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Current Research Topics

Finite Volume discretizations of porous media flow models

e Schemes adapted to polyhedral meshes and anisotropic heterogeneous media:
VAG, HFV, MPFA

e Convergence analysis: gradient scheme framework
e Benchmarking with prototype codes

e Range of difficulties: discontinuous hydrodynamical laws, fractured media,
compositional and thermal flows

e Coupling of liquid gas Darcy flow with gas free flow
e Domain decomposition algorithms in reservoir simulations
e Code CoMPaSS: Computing Parallel Architecture to Speed up Simulations
e Ditributed polyhedral meshes with one layer of cells of overlap
e FV schemes with d.o.f. at nodes, cells, faces
e Connection with ParMetis, Petsc, Paraview
e Current model implemented: VAG scheme for two phase Darcy flows

e In project: geothermal model in fractured porous media



VAG scheme for hybrid dimensional two phase flows in fractured porous media

Outline:
e Continuous model
e Vertex Approximate Gradient discretization

e Non-conservative version
e Conservative version

e Numerical results and comparison with standard CVFE approach



Introduction

The model briefly:

e Two phases a € {1,2}
incompressibles and immiscibles

N ——

e Pressure - pressure formulation
e Two media v € {m,f}
3D porous matrix Q\ T
2D fracture network I
\
e Pressure is continuous at \
L

matrix-fracture interface

Some bibliography:
e Single phase: V. Martin et al. ‘05 (Model), Ph. Angot et al. '09 (Convergence +
existence)

e Two phase: J. Jaffré et al. '11 (Model), current work (Convergence + existence)
inspired by R. Eymard et al. '13 (Convergence without fractures)



Pressure - pressure formulation

Each phase « has its own pressure u®, saturation S* and flux q°.

Mass balance for phase a:

Pm0:Se  + div(qy) = 0 on Q\T,
¢r0:Sf + div.(q}) lag. -nr] onT

Darcy law for phase a:

qm —km (X, Sm)AmVu®
af = —ki (x, SFN Vo yu®

Saturation condition for media v: Z So=1
ac{1,2}
Capillary pressure law for media v:

S = S(x,ut — u?) and S§ = S&(x, yu' — yu?)



Pressure - pressure formulation

Each phase « has its own pressure u®, saturation S* and flux q°.

Mass balance for phase a:

Pm0:Se  + div(qy) = 0 on Q\T,
¢r0:Sf + div.(q}) lag. -nr] onT

Darcy law for phase a:

qo, —km (%, S ) AmV u®
af = —ki (x, SFN Vo yu®

Saturation condition for media v: Z So=1

ac{1,2}
Capillary pressure law for media v:

S = S(x,ut — u?) and S§ = S&(x, yu' — yu?)
Remark: ¢r(x), As(x) are proportional to the fracture thickness dr(x).

Letting dr — 0 one formally recovers “a non-fractured model”



Two phase flow problem

Assumptions on data

e Relative mobilities are uniformly [
bounded from below Kl 1

k®(x,5) = knpin > 0

=[Vu*||2@x 0,y < C.

pS=0 plS=0 mS=1  pfS=1

e 5%(x,p) € [0,1] is defined by rocktype:
- S(x,p) =Sj(p) ae. inQ;, Q= Uﬁj

j€J
- §j is non-decreasing and Lipschitz continuous.

e Similar assumptions on fracture properties.



Weak formulation

We define the functional spaces [ Tio
V ={u e HY(Q), yu € H*(N)} a | B
// z
Ve ={u € Hy(Q), yu € Hy, (N} P M| a0 .

Weak formulation:
Find u*, u® € L2(0, T; V°) s.t. for each o € {1,2} and for all » € L%(0, T; V?)

T T
/(Z)mS,‘i‘,’ogoodx f/ /¢m5,?‘,8tg0dxdt +/ /k,‘f,(S,‘f,)/\mVua - Vdxdt
Q 0o Ja o Ja

T T
+/¢f5fofogaode — / /qﬁ;S?@,apdndt + / /k?(S,?‘)/\fVTfyua -Voyedredt =0
r 0 r 0 r

Remark: Pressure is continuous saturation is not.



Numerical challenges

Diffusion:

e Complex meshes

e Polyhedral cell
e Non planar faces

e Heterogeneous anisotropic media

Convection:

e Convection dominated problems

e Highly contrasted of the flow rates
Discontinuous capillary pressure curves:

e Saturation jumps




Numerical challenges

Diffusion:

e Complex meshes

e Polyhedral cell
e Non planar faces

e Heterogeneous anisotropic media
Convection:
e Convection dominated problems

e Highly contrasted of the flow rates

Discontinuous capillary pressure curves:

e Saturation jumps

- Conforming nodal discretization for u®
using tetrahedral sub-mesh

- Conservative fluxes and upwinding
- Flexible mass lumping approach

- Piecewise constant discretization for S¢



Semi-discrete problem

Given an the initial capillary pressure P°, find u*", u*>" € V%, n=1,---, N, such that
for o € {1,2} and for all v € V°

n

srl;;’" - 5317"71 [ a,n a,n
= 2m ydx + [ KE(SEARV ST - Vvdx
Q At Q

/¢ S =S¢ vdx + /k; (ngn)/\,rvfyua,n.vwvdﬂr =0
with
S (x) = Sm(x, P"), S¢"(x) = S (x, P™)

and
Pn — ul,n _ u2,n.

Next step: Let Xp be a space of d.o.f., we will define
T, @ Xp — L2(Q) Vo, 1 Xp — L2(Q)?
mp, : Xp — L*(T) Vp, : Xp — L3(N)7!



Discrete gradient reconstruction

A finite dimensional subspace of V is constructed using P: finite elements.

Degrees of freedom Xp:
e Cell unknowns vk, K € M;
e Nodes unknowns vs,s € V,;
e Fracture faces unknowns v,, o € Fr;

e At the non-fracture faces o € F \ Fr
the unknowns are interpolated :

Xo = Z /BO,SXS7 Vo = Z /Bo,svs~

seVy seVy

We define the mapping 77 from Xp to V

TV = Z Nk (X)vi + Z Mo (X) Vo "‘Z (ns(x) + Z ﬂ"’sn"(x)> Ve

KeM ocEFr sey oEFs

Vop,,v=Vrrv
o Cell unknowns are eliminated algebraically. Vop,v=VyrrVv




Discrete function reconstruction & control volume mesh

Cells K € M partitioning

K =wkU U wk,s U U WK,o-

SEVK M Vine o€ FkNFr
Piecewise constant projector

Vk, X Ewk,K EM,
T, V(X) =< Vs, X Ewk,;s,5EVkNVine, K EM,
Vo, X EWK,e,0E€ FkNFr,K e M.

Fracture faces o € Fr partitioning

c=%U |J Zxs

SEVsNVipe

Piecewise constant projector

T ov(x) = Vo, XEXs,0€Fr,
f Vs, XE€YX55,5€ VoNVine,0 € Fr.



Nodal volume distribution

Assume that data is constant by cell and fracture face
= No need to define the control volumes explicitly.

Matrix - Matrix volume distribution: Us'

L] mK’sl = OtK,S/‘K‘
Matrix - Fracture volume distribution:
® MK,s — OzK‘5|K|

& MK, = OCKJ‘K‘ Us

Fracture - Fracture volume distribution: ﬂ
® Mys = arr.s|(7|

|K| = mk + Z mk,s + Z MK, and lo] = ms + Z Mo,s-

sEVk o€ FxNFr sEVs

e The choice of mk s, ms - (fracture d.o.f.) has a large impact

e There is the good choice



Discrete problem | : convergent scheme

Given an approximation P® € Xp of the initial capillary pressure, find u*", uv*" € X3,
n=1,--- N, such that for o € {1,2} and for all v € X}

Sg,n _ Sg,n—l . . »
/tﬁm%ﬂpmvdx +/km(S'D;")/\mV7TTU N vdx
Q t o

Sg,n _ Sg,nfl
Jr/(i)fﬁﬂv, vdx + /k?(sg}")/\fvf'wm—ua‘" - Veyrrvdre =0,
r r

with P" = u¥" — 4®>" and
Sg;""(x) = S5 (x, ™0, P")
Sg}"(x) = Sg(x,ﬂ'pf P™).

Saturation at node s:

(sk.), . -(s2)
KeMs o€FsNFr




Discrete problem | : convergent scheme

The evolution terms can be written as follows

Atn Atn )
S2(p") — SE(p"~
" Z Srcrmic » k(p?) — Sk(p )vs

At
s€EVk

af. ny __ gaf. n—1
+ Z ¢KmK’JSK(pa) Sk(ps )VU

Atn
oceFkNFr

Sa,n o Sa,n—l Sa ny _ Sa n—1
/ Gm2Bm ODm e e mi K (Pk) — Sk(pk Vi
K

and
S5 (ps) — S5 (pst)
At

S2(p2) - S2 (pi
+ 3 Gomes (p. )At" (P70,
sEVs

Vo

a,n _ coa,n—1
/ " SD/ SD,
o

INT WD,Vde = ¢o‘ma




Main theoretical result

The following convergence result holds independently of nodal volume distribution

e The approximate phase pressure converge weakly to a weak solution (7*, 7°)
- Trau® ™) =T in L2(Q % (0, T)),
- g u® = 4 in L2(F x (0, T)).

e The approximate saturation converges strongly

-5 (k§> — Sa(@* — %) in L2(Q x (0, T)),

- S™ (k) ) = Sg(yat — @) in L2(Q x (0, T))



Discrete problem |1 : discrete fluxes

Let (nk)ke s (Mo)perr (11)sev be a FE nodal basis taking into account the
interpolated interface unknowns

e For each cell K and v € Vk U (Fk N Fr)
Fr.o(u) = / —Am(x)Vrru- Vn,dx
K

e For each fracture face 0 and s € V.,

Fos(u) = / —Nf(x)Vymru - VynsdTe

o




Discrete problem Il : VAG discretization with upwinding

Mass conservation for phase «:

Sa n _Sa n—1
g KPR =SRPIC) S~ e FR (um) =0,

Atn
1) vEVKU(FrNFk)
Sg (pg) - Sg(pg_ [e% e [eY n
mo‘¢o‘ Af" + Z ka (So',u,up)Fa,u(u ) = 07
vEV; UM L
S/ (ps) — Su(pe™Y)
Z mu,s¢u Atn
vEMU(FsNFT)
- > k(S8 s up) Fos(u™) = 0,
vEMgU(FsNFT)

The upwinding is defined by

Seup =S¢ if Feu(u™") >0,
Setup = Se if Feu(u™") <0.

§,v,up

KeM,

o € Fr,

seV\ Q.



Oil migration in a 2D random fracture network

We consider an oil migration in 2D porous media connected to the
e Large random network - about 1000 fractures.

e Permeability contrast A¢/Anm is set to 10%,10* or 10°.

Peml

Matrix
Fractures

Soil

0 20000 40000 60000 80000 100000
Pc (Pa)



Ratio Ar /A, = 102

Loading video...



reseauKfKm100.avi
Media File (video/avi)


Ratio As /A, = 10°

Loading video...



reseauKfKm100000.avi
Media File (video/avi)


Oil migration in a 3D heterogeneous basin, A, /As = 10°




Choice of nodal volumes

Let for all K € M )

card(Vk) + card(Fk N Fr) + 1

oK ~

VAG-1 VAG-2
s s
[ c =
K L
ak,s = ak forall s € Vk \ Vr ak,s = ak forall s € Vg
ak,s =0forall s e Ve N Vr ak,e = ak forall 0 € Fx N Fr

ak.s =0 forall o € Fr



Oil migration in a 3D heterogeneous basin

Loading video...



2intersections_15sec.avi
Media File (video/avi)


Comparison of VAG-1 and VAG-2: Convergence

Volume of oil in the matrix Volume of oil in the fractures
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Comparison of VAG-1 and VAG-2: Numerical behavior

Discretization properties:

Nbcens Nbpodes | Nberacr | linear system d.o.f.
47 670 8 348 1678 9 278
253 945 41 043 6 655 46 283
837 487 132 778 | 16 497 147 148
3 076 262 483 786 | 42 966 523 453
Numerical behavior:

Volumes NAt NChap NNeWto,, NGMRes CPU (S)
VAG-1 384 6 2.20 10.05 588
VAG-1 390 10 3.08 15.11 5 898
VAG-1 415 21 4.02 15.93 31 806
VAG-1 784 30 3.37 16.75 209 485
VAG-2 373 0 1.87 6.94 482
VAG-2 373 0 2.42 13.05 4 452
VAG-2 375 1 3.02 14.56 21 645
VAG-2 747 13 2.92 16.55 172 946




Perspectives and work in progress

Modeling
e Fractures as barriers (discontinuous pressure models)
e Geothermal flows
e Compositional flows
Numerical analysis
e Comparison with HFV discretization
e Extend the analysis to Gradient Scheme framework
e Higher order scheme for convection: implicit fractures - explicit matrix

Outlooks

e Go parallel
o Go multiscale



Thank you for your attention!



Relations to other methods

Why VAG is not P; FEM:
Use of interpolated face unknowns (generalized polyhedrons)
Algebraic elimination of cell unknowns
Mass lumping
Why VAG is not CVFE:
Multipoint fluxes, between cells and nodes only (no fluxes between nodes)

Flexible mass lumping (no mixing of heterogeneities)
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