

4th Hoscar workshop September 2014, Gramado, Brazil

Some Progresses on Krylov Linear Solvers for Multiple Right-Hand Sides

HIEPACS

HiePACS Inria Project Joint Inria-CERFACS lab INRIA Bordeaux Sud-Ouest

HiePACS objectives: Contribute to the design of effective tools for frontier simulations arising from challenging research and industrial multi-scale applications towards exascale computing

HiePACS: scientific structure

Hierarchical algorithms

Team members

Permanent Researchers

- E. Agullo Inria
- O. Coulaud Inria
- A. Esnard Bordeaux University
- M. Faverge Bordeaux Institute of Technology (IPB)
- L. Giraud Inria team leader
- A. Guermouche Bordeaux University
- P. Ramet Bordeaux University Institute of Technology
- J. Roman Inria (IPB)

Post-Doctoral Fellows

- R. Garnier Inria-Région Aquitaine
- S. Possaner ANR BOOST
- E. Fatih Yetkin G8-ECS
- Technical Staff

Innia

- J. Pédron Inria ADT MaPHys@Exa
- C. Piacibello Inria ADT PICOR
- F. Pruvost Inria ADT HPC-Collective

- PhD Students
 - P. Blanchard ENS Cachan
 - B. Bramas Airbus-Inria-Région Aquitaine
 - A. Casadei French Ministry
 - J.M. Couteyen ASTRIUM/ANRT
 - Y. Dudouit TOTAL
 - A. Etcheverry ANR OPTIDIS
 - A. Hugo Inria-Région Aquitaine
 - X. Lacoste ANR ANEMOS
 - S. Nakov TOTAL
 - A. Praga CERFACS
 - M. Predari Inria-Région Aquitaine
 - F. Rozar CEA and MdS
 - S. Moustafa EDF/ANRT
 - M. Zounon ANR RESCUE
- Research scientist (partners)
 - P. Brenner Airbus Defence and Space
 - G. Latu CEA Cadarache
 - G. Sylvand Airbus Group InnovationÂă

Current collaborations witin Associated teams: MORSE (UTK, ICL, UCL, Kaust),

FASTLA (LNBL, Stanford), IPL C2S@Exa and industrial partners

HiePACS objectives: Contribute to the design of effective tools for frontier simulations arising from challenging research and industrial multi-scale applications towards exascale computing

HiePACS: scientific structure

Hierarchical algorithms

Objectives

Solve

$$AX = B$$

 $A\in\mathbb{C}^{n imes n}$, $B=[b^{(1)},b^{(2)},\ldots,b^{(p)}]\in\mathbb{C}^{n imes p}$ ($p\ll n$), $X\in\mathbb{C}^{n imes p}$

- Manage properly numerical rank deficiency in block Arnoldi [M. Robbé and M. Sadkane, LAA, 2006]
- Implement a subspace augmentation at restart [R. Morgan, APNUM, 2005]

nnín

Outline

Background

Block GMRES

Numerical experiments

Extension to sequence of multiple right-hand side solves

Concluding remarks

Some basic ingredients in classical GMRES - Ax = b

$$x_{\ell} = \operatorname*{argmin}_{z \in \mathcal{K}_{\ell}(b,A)} \|b - Az\|_2$$

with $\mathcal{K}_{\ell}(b, A) = \operatorname{span}(b, Ab, ..., A^{\ell-1}b)$:

- 1. Construction of an orthonormal basis of the Krylov space
- 2. Minimiun norm solution

Computational facts

- 1. Happy breakdown
- 2. Simple restarting mechanism

Construction of the orthonormal basis

ARNOLDI WITH MODIFIED GRAM-SCHMIDT ORTHOGONALIZATION

1: $\beta = ||b|| \text{ set } v_1 = b/\beta$ 2: for j = 1, 2, ..., m do 3: Compute $w_j = Av_j$ 4: for i = 1, 2, ..., j do 5: $h_{i,j} = v_i^H w_j$ 6: $w_j = w_j - v_i h_{i,j}$ 7: end for 8: $w_j = v_{j+1}h_{j+1,j}$ 9: end for

Key equalities :

$$AV_j = V_j H_j + [0_{n \times (j-1)}, w_j] = V_{j+1} \underline{H}_j$$

with
$$V_j^H V_j = I_j$$
 and $V_{j+1}^H V_{j+1} = I_{j+1}$ where $V_j = [v_1, ..., v_j]$

Minimun norm solution

What we want

$$x_{\ell} = \operatorname*{argmin}_{z \in \mathcal{K}_{\ell}(b, A)} \|b - Az\|_2 \quad x_{\ell} = V_{\ell} y_{\ell}$$

Minimun norm solution

What we want

$$x_{\ell} = \operatorname*{argmin}_{z \in \mathcal{K}_{\ell}(b, A)} \|b - Az\|_2 \quad x_{\ell} = V_{\ell} y_{\ell}$$

Key equality

$$\begin{aligned} \|b - Ax_{\ell}\| &= \qquad \|b - AV_{\ell}y_{\ell}\| = \|b - V_{\ell+1}\underline{H}_{\ell}y_{\ell}\| \\ &= \qquad \|V_{\ell+1}(\beta e_1 - \underline{H}_{\ell}y_{\ell})\| = \|\beta e_1 - \underline{H}_{\ell}y_{\ell}\| \end{aligned}$$

Minimun norm solution

What we want

$$x_{\ell} = \operatorname*{argmin}_{z \in \mathcal{K}_{\ell}(b, A)} \|b - Az\|_2 \quad x_{\ell} = V_{\ell} y_{\ell}$$

Key equality

nnin

$$\begin{aligned} \|b - Ax_{\ell}\| &= \qquad \|b - AV_{\ell}y_{\ell}\| = \|b - V_{\ell+1}\underline{H}_{\ell}y_{\ell}\| \\ &= \qquad \|V_{\ell+1}(\beta e_1 - \underline{H}_{\ell}y_{\ell})\| = \|\beta e_1 - \underline{H}_{\ell}y_{\ell}\| \end{aligned}$$

Key features that make it works

- 1. Arnoldi equality $AV_j = V_{j+1}\underline{H}_i$
- 2. Orthonormal basis $V_{j+1}^H V_{j+1} = I_{j+1}$
- 3. Right-hand side in search space $b \in \text{span}(V_{j+1})$

Happy breakdown

This situation occcurs when $w_j = 0$ in Arnoldi, meaning the algorithm cannot extend the space

$$AV_j = V_jH_j + [0_{n\times(j-1)}, w_j] = V_jH_j$$

Consequences

- Happy breakdown: the solution $x \in \text{span}(V_j)$
- b can be expressed as a linear combination of j eigenvectors <u>Remark</u>: all eigenvectors are not revealed at the same speed in the Krylov space (argument will come back later)

Basic restart mechanism

- Computation per iteration and storage increase linearly with iteration
- Restart mechanism when maximum search space dimension m is attained
- Set $x_0 = x_m$, solve

$$Ae = r_0$$

using GMRES where $r_0 = b - Ax_0$ so that $x_j \in x_0 + \mathcal{K}_j(r_0, A)$ <u>Remark</u>: all eigen-information captured in the Krylov space is lost at restart

Outline

Background

Block GMRES

Numerical experiments

Extension to sequence of multiple right-hand side solves

Concluding remarks

Some key ingredients for block GMRES - AX = B

$$X_{\ell} = \operatorname*{argmin}_{Z \in \mathcal{K}_{\ell}(V_1, A)} \|B - AZ\|_{F}$$

with $\mathcal{K}_{\ell}(V_1, A) = \operatorname{span}(V_1, AV_1, ..., A^{\ell-1}V_1)$:

- 1. Construction of an orthonormal basis of the Krylov space, where $B = V_1 \Lambda_1$ is the reduced QR factorisation of B
- 2. Minimiun norm solution

Computational challenges

- 1. Numerical deficiency in W_j inexact breakdown [Robbé, Sadkane]
- 2. More sophisticated restarting mechanism [R. Morgan]

Construction of the orthonormal basis

ARNOLDI WITH MODIFIED GRAM-SCHMIDT ORTHOGONALIZATION

- 1: Choose a unitary matrix V_1 of size $n \times p$
- 2: for j = 1, 2, ..., m do
- 3: Compute $W_j = AV_j$
- 4: **for** i = 1, 2, ..., j **do**
- 5: $H_{i,j} = V_i^H W_j$
- $6: \qquad W_j = W_j V_i H_{i,j}$
- 7: end for

nnin

8: $W_j = V_{j+1}H_{j+1,j}$ (reduced *QR*-factorization) 9: end for

$$\begin{aligned} & A\mathscr{V}_j = \mathscr{V}_j \mathscr{H}_j + [\mathbf{0}_{n \times n_{j-1}}, \quad W_j] = \mathscr{V}_{j+1} \underline{\mathscr{H}}_j \\ & \text{with } \mathscr{V}_{j+1}^H \mathscr{V}_{j+1} = I_{n_{j+1}} \text{ where } \mathscr{V}_{j+1} = [V_1, \dots, V_{j+1}] \end{aligned}$$

Minimun norm solution

$$\|B - AX_j\|_F = \min_{Y \in \mathbb{C}^{n_j \times p}} \|\mathscr{V}_{j+1} \left(\Lambda_j - \underline{\mathscr{H}}_j Y\right)\|_F = \min_{Y \in \mathbb{C}^{n_j \times p}} \|\Lambda_j - \underline{\mathscr{H}}_j Y\|_F$$

because \mathscr{V}_{j+1} forms an orthonormal basis and

$$\Lambda_j = \begin{bmatrix} \Lambda_1 \\ 0 \end{bmatrix} \in \mathbb{C}^{n_{j+1} \times p}$$

Remark: we minimize the Frobenius norm of the block that translates in 2-norm for the individual column residual

maia

Numerical rank deficiency in W_i

 For reasons to be made clear later but related to stopping criterion we decompose

$$W_j = V_{j+1}H_{j+1,j} + Q_j$$

with $(Q_j \perp V_{j+1}) \perp \mathscr{V}_j$. We still have

$$A\mathscr{V}_j = \mathscr{V}_j\mathscr{H}_j + [\mathcal{Q}_{j-1}, \quad W_j],$$

where $Q_{j-1} = [Q_1, \ldots, Q_{j-1}] \in \mathbb{C}^{n \times n_{j-1}}$ accounts for all the abandoned directions.

► To characterize a minimum norm solution in 𝒱_j we need to have an orthonormal basis of [𝒱_j, 𝔅_{j-1}, W_j] so that

$$A\mathscr{V}_{j} = \left[\mathscr{V}_{j}, \left[P_{j-1}, \tilde{W}_{j}\right]\right]\mathscr{F}_{j}$$

Shortcut for deriving the extended Arnoldi equalitiy I

[M. Robbé and M. Sadkane, LAA, 2006]

$$A\mathscr{V}_j = \mathscr{V}_j\mathscr{H}_j + [\mathcal{Q}_{j-1}, \quad W_j]$$

• W_j orthogonalized against P_{j-1} with $W_j - P_{j-1}C_j$ where $C_j = P_{j-1}^H W_j$

•
$$\widetilde{W}_j D_j = \mathsf{QR} (W_j - P_{j-1}C_j).$$

• $[\mathscr{V}_j, \mathcal{P}_{j-1}, \tilde{W}_j]$ form an orthonormal basis of $[\mathscr{V}_j, \mathcal{Q}_{j-1}, W_j]$.

Shortcut for deriving the generalized Arnoldi equalitiy II

[M. Robbé and M. Sadkane, LAA, 2006]

Extended Arnoldi equality

$$\begin{aligned} \mathcal{A}\mathscr{V}_{j} &= \mathscr{V}_{j}\mathscr{L}_{j} + \left[P_{j-1}G_{j-1}, \left[P_{j-1}, \tilde{W}_{j} \right] \left[\begin{array}{c} C_{j} \\ D_{j} \end{array} \right] \right] \\ &= \left[\left[\mathscr{V}_{j}, P_{j-1}, \tilde{W}_{j} \right] \left[\begin{array}{c} \mathscr{L}_{j} \\ G_{j-1} & C_{j} \\ 0 & D_{j} \end{array} \right] \\ &= \left[\left[\mathscr{V}_{j}, \left[P_{j-1}, \tilde{W}_{j} \right] \right] \mathscr{F}_{j} \end{aligned} \end{aligned}$$

Least-squares problem reads

$$Y_{j} = \operatorname{argmin}_{Y \in \mathbb{C}^{n_{j} \times p}} \|\Lambda_{j} - \mathscr{F}_{j}Y\|_{F}, \text{ with } \Lambda_{j} = \begin{bmatrix} \Lambda_{1} \\ 0 \\ 0 \end{bmatrix}$$

Numerical rank deficiency in \tilde{W}_i vs convergence

Based on SVD of least-squared residual

$$\Lambda_j - \mathscr{F}_j Y_j = \mathbb{U}_1 \Sigma_1 \mathbb{V}_1^H + \mathbb{U}_2 \Sigma_2 \mathbb{V}_2^H$$

Decompose

$$\mathbb{U}_1 = \begin{pmatrix} \mathbb{U}_1^{(1)} \\ \mathbb{U}_1^{(2)} \end{pmatrix} \text{ in accordance with } \left[\mathscr{V}_j, [P_{j-1}, \tilde{W}_j] \right]$$

- ▶ Consider [W₁, W₂] so that Range(W₁) = Range(U₁⁽²⁾).
- Define and update

$$V_{j+1} = \begin{bmatrix} P_{j-1}, \tilde{W}_j \end{bmatrix} \mathbb{W}_1$$
$$P_j = \begin{bmatrix} P_{j-1}, \tilde{W}_j \end{bmatrix} \mathbb{W}_2$$
$$G_j = \mathbb{W}_2^H \begin{bmatrix} G_{j-1} & C_j \\ 0 & D_j \end{bmatrix}$$

Rank deficiency threshold vs stopping criterion

Assuming p inexact breakdowns

$$||B - AX_s||_2 \le \epsilon^{(R)}.$$

$$\frac{||b^{(i)} - Ax_s^{(i)}||_2}{||b^{(i)}||_2} \le \frac{||B - AX_s||_2}{||b^{(i)}||_2} \le \frac{||B - AX_s||_2}{\min_{i=1,\dots,p} \left\|b^{(i)}\right\|_2} \le \frac{\epsilon^{(R)}}{\min_{i=1,\dots,p} \left\|b^{(i)}\right\|_2}$$

It follows that the choice

nnin

$$\epsilon^{(R)} = \varepsilon \times \min_{i=1,\dots,p} \left\| b^{(i)} \right\|_2$$

ensures convergence below the threshold ϵ for individual $b^{(i)}$ if same accuracy required for all the righ-hand sides

A few definitions

Definition

Harmonic Ritz pair. Consider a subspace \mathcal{U} of \mathbb{C}^n . Given a matrix $B \in \mathbb{C}^{n \times n}$, $\lambda \in \mathbb{C}$ and $y \in \mathcal{U}$, (λ, y) is a harmonic Ritz pair of A with respect to \mathcal{U} if and only if

$$Ay - \lambda y \perp AU$$

The vector y is a harmonic Ritz vector associated with the harmonic Ritz value λ .

Lemma

The harmonic Ritz pairs $(\tilde{\theta}_i, \tilde{g}_i)$ associated with $\mathcal{U} = \operatorname{span}(\mathscr{V}_m)$ satisfy the following property

$$\mathscr{F}_{m}^{H}\left(\mathscr{F}_{m}\tilde{g}_{i}-\tilde{\theta}_{i}\begin{bmatrix}\tilde{g}_{i}\\0_{p}\end{bmatrix}\right)=0,\ (i=1,\ldots,n_{m}),$$

 $\tilde{g}_i \in \mathbb{C}^{n_m}$, and $\mathscr{V}_m \tilde{g}_i$ are the harmonic Ritz vectors associated with the corresponding harmonic Ritz values $\tilde{\theta}_i$.

An interesting fact for augmentation at restart

Lemma

Assume that \mathscr{L}_m is of full rank after performing a first cycle of IB-BGMRES, then the column vectors $\left(\mathscr{F}_m \tilde{g}_i - \tilde{\theta}_i \begin{bmatrix} \tilde{g}_i \\ 0 \end{bmatrix}\right) \in \mathbb{C}^{n_m+p}$ $(i = 1, \ldots, n_m)$ are all contained in the subspace spanned by the least-squares residuals $R_{LS_m} = (\Lambda_m - \mathscr{F}_m Y_m) \in \mathbb{C}^{(n_m+p) \times p}$, i.e., $\exists \alpha_i \in \mathbb{C}^p$ so that

$$\mathscr{F}_m \widetilde{g}_i - \widetilde{\theta}_i \begin{bmatrix} \widetilde{g}_i \\ 0 \end{bmatrix} = R_{LS_m} \alpha_i.$$

Proposition

The harmonic residual vectors are all linear combinations of the residual vectors from the minimum residual solutions of the linear equation problem after performing a first cycle of the IB-BGMRES.

An interesting fact for augmentation at restart

Lemma

Assume that \mathscr{L}_m is of full rank after performing a first cycle of IB-BGMRES, then the column vectors $\left(\mathscr{F}_m \tilde{g}_i - \tilde{\theta}_i \begin{bmatrix} \tilde{g}_i \\ 0 \end{bmatrix}\right) \in \mathbb{C}^{n_m+p}$ $(i = 1, \ldots, n_m)$ are all contained in the subspace spanned by the least-squares residuals $R_{LS_m} = (\Lambda_m - \mathscr{F}_m Y_m) \in \mathbb{C}^{(n_m+p)\times p}$, i.e., $\exists \alpha_i \in \mathbb{C}^p$ so that

$$\mathscr{F}_m \widetilde{g}_i - \widetilde{\theta}_i \begin{bmatrix} \widetilde{g}_i \\ 0 \end{bmatrix} = R_{LS_m} \alpha_i.$$

Proposition

The harmonic residual vectors are all linear combinations of the residual vectors from the minimum residual solutions of the linear equation problem after performing a first cycle of the IB-BGMRES.

Some harmonic vectors can be kept in the search space at restart with the residual vector that must be in the space

Restarting mechanism I

Let
$$\tilde{G} = [\tilde{g}_1, \dots, \tilde{g}_k] \in \mathbb{C}^{n_m \times k}$$
 and form $\underline{G} = \begin{bmatrix} \tilde{G} & R_{LS_m} \\ 0_{p \times k} \end{bmatrix}$ We denote $\underline{G} = Q_{\underline{G}}R_{\underline{G}}$ the reduced QR -factorization of \underline{G} ,

$$\begin{aligned} &Q_{\underline{G}} = \begin{bmatrix} & \Gamma_1 & & \\ & 0_{p \times k} & & \\ & R_{\underline{G}} = \begin{bmatrix} & \Theta_1 & & \\ & 0_{p \times k} & & \\ \end{bmatrix} \in \mathbb{C}^{(k+p) \times (k+p)}, \end{aligned}$$

so that

$$\tilde{G} = \Gamma_1 \Theta_1,$$

 $R_{LS_m} = Q_{\underline{G}} \Theta_2$

Restarting mechanism II

Extended Arnoldi relation

$$A\mathscr{V}_1^{new} = \begin{bmatrix} \mathscr{V}_1^{new}, [\mathsf{P}_0, \tilde{W}_1]^{new} \end{bmatrix} \mathscr{F}_1^{new} \quad A\mathscr{V}_1^{new} = \mathscr{V}_2^{new} \underline{\mathscr{L}}_1^{new} + \tilde{\mathcal{Q}}_1^{new},$$

with

$$\begin{bmatrix} \boldsymbol{\mathscr{Y}}_{1}^{\text{new}}, [P_{0}, \tilde{W}_{1}]^{\text{new}} \end{bmatrix} = \begin{bmatrix} \boldsymbol{\mathscr{Y}}_{m}, [P_{m-1}, \tilde{W}_{m}] \end{bmatrix} Q_{\underline{G}}, \quad R_{0} = \begin{bmatrix} \boldsymbol{\mathscr{Y}}_{1}^{\text{new}}, [P_{0}, \tilde{W}_{1}]^{\text{new}} \end{bmatrix} \Lambda_{1}^{\text{new}} \text{ with } \Lambda_{1}^{\text{new}} = \Theta_{2}, \\ \boldsymbol{\mathscr{Y}}_{1}^{\text{new}} = \Gamma_{1}^{H} \mathcal{L}_{m} \Gamma_{1}, \quad \mathbb{H}_{1}^{\text{new}} = \Gamma_{2}^{H} \mathcal{P}_{m} \Gamma_{1}, \quad \mathcal{P}_{1}^{\text{new}} = \begin{bmatrix} \mathcal{L}_{1}^{\text{new}} \\ \mathbb{H}_{1}^{\text{new}} \end{bmatrix} \end{bmatrix}, \\ V_{2}^{\text{new}} = [P_{0}, \tilde{W}_{1}]^{\text{new}} \mathbb{W}_{1}^{\text{new}}, \quad P_{1}^{\text{new}} = [P_{0}, \tilde{W}_{1}]^{\text{new}} \mathbb{W}_{2}^{\text{new}}, \quad \mathcal{L}_{2}^{\text{new}} = \mathbb{W}_{1}^{\text{new}H} \mathbb{H}_{1}^{\text{new}}, \quad G_{1}^{\text{new}} = \mathbb{W}_{2}^{\text{new}H} \mathbb{H}_{1}^{\text{new}}, \\ \mathcal{Y}_{2}^{\text{new}} = \begin{bmatrix} \mathcal{Y}_{1}^{\text{new}}, V_{2}^{\text{new}} \end{bmatrix}, \quad \underline{\mathcal{L}}_{1}^{\text{new}} = \begin{bmatrix} \mathcal{L}_{1}^{\text{new}} \\ \mathcal{L}_{2}^{\text{new}} \end{bmatrix}, \quad \tilde{\mathcal{Q}}_{1}^{\text{new}} = P_{1}^{\text{new}} G_{1}^{\text{new}}, \end{aligned}$$

where
$$\mathsf{Range}(\mathbb{W}_1^{\mathsf{new}}) = \mathsf{Range}(\mathbb{U}_1^{\mathsf{new}(2)}) \text{ with } \mathbb{U}_1^{\mathsf{new}} = \begin{bmatrix} \mathbb{U}_1^{\mathsf{new}(1)} \\ \mathbb{U}_1^{\mathsf{new}}(2) \end{bmatrix} \text{ and } \begin{bmatrix} \mathbb{W}_1^{\mathsf{new}}, & \mathbb{W}_2^{\mathsf{new}} \end{bmatrix} \text{ is unitary with } \mathbb{W}_1^{\mathsf{new}} = \mathbb{W}$$

$$\Lambda_1^{new} - \mathscr{F}_1^{new} Y_1^{new} = \mathbb{U}_1^{new} \Sigma_1^{new} \mathbb{V}_1^{newH} + \mathbb{U}_2^{new} \Sigma_2^{new} \mathbb{V}_2^{newH}, \text{ with SVD trheshold } \epsilon^{(R)}$$

the SVD to detect inexact breakdown in the restarting block residual where

$$Y_1^{\mathsf{new}} = \operatorname{argmin}_{Y \in \mathbb{C}^{n_1 \times p}} \left\| \Lambda_1^{\mathsf{new}} - \mathscr{F}_1^{\mathsf{new}} Y \right\|_F.$$

Numerical experiments

Outline

Background

Block GMRES

Numerical experiments

Extension to sequence of multiple right-hand side solves

Concluding remarks

Comparative covergence rate

IB-BGMRES [M. Robbé and M. Sadkane, LAA, 2006], BGMRES-DR [R. Morgan, APNUM, 2005]

Inría

Comparative covergence rate

IB-BGMRES [M. Robbé and M. Sadkane, LAA, 2006], BGMRES-DR [R. Morgan, APNUM, 2005]

Inría

Numerical experiments

Inexact breakdown vs targeted accuracy

Numerical experiments

Comparisons with cousins and parents

Iso-memory comparison for basis storage

Example	GMRES	GMRES-DR	IB-BGMRES	BGMRES-DR	IB-BGMRES-DR
1	2536	1077	1344	892	588
2	1069	856	788	667	538
3	378	378	372	341	335
4	412	412	446	447	440
5	845	694	617	474	386
6	464	464	357	294	248
7	3154	2003	3291	3090	2104
8	10643	3110	-	4426	2202

Table: Number of *mvps* for regular GMRES, GMRES-DR, IB-BGMRES, BGMRES-DR and IB-BGMRES-DR with $\varepsilon = 10^{-6}$.

nnin

Extension to sequence of multiple right-hand side solves

Outline

Background

Block GMRES

Numerical experiments

Extension to sequence of multiple right-hand side solves

Concluding remarks

Extension to sequence of multiple right-hand side solves

A priori space augmentation

- ► IB-BGMRES-DR effective for one block of right-hand sides
- Combine IB-BGMRES-DR with Parks et all [Park et all, SISC, 2006] recycling appraoch
 Split the search space in two orthogonal spaces.
 - multiple right-hand sides
 - multiple left-hand sides (different frequencies ?)

nnia

Benefit of the recycling mechanism: flexibility

isomemory experiments

Concluding remarks

Outline

Background

Block GMRES

Numerical experiments

Extension to sequence of multiple right-hand side solves

Concluding remarks

Concluding remarks

- The new algorithm IB-BGMRES-DR inheritis the positive genes of its parents IB-BGMRES [M. Robbé and M. Sadkane, LAA, 2006] and BGMRES-DR [R. Morgan, APNUM, 2005]
- Flexible variant can be designed to accomodate resiliency or mixed precision calculation
- Task based implementation should be carried out soon

nnin

Obrigado for your attention Questions ?

https://team.inria.fr/hiepacs/