
High Performance Computing in
LIA - UFC: Current Status and

Future Directions

João Marcelo Uchôa de Alencar

4th Workshop of HOSCAR Project

15-19 September, 2014
Gramado, RS, Brazil

2

Agenda

● About UFC
● Activities developed by UFC Team

– GREat

– ParGO

3

UFC

● Ceará
– Brazilian northeast state

– 9 millions inhabitants

– GDP: R$ 87,982 billions

● Federal University of Ceará
– Founded in 1954

– 42.443 students enrolled

– 8 campuses across the state (Fortaleza,
Quixadá, Sobral, ...)

– Recently elected the 13th best university in
Brazil by Folha de São Paulo

– Patent applications increased 766% from
2008-2009 to 2010-2011

4

UFC

 GREat
● Prof. Dra. Rossana M. C. Andrade
● Prof. Dr. José Neuman de Souza
● Prof. Dr. Fernando A. Mota Trinta
● Prof. Dr. Danielo Gomes
● Prof. Dr. Miguel Franklin
● Prof. Emanuel Ferreira Coutinho
● Dra. Carina Teixeira de Oliveira
● Ronaldo Lima
● Felipe Anderson Maciel
● Philipp B. Costa
● Deborah Maria Vieira Magalhães
● Prof. Paulo A. Leal Rego.
● Jefferson Ribeiro
● Renato Neto
● Igor do Carmo
● Samuel Soares

 ARIDA
● José Antônio Fernandes de Macedo
● Vinicius Pires

 ParGO
● Prof. Dr. Heron de Carvalho
● Prof. João Marcelo Uchôa Alencar
● Prof. Jefferson Silva
● Cenez Rezende
● Wagner Al-Alan
● Anderson Boettge
● Neemias Gabriel

UFC Team involved in HOSCAR

5

UFC

● LIA – UFC
– Is the global lab of the Computer Science Department

– www.lia.ufc.br

● GREat
– The Group of Computer Networks, Software Engineering, and Systems

– www.great.ufc.br

● ParGO
– Paralelism, Graphs and Otimization

– www.lia.ufc.br/~pargo

● CENAPAD-UFC
– National Center for Supercomputing – UFC

– www.cenapad.ufc.br, @cenapadufc

–

http://www.great.ufc.br/
http://www.lia.ufc.br/~pargo
http://www.cenapad.ufc.br/

6

UFC

LIA-UFC

GREat ParGO

CENAPAD-UFC

is part of is part of

is a user of

is a user of

7

CENAPAD-UFC

● Computational Cluster

– Cluster Bull
● 48 nodes, each with 12 cores e 24

GB RAM
● Total: 576 cores e 1152 GB RAM

– GPUs Nvidia
● 3 nodes, each also with 16 CPU

cores e 96 GB RAM
● 6 k20 boards

– Storage
● 145 TB

● Computational Cloud
– 5 nodes:

● Intel Core 2 Duo 2 cores and 2 GB RAM
(controller)

● 2x Intel Core i7 8 cores and 8 GB RAM

● Intel Xeon com 4 cores and 16 GB RAM

● Intel Xeon com 12 cores and 32 GB RAM

– Total: 34 cores and 66 GB RAM

– Toolkit: OpenNebula

● Mission
– To provide on-demand High Performance Computing (HPC) services to

universities, research institutes and other public or private instititutions

– It is a national center that focuses on meeting the needs of research groups in
the north and northeast.

– SINAPAD

8

GREat

● Improving end user interaction with HPC
resources

● Investigating future scenarios for Cloud
Computing
– HPC

– Cloud Infrastructure Resource Allocation

– Future Directions
● Mobility
● Security

9

GREat

a²c
● a²c – a web portal access to cluster
● Motivations

– Enable easy access to a variety of users with different needs

– Provide abstractions while retaining flexibility

– Work as an entry point where scheduling policies may be
applied without changing the underlying infrastructure

● INCT-MACC

10

a²c - Environment Overview

11

GREat

a²c
● Portals

– Generic: graphical interface to SLURM (resource
manager)

– NS3: network simulation tool

– NAMD: molecular simulation tool

12

13

a²c – Architectural Overview

14

GREat

Cloud for HPC
● Cluster and Cloud Integration

– Deploy cloud infrastructure at CENAPAD-UFC

– Enhance user experience with cloud resources

– If you have a powerful cluster, why do need a
private cloud?

15

● Cluster
– Server class processors

– Great memory per node

– Fast interconnect

– Low flexibility
● Many nodes, changing the configuration is not trivial
● There are devices with proprietary drivers that may not be updated

– Expensive to expand
● Hardware is available, but is expensive
● Blade architecture may require new chassis
● Infiniband expansion is not cheap

– Perfect tool for scientific computing

GREat

Cloud for HPC

16

● Private Cloud
– Server class and desktop class processors

– Less memory per core

– Ethernet

– High flexibility
● Virtualization allow different OS images to run in the same resource
● Virtual machines may be updated easily without changing the physical host

– Cheap expansion
● Commodity hardware
● Increasing the number of nodes is straightforward

– Not the best performance for scientific computing

GREat

Cloud for HPC

17

● Perfect scenario for the Cluster
– A researcher wants to run parallel distributed

applications with MPI
● Low latency demand
● Using the cloud would offer performance decrease due to

ethernet

GREat

Cloud for HPC

18

● Possible scenarios for the Cloud
– A researcher wants to run legacy applications or code developed by

himself/herself with specific requirements for number of processes,
operating system, compilers, libraries, etc

● Changing the cluster setup may not be simple. For example, incompatible libraries
versions

● With virtualization, it is possible to create a software environment identical to the
researcher's setting

– A researcher wants to execute serial code or multithread only, without MPI
● He/she is using CENAPAD for performance, but also for reliability (no-break,

redundant power, etc)
● Using the cluster may take nodes that would be better used by MPI applications
● Running serial or multithread only code on the cloud offers acceptable

performance

GREat

Cloud for HPC

19

● a²c Decision Module
– If cluster usage is high, but still with available nodes

● Send all new serial or multithread only jobs to the cloud

– If cluster queue is full
● Send all jobs (MPI or not) to the cloud. However, if available

nodes appear on the cluster, migrate MPI applications from
the cloud to the cluster. Migration must be supported by
application (for example, GROMACS)

– If cluster usage is low
● Send all jobs to the cluster

GREat

Cloud for HPC

20

● a²c Cluster and Cloud Integration
– It is still a work in progress, but from the preliminary data we can

see that the queueing time is reduced

– With more usage data, we expect to show that the overall
execution time is lower

– Conclusion: the cluster is faster, but the cloud is easier and
cheaper to expand and use, may increase the job throughtput and
decrease configuration time before running applications

● Future Work:
● Futher study the execution of MPI applications on the cloud
● Migration Strategies
● Create more portals according CENAPAD-UFC's users needs

GREat

Cloud for HPC

21

● Evaluation of software to set up a private/hybrid cloud
– OpenNebula, OpenStack, Eucalyptus, CloudStack

● Creation of virtual appliances for easier the deployment of cloud
applications

● Development of solutions to handle the heterogeneity of the data
center’s physical machines to achieve an homogeneous
performance (FairCPU architecture)

● Development of techniques to handle elasticity among different
cloud solutions and cloud datacenters (hybrid cloud)

● Performance evaluation of parallel applications to Big Data
– Hadoop, YARN

GREat

Cloud Infrastructure Resource Allocation

22

GREat

Cloud Infrastructure Resource Allocation

23

● Development of solutions to improve the performance of mobile
applications and reduce battery consumption
– Exploit cloud capabilities (storage and compute) through the

use of offloading techniques
– Orchestration of cloud services in private/local resources

(cloudlet concept) and public/remote resources
– Frameworks for Android and Windows Phone

● Study to improve the performance of private cloud infrastructure
for different workload behavior of mobile applications

● Handle mobility issues of such kind of application
– Handoff, loss of connectivity, mobile applications

● Handle QoS and SLA for mobile applications

GREat

Mobile Cloud Computing

24

● Data stored on the public cloud should be kept private
● The security requirements might be different

– The SLA negotiation should regard the customers needs
– The provider might cash in accordance with the defined security level

● SLA Violation
– The customers should identify if the SLA was violated
– The provider should use mechanisms to avoid a violation or to repair

after a violation
● How to assure the data privacy when they are stored or processed in the

cloud?
– The metrics related to the parameters should be measurable
– The negotiation can be automated

GREat

Cloud Security

25

● VIANA, N. P. ; Trinta, A. M. Fernando ; VIANA, J. R. M. ; ANDRADE, R. M. C. ; GARCIA, V. C. ;
ASSAD, R. E . . aCCounts: Um serviço de Tarifação de Recursos para Computação em
Nuvem. In: Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos
(SBRC), 2013, Brasília. XI Workshop de Computação em Clouds e Aplicações (WCGA) - SBRC
2013, 2013. p. 154-155.

● MACIEL, F. A. ; Cavalcante, M Tiago ; QUESADO NETO, J. ; de Alencar, J M. U. ; OLIVEIRA, C. T. ;
ANDRADE, R. M. C. . Uma Arquitetura Flexível para Submissão e Gerenciamento de jobs
em Infraestruturas Computacionais de Alto Desempenho. In: XI Workshop em Clouds e
Aplicações (WCGA) - SBRC, 2013, Brasília. 31º Simpósio Brasileiro de Redes de Computadores e
Sistemas Distribuídos, 2013.

● COUTINHO, E. F ; SOUSA, F. R. C. ; Gomes, Danielo G. ; de Souza, José Neuman . Elasticidade
em computação na nuvem: uma abordagem sistemática. In: Joni da Silva Fraga; Jacir Luiz
Bordim; Rafael Timóteo de Sousa Júnior; William Ferreira Giozza. (Org.). Livro de Minicursos do
XXXI Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos (SBRC). 1ed.Porto
Alegre: Sociedade Brasileira de Computação (SBC), 2013, v. , p. 215-258.

● COUTINHO, E. F ; REGO, P. A. L. ; GOMES, D.G. ; SOUZA, J. N . Métricas para Avaliação da
Elasticidade em Computação em Nuvem Baseadas em Conceitos da Física. In:
Workshop de Computação em Clouds e Aplicações, 2014, Florianópolis-SC. Anais do XII
Workshop de Computação em Clouds e Aplicações - WCGA 2014. Porto Alegre: Sociedade
Brasileira de Computação (SBC), 2014. p. 55-66.

GREat

Publications

26

ParGO

● Hash Component Model
● Hash Programming Environment (HPE)
● HPC STORM

27

ParGO

Hash Component Model

● “Separation of concerns (SoC) is a design principle
for separating a computer program into distinct
sections, such that each section addresses a
separate concern.”

– Philip Laplante - “What Every Engineer Should
Know About Software Engineering”

● A concern is a set of information that affects the
code of a computer program.

● A program build upon SoC is said to be modular.

28

● For HPC codes, some examples of concerns
– A piece of code that represents some meaningful calculation, for

example, a local matrix–vector multiplication

– A collective synchronization operation,which may be represented
by a sequence of send/recv operations;

– A set of non-contiguous pieces of code including debugging code
of the process;

– The identity of the processing unit where the process executes;

– The location of a process in a given process topology

ParGO

Hash Component Model

29

● Emerging large scale HPC applications from computational
sciences and engineering

– Software engineering requirements

– Collaborative environments

– Capability/capacity computing platforms

– World-wide scale collaboration and computation
● The Hash Component Model enables the development of

Component-Based High Performance Computing (CBHPC) applications

– The separation of concerns through process slicing

– Orthogonality between processes and concerns as units of
software decomposition

ParGO

Hash Component Model

30

Let A and B be n×n matrices and X and Y be vectors. It computes (A x X) · (B x Y)

Hash Example: Slicing a simple parallel program by concerns

31
Hash Example: Slicing a simple parallel program by concerns

32

● A component model for distributed-memory parallel
programs

● Units + overlapping composition + component kinds
A

B

C
D

ParGO

Hash Component Model

33

B

C
D

● A component model for distributed-memory parallel
programs

● Units + overlapping composition + component kinds
A

Inner components

ParGO

Hash Component Model

34

● A component model for distributed-memory parallel
programs

● Units + overlapping composition + component kinds

A

B

C
D

ParGO

Hash Component Model

35

● A component model for distributed-memory parallel
programs

● Units + overlapping composition + component kinds

A

B

C
D

ParGO

Hash Component Model

36

● A reference implementation of the Hash Component Model
– https://code.google.com/p/hash-programming-environment/

– Focus on cluster computing platforms

● Architecture: Front-End, Core and Back-End
● From the Front-End, programmers build new components by

composition of component contracts retrieved form the Core,
register them into the Core, and run applications in a parallel
computing platform through the Back-End service;

● The Core is a component catalog, with tuned implementations for
different application and execution platform contexts;

● When running an application, the Back-End looks at the Core for
the best implementation of a parallel component for the
architecture of the parallel computing platform it represents.

ParGO

Hash Programming Environment (HPE)

https://code.google.com/p/hash-programming-environment/

37

Front-End Core

Back-End Back-End Back-End

Thee disctinct
architectures of
parallel computing
platforms

component
catalog

application

component
contracts

HPE Conceptual View

38

Front-End Core

Back-End Back-End Back-End

Thee disctinct
architectures of
parallel computing
platforms

application

execute
application

(1)

resolve
contracts

(3)

component
contracts

provide
components

(2)

component
catalog

HPE Conceptual View

39

● How to define components (contracts) that specify two
things:
– The concern to be addressed

– The implementation assumptions about the execution context
● execution context = parallel computing platform + application
● goal: select the best component for each context

● For component reuse, the programmer details the
concern and the contextual parameters (Abstract
Component)
– HPE finds the closest concrete component available (actual code)

ParGO

Hash Programming Environment (HPE)

40

ParGO

Hash Programming Environment (HPE)

An abstract component signature with context parameters.

41

● Evaluation
– Implementing the NAS Parallel Benchmark (NPB) on HPE

– Programs implemented:
● FT, LU, SP and BT

– Problem Classes
● W and A

– Comparison between the Fortran code version translated to C# and a
Component-Based version

– Castanhão Cluster
● 16 nodes with 2 Intel Xeon 1.8 Processor
● 32 GB RAM Total
● Gigabit Ethernet
● GCC Compiler
● Mono 2.4

ParGO

Hash Programming Environment (HPE)

42
Decomposing SP and BT in Components

43

ParGO

Hash Programming Environment (HPE)

44

ParGO

Hash Programming Environment (HPE)

45

● Conclusions
– The Hash Component Model provides a better way for

code organization

– Overhead due to a component-based architecture may be
negligible

● Future Work
– Cloud architectures (see next...)

– Modeling other HPC applications:
● Map-Reduce Algorithms
● Graph Algorithms

ParGO

Hash Programming Environment (HPE)

46

ParGO

HPC Storm

cloudsHPC

components
HPC Storm is

HPC in clouds
through

components

CBHPC
 Hash

HPC in
clouds

CBSE
in

cloudsHPC
Storm

HPC applications

● computational sciences
● engineering
● …

47

● Services
– IaaS (infrastructure): comprising parallel computing platforms

– PaaS (platform): for developing components and applications that may
exploit the potential performance of these parallel computing platforms

– SaaS (software): built from components, for attending HPC users

● Stakeholders
– Domain Specialists

– Application Providers

– Component Developers

– Platform Maintainers

● Architecture
– Front-End, Core, Back-End

ParGO

HPC Storm

48

Front-End (SaaS)

providers
developers

specialists (final users)

Core (PaaS)

applications

Back-End (IaaS)

maintainers

components
built from

use
applications

build
applications

build
components

manage
infrastructure

parallel computing
platforms

includes

49

● Current Status
– A new Core enhanced with ontological resource description

for clouds components
● Phd Student: Wagner Al-Alam

● Ongoing Work
– A redesigned Front-End for the cloud, with support for

Workflows, Domain-Specific Languages, etc
● Phd Student: Jefferson Carvalho

– Back-End with support for component adaptation with
Elasticity, scale-out/scale-in virtual nodes

● Phd Student: João Marcelo

ParGO

HPC Storm

50

● de Carvalho-Junior, Francisco Heron ; REZENDE, C. A. . A case study on expressiveness
and performance of component-oriented parallel programming. Journal of Parallel and
Distributed Computing (Print), v. 73, p. 557-569, 2013.

● de Carvalho Junior, Francisco Heron ; REZENDE, C. A. ; SILVA, J. C. ; MAGALHAES, F. J. L. ;
JUACABA NETO, R. C. . On the Performance of Multidimensional Array Representations
in Programming Languages Based on Virtual Execution Machines. In: XVII Simpósio
Brasileiro de Linguagens de Programação, 2013, Brasília. Lecture Notes in Computer Science -
Proceedings of the XVII Brazilian Symposium on Programming Languages. Berlim: Springer,
2013. v. 8129. p. 31-45

● de Carvalho Junior, Francisco Heron ; Rezende, Cenez Araujo ; SILVA, J. C. ; Al-Alam, Wagner
. Contextual Abstraction in a Type System for Component-Based High Performance
Computing Platforms. In: XVII Simpósio Brasileiro de Linguagens de Programação, 2013,
Brasília. Lecture Notes in Computer Science - Proceedings of the XVII Brazilian Symposium on
Programming Languages. Berlim: Springer Berlin Heidelberg, 2013. v. 8129. p. 90-104.

● de Carvalho Junior, Francisco Heron ; Marcilon, T. B. . Derivation and Verification of Parallel
Components for the Needs of an HPC Cloud. In: XVI Simpósio Brasileiro de Métodos
Formais (SBMF'2013), 2013, Brasília. Lecture Notes in Computer Science - Proceedings of the
XVI Simpósio Brasileiro de Métodos Formais (SBMF'2013). Berlim: Springer, 2013. v. 8195. p.
51-66.

ParGO

Publications

51

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

