go to the same reducer

24 Improving the MapReduce Big Data Processing Framework Miguel Liroz

MR-Part Approach

Monitoring

job execution
Metadata

Workload

modeling

Graph

partitioning

Input

repartitioning

Locality aware-

scheduling

Monitoring

Repartitioning

Execution &

Scheduling

25 Improving the MapReduce Big Data Processing Framework Miguel Liroz

Experiments

Environment
• Grid5000

Comparison
• Native Hadoop (NAT)

• Hadoop + reduce locality-aware scheduling (RLS)

• MR-Part (MRP)

Benchmark
• TPC-H, MapReduce version

Parameters
• Data size, cluster size, bandwidth

Metrics
• Transferred data

• Latency (response time)

26 Improving the MapReduce Big Data Processing Framework Miguel Liroz

Percentage of Transferred Data

Different type of queries Varying cluster and data size

27 Improving the MapReduce Big Data Processing Framework Miguel Liroz

Varying bandwidth

TPC-H Q17 TPC-H Q9

R
e

s
p

o
n

s
e

 tim
e

R

e
d

u
c
e

 tim
e

28 Improving the MapReduce Big Data Processing Framework Miguel Liroz

2. FP-Hadoop: Making Reduce Phase More Parallel

Parallelization in map phase

• Input data is divided into splits of similar size

• Map tasks are scheduled in free workers

– Each map tasks consumes one of the splits

Parallelization in the reduce phase

• Intermediate keys are assigned to reduce task

depending on a function

• Size of reduce tasks cannot be defined a priori

– Even with ideal partitioning function, keys with a lot of values still

produce overloaded splits

29 Improving the MapReduce Big Data Processing Framework Miguel Liroz

2. FP-Hadoop: Making Reduce Phase More Parallel

30 Improving the MapReduce Big Data Processing Framework Miguel Liroz

Main Idea of FP-Hadoop

Reduce input data is divided into splits (IR splits)

• The size of the splits is bounded

• Splits are consumed in the same way as in the map phase

Reduce function is divided into two functions

• Intermediate reduce: parts that can be done in parallel

– Eventually it can be executed in multiple phases

• Final reduce: performs the final grouping

31 Improving the MapReduce Big Data Processing Framework Miguel Liroz

Main Idea of FP-Hadoop

32 Improving the MapReduce Big Data Processing Framework Miguel Liroz

FP-Hadoop approach

A modified scheduler is injected into MR framework

• The scheduler selects a subset of values of each key

and creates an IR split

• IR split is assigned to an IR task and allocated in a

worker

• This process can be repeated several times

• At the end, a final reducer regroups the values of each

key

33 Improving the MapReduce Big Data Processing Framework Miguel Liroz

Experiments

Environment
• Grid5000

Comparison
• Native Hadoop (NAT)

• FP-Hadoop (FPH)

Benchmark
• Top-k query (sort, pagerank, inverted index)

• Synthetic data set, Wikipedia data

Parameters
• Data size, cluster size, Skew, FPH conf parameters

Metrics
• Latency (response time)

34 Improving the MapReduce Big Data Processing Framework Miguel Liroz

Results

Synthetic dataset, top-k query Wikipedia stats, top-k query

Comparison with native Hadoop

35 Improving the MapReduce Big Data Processing Framework Miguel Liroz

Results

Different queries Cluster size

Comparison with native Hadoop

36 Improving the MapReduce Big Data Processing Framework Miguel Liroz

Results

Skew (zipf exponent) Number of keys

Comparison with native Hadoop

37 Improving the MapReduce Big Data Processing Framework Miguel Liroz

3. hadoop_g5k: Repeatable tests in Grid5000

Experimental evaluation in Grid5000 platform
• French grid infrastructure deployed over 11 sites

• Aims to provide “highly reconfigurable, controllable and
monitorable experimental platform to its users”

Hadoop_g5k
• A tool to facilitate repeatable tests with Hadoop in the Grid500

platform

• Publicly available

https://github.com/mliroz/hadoop_g5k

CONCLUSION

39 Improving the MapReduce Big Data Processing Framework Miguel Liroz

Summary

Overview of MapReduce

Contributions

• Proposed prototypes:

– MR-Part: reducing data transfer in shuffle phase

– FP-Hadoop: making reduce phase more parallel

• Hadoop_g5k: repeatable experiments in Grid5000

40 Improving the MapReduce Big Data Processing Framework Miguel Liroz

Beyond MapReduce

Great interest of industry in MapReduce

• Amazon Elastic MapReduce, MapR, Cloudera,

Hortonworks, IBM BigInsights

Hadoop ecosystem

• HBase, Hive, Pig, YARN, Mahout, Oozie

Post-Hadoop frameworks

• Google Dremel

• Apache Spark

41 Improving the MapReduce Big Data Processing Framework Miguel Liroz

Thank you

Questions?

