Extreme One-Dimensional Modeling for Computational Hemodynamics

PJ Blanco, LO Müller, MS Watanabe & RA Feijóo

Petrópolis, Brazil

Fourth Workshop of the CNPq-Inria HOSCAR Project:

HPC and Scientific Data Management Driven by Highly Demanding Applications

UFRGS – Gramado

September, 2014

LO Müller (HeMoLab, LNCC, Brazil)

Extreme 1D Blood Flow Modeling

2 Well-balanced path-conservative numerical schemes

Scientific challenge in modeling physiological systems

- Understanding interactions
- Onset and progress of diseases
- Diagnosis of pathological conditions
- Surgical planning
- Treatment strategies

In generic or patient-specific settings

Scientific challenge in modeling physiological systems

- Understanding interactions
- Onset and progress of diseases
- Diagnosis of pathological conditions
- Surgical planning
- Treatment strategies

In generic or patient-specific settings

Simulate the interplay among multiscale and multisystem phenomena

• Early theoretical developments [Lambert'56; Barnard'66; Taylor'66; Hughes'73; Kivity'74]

Early topological descriptions

[Spencer'59; Noordergraaf'63; Westerhof'69; Anliker'71; Schaaf'72]

- Subsequent improvements and alternatives [Avolio'80; Stettler'81; Stergiopulos'92; Sherwin'03; Wang'04]
- Further validations/verifications (in vitro/in vivo/in silico)
 [Olufsen'00; Matthys'07; Reymond'09; Alastruey'11; Grinberg'11; Reymond'11]

- Early theoretical developments [Lambert'56; Barnard'66; Taylor'66; Hughes'73; Kivity'74]
- Early topological descriptions [Spencer'59; Noordergraaf'63; Westerhof'69; Anliker'71; Schaaf'72]
- Subsequent improvements and alternatives [Avolio'80; Stettler'81; Stergiopulos'92; Sherwin'03; Wang'04]
- Further validations/verifications (in vitro/in vivo/in silico)
 [Olufsen'00; Matthys'07; Reymond'09; Alastruey'11; Grinberg'11; Reymond'11]

- Early theoretical developments [Lambert'56; Barnard'66; Taylor'66; Hughes'73; Kivity'74]
- Early topological descriptions
 [Spencer'59; Noordergraaf'63; Westerhof'69; Anliker'71; Schaaf'72]
- Subsequent improvements and alternatives [Avolio'80; Stettler'81; Stergiopulos'92; Sherwin'03; Wang'04]
- Further validations/verifications (in vitro/in vivo/in silico) [Olufsen'00; Matthys'07; Reymond'09; Alastruey'11; Grinberg'11; Reymond'11]

- Early theoretical developments [Lambert'56; Barnard'66; Taylor'66; Hughes'73; Kivity'74]
- Early topological descriptions
 [Spencer'59; Noordergraaf'63; Westerhof'69; Anliker'71; Schaaf'72]
- Subsequent improvements and alternatives [Avolio'80; Stettler'81; Stergiopulos'92; Sherwin'03; Wang'04]
- Further validations/verifications (in vitro/in vivo/in silico) [Olufsen'00; Matthys'07; Reymond'09; Alastruey'11; Grinberg'11; Reymond'11]

Sorry for missing references!

Mathematical model

Incompressible flow of Newtonian fluid in compliant vessels

$$\begin{cases} \partial_t A + \partial_x q = 0\\ \partial_t q + \partial_x \left(\hat{\alpha} \frac{q^2}{A} \right) + \frac{A}{\rho} \partial_x p = f \end{cases}$$

Constitutive relation for the vessel wall

$$p(x,t) = \underbrace{p_{0}}_{\text{reference}} + \underbrace{\zeta(x,t)}_{\text{tube law}}$$

$$\zeta(x,t) = \frac{\pi R_{0} h_{0}}{A} [\underbrace{E_{e}\varepsilon}_{\text{elastin}} + \underbrace{E_{c}\epsilon_{r}\ln(e^{\chi}+1)}_{collagen} + \underbrace{\frac{K_{m}}{2\sqrt{AA_{0}}}\frac{\partial A}{\partial t}}_{\text{smooth muscle}}]$$

$$\varepsilon = \sqrt{\frac{A}{A_{o}}} - 1 \qquad \chi = \frac{\varepsilon - \varepsilon_{o}}{\epsilon_{r}}$$

LO Müller (HeMoLab, LNCC, Brazil)

Extreme 1D Blood Flow Modeling

Mathematical model

At bifurcations $(N_T \text{ converging segments})$

$$\sum_{i=1}^{N_T} q_i = 0$$

$$p_i + \frac{1}{2}\rho u_i^2 = p_1 + \frac{1}{2}\rho u_1^2 \quad 2, \dots, N_T$$

At terminal segments (Windkessel model)

$$r_A r_B C \frac{dq}{dt} = R_B C \frac{d}{dt} (p - p_T) + (p - p_T) - (R_A + R_B)q$$

LO Müller (HeMoLab, LNCC, Brazil)

Ongoing and future applications

- Regulatory mechanisms: long simulations (hours to days) (Blanco et al., 2012)
- Systemic interactions, drug delivery: long simulations (hours to days)
- Parameter estimation using the unscented Kalman filter: *N* + 1 simultaneous direct problems for the estimation of *N* parameters (Lombardi, 2013)
- Parameter estimation using variational formulations: forward in time direct problem and backward in time adjoint problem (Martin et al., 2005)
- Uncertainty quantification: stochastic PDEs require a (very) high number of direct problem runs (Chen et al.)

Challenges

- HPC (parallel run or massive number of parallel runs)
- Numerical schemes must be: accurate, efficient and robust and suitable for HPC

Data management

• Data mining

Overview

2 Well-balanced path-conservative numerical schemes

One-dimensional blood flow equations:

$$\begin{cases} \partial_t A + \partial_x q = 0\\ \partial_t q + \partial_x \left(\hat{\alpha} \frac{q^2}{A} \right) + \frac{A}{\rho} \partial_x p = f \end{cases}$$

with

Extreme 1D Blood Flow Modeling

Hyperbolic reformulation

Rewrite the tube law as

$$\zeta = \frac{\sqrt{\pi}\sqrt{A_0}h_0}{A} \left[E_e \varepsilon + E_c \epsilon_r \ln\left(e^{\chi} + 1\right) - \frac{K_m}{2\sqrt{AA_0}}\theta \right] \,.$$

introducing the additional equation

$$\partial_t \theta = rac{1}{T} \left(\partial_x q - \theta
ight) \, ,$$

with T relaxation time.

NB

Full details, as well as a criteria for choosing T are found in Montecinos et al. (2014); Montecinos and Toro (2014).

LO Müller (HeMoLab, LNCC, Brazil)

Extreme 1D Blood Flow Modeling

Variable mechanical and geometrical properties

The spatial derivative of $\boldsymbol{\zeta}$ is

$$\frac{\partial \zeta}{\partial x} = \frac{\partial \zeta}{\partial A} \frac{\partial A}{\partial x} + \underbrace{\frac{\partial \zeta}{\partial A_0} \frac{\partial A_0}{\partial x} + \frac{\partial \zeta}{\partial h_0} \frac{\partial h_0}{\partial x} + \frac{\partial \zeta}{\partial E_e} \frac{\partial E_e}{\partial x} + \frac{\partial \zeta}{\partial E_c} \frac{\partial E_c}{\partial x}}_{\text{geometric source terms}} + \frac{\partial \zeta}{\partial \theta} \frac{\partial \theta}{\partial x}.$$

We consider the following system

$$\partial_t \mathbf{Q} + \mathbf{A}(\mathbf{Q})\partial_x \mathbf{Q} = \mathbf{S}(\mathbf{Q}),$$

with:

- state vector $\mathbf{Q} = \begin{bmatrix} A, q, \theta, A_0, h_0, E_e, E_c, p_e \end{bmatrix}^T$
- coefficient matrix A(Q)
- source vector S(Q)
- additional equations of the type $\partial_t b = 0$, with $b = \{A_0, h_0, E_e, E_c, p_e\}$

For details see Toro and Siviglia (2013).

Path-conservative finite volume schemes

Split the spatial domain in $I_i = [x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}}]$, with i = 1, ..., N and integrate in space and time over $[x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}}] \times [t^n, t^{n+1}]$, to obtain

$$\mathbf{Q}_{i}^{n+1} = \mathbf{Q}_{i}^{n} - \frac{1}{\Delta x_{i}} \int_{t^{n}}^{t^{n+1}} \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} \mathbf{A}(\mathbf{Q}) \partial_{x} \mathbf{Q} dx dt$$
$$- \frac{\Delta t}{\Delta x_{i}} \left(\mathbf{D}_{i+\frac{1}{2}}^{-} + \mathbf{D}_{i-\frac{1}{2}}^{+} \right) + \Delta t \mathbf{S}_{i} ,$$

where

$$\begin{split} \mathbf{Q}_i^n &= \frac{1}{\Delta x_i} \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} \mathbf{Q}(x,t^n) \, dx \,, \\ \mathbf{S}_i &= \frac{1}{\Delta t \Delta x_i} \int_{t^n}^{t^{n+1}} \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} \mathbf{S}(\mathbf{Q}(x,t)) \, dx \, dt \end{split}$$

and ...

Fluctuations

Fluctuations

$$\mathbf{D}_{i+\frac{1}{2}}^{\pm} = \frac{1}{\Delta t} \int_{t^{n}}^{t^{n+1}} \mathcal{D}_{i+\frac{1}{2}}^{\pm} \left(\mathbf{Q}_{i+\frac{1}{2}}^{-}(t), \mathbf{Q}_{i+\frac{1}{2}}^{+}(t), \Psi \right) dt \,,$$

with

$$\mathcal{D}_{i+\frac{1}{2}}^{\pm} = \frac{1}{2} \int_{0}^{1} \left[\mathsf{A}(\Psi(\mathsf{Q}_{i+\frac{1}{2}}^{-},\mathsf{Q}_{i+\frac{1}{2}}^{+},s)) \pm |\mathsf{A}(\Psi(\mathsf{Q}_{i+\frac{1}{2}}^{-},\mathsf{Q}_{i+\frac{1}{2}}^{+},s))| \right] \frac{\partial \Psi}{\partial s} ds \,,$$

where

- Ψ = Ψ(Q⁻, Q⁺, s), with 0 ≤ s ≤ 1, is a Lipschitz continuous function that connects the left state Q⁻ to the right state Q⁺ in phase-space.
- Integral in phase-space performed numerically: Dumbser-Osher-Toro Riemann solver (Dumbser and Toro, 2011)
- $\mathbf{Q}_{i+\frac{1}{2}}^{\pm}(t)$ is the solution of the Generalized Riemann Problem (GRP) at $x_{i+\frac{1}{2}}$

Fluctuations

Non-conservative system:

- the weak solution will depend on the choice of the integration path Ψ (Dal Maso et al., 1995)
- In the original Dumbser-Osher-Toro solver a segment path was proposed

$$oldsymbol{\Psi}(s) = oldsymbol{Q}^-_{i+rac{1}{2}} + s\left(oldsymbol{Q}^+_{i+rac{1}{2}} - oldsymbol{Q}^-_{i+rac{1}{2}}
ight)$$

• Müller and Toro (2013): consider the eigenstructure of the non-conservative system to construct well-balanced schemes using the DOT solver

Spatial reconstruction

Weighted Essentially Non-Oscillatory reconstruction (Jiang and Shu, 1996)

We reconstruct element-wise polynomials of the type

$$\mathbf{w}_i = \mathbf{w}_i(\xi, t^n) = \sum_{l=1}^{M+1} \psi_l(\xi) \hat{\mathbf{w}}_l(t^n) := \psi_l(\xi) \hat{\mathbf{w}}_l(t^n),$$

where

- $\xi = (x x_{i-\frac{1}{2}})/\Delta x$
- M = k 1 is the polynomial degree of \mathbf{w}_i
- k is the **space-time** order of accuracy of the scheme
- $\psi_l(\xi)$ are the corresponding basis functions
- $\hat{\mathbf{w}}_l$ are the expansion coefficients

Spatial reconstruction

The reconstruction stencil is

$$\mathcal{S}_i^s = \bigcup_{e=i-L}^{i+R} T_e \,,$$

- L(M, s) and R(M, s) are the stencil extent to the left and right of the central element T_i,
- We use three fixed reconstruction stencils
- One central stencil (s = 1, L = R = M/2)
- A fully left-sided stencil (s = 2, L = M, R = 0)
- A fully-right sided stencil (s = 3, L = 0, R = M)
- The reconstructed polynomial has k coefficients and is of degree M = k 1

Spatial reconstruction

Requiring integral conservation in S_i^s

$$\int_{\mathcal{T}_j} \mathbf{w}_i^{\mathfrak{s}}(\xi,t^n) d\xi = \hat{\mathbf{w}}_i^{\mathfrak{s}}(t^n) \int_{\mathcal{T}_j} \psi_l(\xi) d\xi = \mathbf{Q}_j^n \quad orall T_j \in \mathcal{S}_i^{\mathfrak{s}} \,.$$

Finally, $\hat{\mathbf{w}}_{l}^{j}(t^{n})$ are a non-linear combination of the form

$$\hat{\mathbf{w}}_l(t^n) = \sum_{s=1}^{N_s} \omega_s \hat{\mathbf{w}}_l^s(t^n) \,,$$

with non-linear weights

$$\omega_{s} = \frac{\tilde{\omega}_{s}}{\tilde{\omega}_{0} + \tilde{\omega}_{-k} + \tilde{\omega}_{k}}, \quad \tilde{\omega}_{s} = \frac{\lambda_{s}}{(\sigma_{s} + \epsilon)^{r}}$$

and oscillation indicators σ_s are computed as

$$\sum_{l=1}^{M} \int_{0}^{1} \left(\frac{\partial^{l}}{\partial \xi^{l}} \mathbf{w}_{i}^{s}(\xi, t^{n}) \right)^{2} d\xi \, d\xi$$

Extreme 1D Blood Flow Modeling

Generalized Riemann Problem

The GRP at cell interface $x = x_{i+\frac{1}{2}}$ (locally at x = 0)

$$\begin{aligned} \partial_t \mathbf{Q} + \mathbf{A}(\mathbf{Q}) \partial_x \mathbf{Q} &= \mathbf{S}(\mathbf{Q}) \,, \quad x \in \mathcal{R} \,, \quad t > 0, \\ \mathbf{Q}(x,0) &= \begin{cases} \mathbf{w}_i(x) & \text{if } x < 0 \,, \\ \mathbf{w}_{i+1}(x) & \text{if } x > 0 \,. \end{cases} \end{cases} , \end{aligned}$$

NB

The solution of the GRP will yield a time-dependent solution at the interface, locally along x/t = 0, and will be used to evaluate integrals in the FV scheme.

Generalized Riemann Problem

The GRP at cell interface $x = x_{i+\frac{1}{2}}$ (locally at x = 0)

$$\begin{aligned} \partial_t \mathbf{Q} + \mathbf{A}(\mathbf{Q}) \partial_x \mathbf{Q} &= \mathbf{S}(\mathbf{Q}) \,, \quad x \in \mathcal{R} \,, \quad t > 0, \\ \mathbf{Q}(x,0) &= \begin{cases} \mathbf{w}_i(x) & \text{if } x < 0 \,, \\ \mathbf{w}_{i+1}(x) & \text{if } x > 0 \,. \end{cases} \end{cases}$$

NB

The solution of the GRP will yield a time-dependent solution at the interface, locally along x/t = 0, and will be used to evaluate integrals in the FV scheme.

Dumbser et al. (2008b)

We work in a reference space-time element $T_E = [0; 1] \times [0; 1]$ with $\xi = (x - x_{i-\frac{1}{2}})/\Delta x_i$ and $\tau = (t - t^n)/\Delta t$, where the system reads

$$\partial_{\tau} \mathbf{Q}_h + \mathbf{A}^* \partial_{\xi} \mathbf{Q}_h = \mathbf{S}^* \,,$$

with modified Jacobian and source term vector

$$\mathbf{A}^* := rac{\Delta t}{\Delta x_i} \mathbf{A}(\mathbf{Q}_h), \quad \mathbf{S}^* := \Delta t \mathbf{S}(\mathbf{Q}_h)$$

and introduce

$$[a,b]^{ au} = \int_0^1 a(\xi, au) \, b(\xi, au) \, d\xi \,, \quad < a,b >_{T_E} = \int_0^1 \int_0^1 a(\xi, au) \, b(\xi, au) \, d\xi d au \,.$$

Use a space-time basis function $\theta = \theta(\xi, \tau)$ to multiply, integrate over T_E and integrate by parts the time derivative term

$$[heta, \mathbf{Q}_h]^1 - \langle \partial_ au heta, \mathbf{Q}_h
angle_{\mathcal{T}_E} + \langle heta, \mathbf{A}^* \partial_\xi \mathbf{Q}_h
angle_{\mathcal{T}_E} = [heta, \mathbf{w}_h]^0 + \langle heta, \mathbf{S}^*
angle_{\mathcal{T}_E}.$$

Use same space-time basis functions θ for \mathbf{Q}_h and $\mathbf{A}^* \partial_{\xi} \mathbf{Q}_h$, so that

$$\mathbf{Q}_{h}(\xi,\tau) = \sum_{I=1}^{(M+1)^{2}} \theta_{I} \hat{\mathbf{Q}}_{I}, \quad \mathbf{A}^{*} \partial_{\xi} \mathbf{Q}_{h}(\xi,\tau) = \sum_{I=1}^{(M+1)^{2}} \theta_{I} \widehat{\mathbf{A}^{*} \partial_{\xi} \mathbf{Q}}_{I}.$$

Solve the resulting system by a fixed point iteration procedure

$$([\theta_k, \theta_l]^1 - \langle \partial_\tau \theta_k, \theta_l \rangle_{T_E}) \hat{\mathbf{Q}}_l^{m+1} - \langle \theta_k, \theta_l \rangle_{T_E} \mathbf{S}^* (\hat{\mathbf{Q}}_l^{m+1}) = [\theta_k, \psi_l]^0 \hat{\mathbf{w}}_l - \langle \theta_k, \theta_l \rangle_{T_E} \widehat{\mathbf{A}^* \partial_\xi \mathbf{Q}}_l^m ,$$

for $k = 1, 2, \dots, (M+1)^2$.

- Solution to GRP at time τ is found by solving a classical Riemann problem using $\mathbf{Q}_h(\xi, \tau)$ at both sides of the cell interface (Montecinos et al., 2012).
- Space-time integrals of A(Q)∂_xQ and S(Q) are computed by numerical integration using Q_h(ξ, τ) and a quadrature rule of appropriate accuracy. (Hidalgo and Dumbser, 2011).

Solve the resulting system by a fixed point iteration procedure

$$([\theta_k, \theta_l]^1 - \langle \partial_\tau \theta_k, \theta_l \rangle_{T_E}) \hat{\mathbf{Q}}_l^{m+1} - \langle \theta_k, \theta_l \rangle_{T_E} \mathbf{S}^* (\hat{\mathbf{Q}}_l^{m+1}) = [\theta_k, \psi_l]^0 \hat{\mathbf{w}}_l - \langle \theta_k, \theta_l \rangle_{T_E} \widehat{\mathbf{A}^* \partial_\xi} \overline{\mathbf{Q}}_l^m ,$$

for $k = 1, 2, \dots, (M+1)^2$.

- Solution to GRP at time τ is found by solving a classical Riemann problem using $\mathbf{Q}_h(\xi, \tau)$ at both sides of the cell interface (Montecinos et al., 2012).
- Space-time integrals of A(Q)∂_xQ and S(Q) are computed by numerical integration using Q_h(ξ, τ) and a quadrature rule of appropriate accuracy. (Hidalgo and Dumbser, 2011).

Solve the resulting system by a fixed point iteration procedure

$$([\theta_k, \theta_l]^1 - \langle \partial_\tau \theta_k, \theta_l \rangle_{T_E}) \hat{\mathbf{Q}}_l^{m+1} - \langle \theta_k, \theta_l \rangle_{T_E} \mathbf{S}^* (\hat{\mathbf{Q}}_l^{m+1}) = [\theta_k, \psi_l]^0 \hat{\mathbf{w}}_l - \langle \theta_k, \theta_l \rangle_{T_E} \widehat{\mathbf{A}^* \partial_\xi} \overline{\mathbf{Q}}_l^m ,$$

for $k = 1, 2, \dots, (M+1)^2$.

- Solution to GRP at time τ is found by solving a classical Riemann problem using $\mathbf{Q}_h(\xi, \tau)$ at both sides of the cell interface (Montecinos et al., 2012).
- Space-time integrals of A(Q)∂_xQ and S(Q) are computed by numerical integration using Q_h(ξ, τ) and a quadrature rule of appropriate accuracy. (Hidalgo and Dumbser, 2011).

Validation: convergence tests

We prescribe a smooth function $\hat{\mathbf{Q}}(x, t)$

 $\hat{\mathbf{Q}}(x,t) = [\hat{A}(x,t), \hat{q}(x,t), \hat{\theta}(x,t), \hat{A}_0(x,t), \hat{h}_0(x,t), \hat{E}_e(x), \hat{E}_c(x), \hat{p}_e(x)]^T,$

to be the solution of

$$\partial_t \mathbf{Q} + \mathbf{A}(\mathbf{Q})\partial_x \mathbf{Q} = \hat{\mathbf{S}}(x,t),$$

where $\hat{\mathbf{S}}(x, t)$ reflects the fact that $\hat{\mathbf{Q}}(x, t)$ is not a solution of the original system.

Validation: convergence tests

ADER-02								
T [s]	N	L ¹	L ²	L∞	$\mathcal{O}(L^1)$	$\mathcal{O}(L^2)$	$\mathcal{O}(L^{\infty})$	Δ
10^{-2} & K _m ≈ 0	4	2.63e-07	2.96e-07	5.25e-07	-	-	-	
	8	5.82e-08	6.87e-08	1.80e-07	2.2	2.1	1.5	1.03e-01
	16	1.40e-08	1.72e-08	4.69e-08	2.1	2.0	1.9	4.10e-01
	32	3.20e-09	4.04e-09	1.23e-08	2.1	2.1	1.9	1.64e+00
	64	7.74e-10	9.94e-10	3.17e-09	2.0	2.0	2.0	6.56e+00
	128	1.87e-10	2.41e-10	7.47e-10	2.0	2.0	2.1	2.62e+01
	256	4.65e-11	6.00e-11	1.87e-10	2.0	2.0	2.0	1.05e+02
10-2	4	2.46e-07	2.94e-07	6.57e-07	-	-	-	
	8	5.55e-08	6.91e-08	2.01e-07	2.1	2.1	1.7	1.03e-01
	16	1.29e-08	1.66e-08	5.09e-08	2.1	2.1	2.0	4.10e-01
	32	3.30e-09	4.05e-09	1.14e-08	2.0	2.0	2.2	1.64e+00
	64	1.70e-09	2.08e-09	4.36e-09	1.0	1.0	1.4	6.56e+00
	128	1.92e-09	2.13e-09	3.51e-09	-0.2	-0.0	0.3	2.62e+01
	256	1.98e-09	2.19e-09	3.36e-09	-0.0	-0.0	0.1	1.05e+02
10-3	4	2.46e-07	2.98e-07	6.74e-07	-	-	-	
	8	5.29e-08	7.58e-08	2.41e-07	2.2	2.0	1.5	1.03e-02
	16	1.28e-08	1.90e-08	6.47e-08	2.0	2.0	1.9	4.10e-02
	32	3.13e-09	4.67e-09	1.62e-08	2.0	2.0	2.0	1.64e-01
	64	7.48e-10	1.08e-09	3.85e-09	2.1	2.1	2.1	6.56e-01
	128	1.97e-10	2.44e-10	7.34e-10	1.9	2.2	2.4	2.62e+00
	256	1.63e-10	1.88e-10	3.52e-10	0.3	0.4	1.1	1.05e+01

Empirical convergence rates for a second order ADER scheme with several relaxation times T. N is the number of cells. Errors are computed for variable A. The highlighted row corresponds to the largest number of cells N for which the theoretical convergence rate is achieved.

Validation: convergence tests

ADER-03								
T [s]	Ν	L^1	L ²	L^{∞}	$\mathcal{O}(L^1)$	$\mathcal{O}(L^2)$	$\mathcal{O}(L^{\infty})$	Δ
$10^{-2} \& K_m \approx 0$	4	1.14e-07	1.29e-07	1.94e-07	-	-	-	
	8	1.37e-08	1.66e-08	3.44e-08	3.1	3.0	2.5	3.22e-01
	16	1.84e-09	2.22e-09	4.73e-09	2.9	2.9	2.9	2.58e+00
	32	2.22e-10	2.71e-10	6.15e-10	3.1	3.0	2.9	2.06e+01
	64	2.77e-11	3.40e-11	8.21e-11	3.0	3.0	2.9	1.65e+02
	128	3.51e-12	4.35e-12	1.14e-11	3.0	3.0	2.8	1.32e+03
	256	4.84e-13	6.08e-13	1.71e-12	2.9	2.8	2.7	1.06e+04
10^2	4	9.15e-08	1.06e-07	2.07e-07	-	-	-	
	8	1.35e-08	1.64e-08	3.44e-08	2.8	2.7	2.6	3.22e-01
	16	2.85e-09	3.24e-09	5.93e-09	2.2	2.3	2.5	2.58e+00
	32	2.03e-09	2.25e-09	3.45e-09	0.5	0.5	0.8	2.06e+01
	64	2.01e-09	2.22e-09	3.33e-09	0.0	0.0	0.1	1.65e+02
	128	2.01e-09	2.22e-09	3.31e-09	-0.0	0.0	0.0	1.32e+03
	256	2.01e-09	2.22e-09	3.31e-09	-0.0	0.0	0.0	1.06e+04
10-3	4	1.03e-07	1.31e-07	2.32e-07	-	-	-	
	8	1.28e-08	1.58e-08	3.42e-08	3.0	3.0	2.8	3.22e-02
	16	1.67e-09	2.09e-09	4.71e-09	2.9	2.9	2.9	2.58e-01
	32	3.06e-10	3.50e-10	6.85e-10	2.5	2.6	2.8	2.06e+00
	64	2.04e-10	2.27e-10	3.56e-10	0.6	0.6	0.9	1.65e+01
	128	2.02e-10	2.24e-10	3.38e-10	0.0	0.0	0.1	1.32e+02
	256	2.02e-10	2.24e-10	3.35e-10	-0.0	0.0	0.0	1.06e+03

Empirical convergence rates for a third order ADER scheme with several relaxation times T. N is the number of cells. Errors are computed for variable A. The highlighted row corresponds to the largest number of cells N for which the theoretical convergence rate is achieved.

Validation: exact vs numerical Riemann problem solutions

Exact and first order numerical solutions for a Riemann problem. The left and right columns show results obtained using a non well-balanced scheme and the proposed path, respectively.

Current and future work

• Further development of numerical schemes

• Implementation of the above-described numerical schemes in the General Purpose Parallel Solver (HemoLab in-house code)

• Exploring further algorithm optimization by the use of local time-stepping (Castro et al., 2009)

Final remarks

- ADAN poses numerical and data management/mining challenges
- Numerical challenges are being addressed
- Big data remains an open issue

... and last but not least ...

Above presented high-order FV methods can be applied to other problems in multiple spatial dimensions

Final remarks

- ADAN poses numerical and data management/mining challenges
- Numerical challenges are being addressed
- Big data remains an open issue
- ... and last but not least ...

Above presented high-order FV methods can be applied to other problems in multiple spatial dimensions

See more at

http://hemolab.lncc.br/adan-web

LO Müller (HeMoLab, LNCC, Brazil)

Extreme 1D Blood Flow Modeling

Thank you for your attention!

References I

- P. J. Blanco, P. R. Trenhago, L. G. Fernandes, and R. A. Feijóo. On the integration of the baroreflex control mechanism in a heterogeneous model of the cardiovascular system. *International Journal for Numerical Methods in Biomedical Engineering*, 28(4):412–433, 2012.
- C. E. Castro, M. Kser, and E. F. Toro. Spacetime adaptive numerical methods for geophysical applications. *Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences*, 367(1907):4613–4631, 2009.
- P. Chen, A. Quarteroni, and G. Rozza. Uncertainty quantification of the human arterial network. Technical Report 55, MOX.
- G. Dal Maso, P. G. LeFloch, and F. Murat. Definition and weak stability of nonconservative products. Journal de Mathématiques Pures et Appliquées, 74:483–548, 1995.
- M. Dumbser and E. F. Toro. A Simple Extension of the Osher Riemann Solver to Non-conservative Hyperbolic Systems. Journal of Scientific Computing, 48:70–88, 2011.
- M. Dumbser, D. S. Balsara, E. F. Toro, and C. Munz. A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes. *Journal of Computational Physics*, 227:8209–8253, 2008a.
- M. Dumbser, C. Enaux, and E. F. Toro. Finite volume schemes of very high order of accuracy for stiff hyperbolic balance laws. Journal of Computational Physics, 227:3971–4001, 2008b.
- A. Hidalgo and M. Dumbser. ADER Schemes for Nonlinear Systems of Stiff Advection-Diffusion-Reaction Equations. Journal of Scientific Computing, 48:173–189, 2011.
- G. Jiang and C. Shu. Efficient Implementation of Weighted ENO Schemes. Journal of Computational Physics, 126:202–228, 1996.
- D. Lombardi. Inverse problems in 1d hemodynamics on systemic networks: A sequential approach. International Journal for Numerical Methods in Biomedical Engineering, pages n/a–n/a, 2013.
- V. Martin, F. Clément, A. Decoene, and J. Gerbeau. Parameter identification for a one-dimensional blood flow model. ESAIM: Proc., 14:174–200, 2005.
- G. Montecinos, L. Müller, and E. F. Toro. Hyperbolic reformulation of a 1D viscoelastic blood flow model and ADER finite volume schemes. Journal of Computational Physics, 266:101–123, 2014.

References II

- G. I. Montecinos and E. F. Toro. Reformulations for general advection-diffusion-reaction equations and locally implicit ADER schemes. Journal of Computational Physics, (0):–, 2014.
- G. I. Montecinos, C. E. Castro, M. Dumbser, and E. F. Toro. Comparison of solvers for the generalized Riemann problem for hyperbolic systems with source terms. *Journal of Computational Physics*, 231:6472–6494, 2012.
- L. O. Müller and E. F. Toro. Well-balanced high-order solver for blood flow in networks of vessels with variable properties. International Journal for Numerical Methods in Biomedical Engineering, 29:1388–1411, 2013.
- E. F. Toro and A. Siviglia. Flow in collapsible tubes with discontinuous mechanical properties: mathematical model and exact solutions. *Communications in Computational Physics*, 13(2):361–385, 2013.

Some considerations on the efficiency of high-order schemes

Comparison of numerical results obtained with the first-order scheme on refined grids and with the higher order implementations on the original grid. See Müller and Toro (2013) for details.

Some considerations on the efficiency of high-order schemes

Tests	nDOF	$\Delta x [cm]$	t _{cpu} [s]
DOT-01	-	2	3.11
DOT-01-REF1	-	1	17.78
DOT-01-REF2	-	0.5	53.82
DOT-01-REF3	-	0.25	151.31
ADER-O2	1124	2	4.60
ADER-O3	2529	2	8.99
ADER-04	4496	2	21.37

Computational cost for different runs. See Müller and Toro (2013) for details.

One-step discontinuous Galerkin schemes

The ADER-DG scheme (Dumbser et al., 2008a) is a fully discrete DG scheme that evolves a space polynomial $\mathbf{u}_h^n = \psi_l(\xi) \hat{\mathbf{u}}_l^n$ defined in each computational cell T_i .

The solution at time t^{n+1} is obtained from

$$\begin{split} & [\psi_k,\psi_l]^1 \hat{\mathbf{u}}_l^{n+1} - [\psi_k,\psi_l]^0 \hat{\mathbf{u}}_l^n + \langle \psi_k,\theta_l \rangle_{T_E} \widehat{\mathbf{A}^*} \partial_{\xi} \widehat{\mathbf{Q}}_l - \langle \psi_k,\theta_l \rangle_{T_E} \mathbf{S}^* (\widehat{\mathbf{Q}}_l) \\ & + \{\psi_k,\mathcal{D}_{i+\frac{1}{2}}^-\}^1 + \{\psi_k,\mathcal{D}_{i-\frac{1}{2}}^+\}^0 = 0 \,, \end{split}$$

for k = 1, 2, ..., M + 1, with $\hat{\mathbf{Q}}_I$ computed with the DET solver and

$$\{a,b\}^{\xi} = \int_0^1 a(\xi,\tau) \, b(\xi,\tau) \, d\tau \, .$$

One-step discontinuous Galerkin schemes

The ADER-DG scheme (Dumbser et al., 2008a) is a fully discrete DG scheme that evolves a space polynomial $\mathbf{u}_h^n = \psi_l(\xi) \hat{\mathbf{u}}_l^n$ defined in each computational cell T_i .

The solution at time t^{n+1} is obtained from

$$\begin{split} & [\psi_k,\psi_l]^1 \hat{\mathbf{u}}_l^{n+1} - [\psi_k,\psi_l]^0 \hat{\mathbf{u}}_l^n + \langle \psi_k,\theta_l \rangle_{\mathcal{T}_E} \widehat{\mathbf{A}^* \partial_{\xi} \mathbf{Q}}_l - \langle \psi_k,\theta_l \rangle_{\mathcal{T}_E} \mathbf{S}^* (\hat{\mathbf{Q}}_l) \\ & + \{\psi_k,\mathcal{D}_{i+\frac{1}{2}}^-\}^1 + \{\psi_k,\mathcal{D}_{i-\frac{1}{2}}^+\}^0 = 0\,, \end{split}$$

for $k = 1, 2, \dots, M + 1$, with $\hat{\mathbf{Q}}_I$ computed with the DET solver and

$$\{a,b\}^{\xi} = \int_0^1 a(\xi,\tau) \, b(\xi,\tau) \, d\tau \, .$$