Fourth Brazil-France Workshop

On High Performance Computing and Scientific Data Management Driven by Highly Demanding Applications

#### Supporting in-silico Science with Data Management



Ciência, Tecnologia



Collaborations



Esther Pacitti (INRIA – LIRMM) Patrick Valduriez (INRIA – LIRMM) Reza Akbarinia (INRIA – LIRMM) José Antônio F. Macedo (UFC)



#### Outline

- DEXL + HOSCAR
- The Science Cockpit: Managing Science as Data
- Hypothesis as Data
- Group Presentation



#### FAPERJ-INRIA (Montpellier) Team Associé -2014 - 2016







#### **@HOSCAR - Gramado**







## DEXL - On going Projects





EXTREME DATA LAB



## Big-Data (in science) Data Challenges

- Data Representation
  - Different Data Models:
    - Data structure and query languages
    - Graphs, Matrixes, Key-Value,...
- Data Uncertainty
  - Data is uncertain
  - uncertainty quantification on data
- Data Partitioning
  - in sync with data processing
- Data Heterogeneity
  - Data Granularity



# Why to use Data Management in science (in HOSCAR) ??

- Big Data does not fit in memory
  - efficient data access in disk
  - various indexing available
  - efficient data transformation algorithms
- High level query languages
  - to uniformly analyse data
  - with "free" automatic algebraic optimization
- Enables Data Sharing
  - manage thousands of datasets
- Data Transparency
  - standardize the communication with different applications
    - visualization
    - analytics
    - reproducibility results / rerun jobs











#### in-silico science life-cycle





#### Research Lattice for the Human Cardio Vascular System





B. Gonçalves, F. Porto, SSDBM 2013





#### MODELLING -HYPOTHESIS-DRIVEN BIG DATA RESEARCH

These PhD: Bernardo Gonçalves



## Hypotheses in the Dark Energy Survey Project



#### • Phenomenon

- The universe is increasing its expansion acceleration
  - Discovered in 1998 during supernovae investigation
  - Supported by redshift observation of far away supernovae

#### Hypotheses

- A new behaviour, Dark Energy, pushes the acceleration
- The Universe density is not uniform
- Evidences
  - gravitational lenses
  - Galaxy clusters



## To make sense of Big Data we need models



[Peter Haas – Data is Dead without what-if models, PVLDB 2011]

 In new Big Data prediction analysis – identify first principles that guide predictions – deep vs shallow prediction



#### Hypothesis driven Big Data analysis



- Scientific Hypothesis a model for scientists' interpretation of a phenomenon;
- Science method prove falsifiable hypotheses
  - Popper, K. Conjectures and Refutations
- Big Data analytics hypotheses exploration
  - Can we probe the data to prove hypotheses?
  - How is the hypothesis related to the data?











- From the triangular equivalence, we derive that Hypothesis = Model = Data
- How can we infer data from Model?
  - hypothesis encoding

[Bernardo Gonçalves, Fabio Porto, PVLDB 2014]





![](_page_18_Picture_0.jpeg)

#### $\gamma$ -DB: Overall Picture

![](_page_18_Figure_2.jpeg)

![](_page_19_Figure_0.jpeg)

#### Hypothesis as Models

![](_page_19_Figure_2.jpeg)

![](_page_20_Picture_0.jpeg)

![](_page_20_Figure_1.jpeg)

Experimental Phase: OLTP

Peter Haas, Model-Data Ecosystem, PODS 2014

![](_page_20_Picture_4.jpeg)

## Hypothesis encoding: From OLTP to OLAP in hypothesis

![](_page_21_Picture_1.jpeg)

![](_page_21_Figure_2.jpeg)

- D: output simulation data
- H: Relational DB
- Y: U-relational DB

![](_page_21_Picture_6.jpeg)

#### Hypothesis as Data

![](_page_22_Figure_1.jpeg)

#### for k = 0:n; t = k \* dt; $v = -g^{*}t + v_{0};$ $s = -(g/2)^{*}t^{2} + v_{0}^{*}t + s_{0};$ $t_{plot}(k) = t;$ $v_{plot}(k) = v;$ $s_{plot}(k) = s;$ end

#### Law of free fall

 $v(t) = -gt + v_o$  $s(t) = -g/2 t^2 + v_o t + s_o$ 

If a body falls from rest, its velocity at any point is proportional to the time it has been falling.

|           |   |      | < .  |
|-----------|---|------|------|
| Free_Fall | t | V    | S    |
|           | 0 | 0    | 5000 |
|           | 1 | -32  | 4984 |
|           | 2 | -64  | 4936 |
|           | 3 | -96  | 4856 |
|           | 4 | -128 | 4744 |
|           |   |      |      |

**a**(t)

![](_page_22_Picture_6.jpeg)

#### Hypothesis as Data – DB Synthesis

![](_page_23_Figure_1.jpeg)

- Models
  - formalize hypotheses
  - equations establish a functional dependency between dimensions and parameters and predicting variables
    - eg: *g,t,vo -> v*
  - Derive a DB schema from DFs extracted from equations

![](_page_23_Picture_7.jpeg)

![](_page_24_Figure_0.jpeg)

#### Hypothesis as Data

• In the Free Fall example:

$$\begin{aligned} - & \sum_{1} = \{ \Phi \to g, v_{o}, s_{o} \\ g, v \to a \\ g, v_{o}, t, v \to v \\ g, v_{o}, s_{o}, t, v \to s \} \end{aligned}$$

• Observe that  $\Phi$  and  $\nu$  are epistemological variables referring to the phenomenon and the hypothesis, respectively;

![](_page_24_Picture_5.jpeg)

![](_page_25_Picture_0.jpeg)

#### Hypothesis as Data – schema

- $\Phi \rightarrow g, v_o, s_o$ 
  - defines the model parameters
  - It is expected to be violated reproducing the uncertainty in the model input;
  - Such uncertainty contributes to the quality of the hypothesis
- From  $\Sigma_1$ , the schema for predicting *a* under hypothesis h1 would be:

- h1 (<u>Φ, ν</u>, a)

 From Σ<sub>1</sub>, the input parameters are defined as: \*key violation

- h1\_input(**<u><b>Φ**</u>, **<b>g**, **v**<sub>0</sub>, **s**<sub>0</sub>)

![](_page_25_Picture_10.jpeg)

![](_page_26_Picture_0.jpeg)

#### Hypothesis as [Un]certain Data Uncertainty: 33% Uncertainty: 50% **INPUT\_H1** Φ g **S**<sub>0</sub> V<sub>0</sub> 32.2 32.2 32.2

Look for subset of attributes with the same uncertainty

![](_page_26_Picture_3.jpeg)

![](_page_27_Picture_0.jpeg)

#### C-Relation after ETL

|   | EXPLA    | NATIO | ON     | φ<br>1<br>1<br>1 | $\begin{array}{c c} v \\ 1 \\ 2 \\ 3 \end{array}$ | Conf<br>0.6<br>0.2<br>0.2 |    |
|---|----------|-------|--------|------------------|---------------------------------------------------|---------------------------|----|
| H | LINPUT   | tid   | $\phi$ | g                | v                                                 | 0   s                     | 0  |
|   |          | 1     | 1      | 32               | 0                                                 | 50                        | 00 |
|   |          | 2     | 1      | 32               | 1                                                 | 0 50                      | 00 |
|   |          | 3     | 1      | 32               | 2                                                 | 0 50                      | 00 |
|   |          | 4     | 1      | 32.2             | 0                                                 | 50                        | 00 |
|   |          | 5     | 1      | 32.2             | 1                                                 | 0 50                      | 00 |
|   |          | 6     | 1      | 32.2             | 20                                                | 0 50                      | 00 |
| H | 11_OUTPU | T[a]  | tid    | $ \phi $         | v                                                 | a                         |    |
|   |          |       | 1      | 1                | 1                                                 | -32                       | 2  |
|   |          |       | 2      | 1                | 1                                                 | -32                       | 2  |
|   |          | 3     | 1      | 1                | -32                                               | 2                         |    |
|   |          |       | 4      | 1                | 1                                                 | -32                       | 2  |
|   |          |       | 5      | 1                | 1                                                 | -32                       | 2  |
|   |          |       | 6      | 1                | 1                                                 | -32                       | 2  |

![](_page_27_Picture_3.jpeg)

\_

![](_page_28_Picture_0.jpeg)

#### **Uncertainty Introduction**

- Y\_DB is a probabilistic database [D. Suciu et al, Probabilistic Databases, 2011]
  - a Y-relation includes certain and conditional columns;
  - a conditional column is a pair  $(V_i, D_i)$ , where  $V_i$  is a random variable and  $D_i$  is one of its possible values;
  - ex:
    - Create table Y\_g as select U\_phi, U\_g

from (**repair key** phi in (select phi, g , **count(\*)** as Fr from INPUT\_H1 **group by** phi, g **weight by Fr**) as U

![](_page_28_Picture_8.jpeg)

![](_page_29_Picture_0.jpeg)

#### **Uncertain in** $g \Rightarrow Input_H1(g)$

![](_page_29_Figure_2.jpeg)

- Create table Y\_g as select U\_phi, U\_g
  - from (repair key phi in (select phi, g , count(\*) as Fr from INPUT\_H1 group by phi, g weighted by Fr) as U

| Y_g | Φ | V-> D  | g    |
|-----|---|--------|------|
|     | 1 | x₁ → 1 | 32   |
|     | 1 | x₁ → 2 | 32.2 |

![](_page_29_Picture_6.jpeg)

![](_page_30_Picture_0.jpeg)

## Uncertainty propagation

- $\Sigma_1$  defines a graph of uncertainty propagation:
  - parameters uncertainty on their data
  - predicting variables parameter, model

![](_page_30_Figure_5.jpeg)

# Synthesizing Prediction as a query

- as  $g, V \longrightarrow a$  in  $\Sigma_1$ , we can predict a as a query on uncertain relations Y\_g and Y\_R
  - create table Y1\_a as select H.phi, H.upsilon, H.a from H1\_OUTPUT\_a as H, Y\_R as R, Y1\_g as G, (select min(tid) as tid, phi, g from H1\_INPUT group by phi, g) as U

where H.tid=U.tid and G.phi=U.phi and G.g=U.g

and H.phi=R.phi and H.upsilon=R.upsilon

![](_page_31_Picture_5.jpeg)

![](_page_32_Picture_0.jpeg)

#### Predicted Y-DB relation Y[a]

![](_page_32_Figure_2.jpeg)

![](_page_32_Figure_3.jpeg)

![](_page_33_Picture_0.jpeg)

#### Upsilon-DB for Free-Fall

| $W_{-}$ | $V \mapsto D$   | Pr |
|---------|-----------------|----|
|         | $x_1 \mapsto 1$ | .6 |
|         | $x_1 \mapsto 2$ | .2 |
|         | $x_1\mapsto 3$  | .2 |
|         | $x_2 \mapsto 1$ | .5 |
|         | $x_2 \mapsto 2$ | .5 |

| Y[Exp] | $V \mapsto D$   | $\phi$ | v |
|--------|-----------------|--------|---|
|        | $x_1 \mapsto 1$ | 1      | 1 |
|        | $x_1 \mapsto 2$ | 1      | 2 |
|        | $x_1 \mapsto 3$ | 1      | 3 |

| Y1[g] | $V \mapsto D$   | $\phi$ | $\boldsymbol{g}$ |
|-------|-----------------|--------|------------------|
|       | $x_2 \mapsto 1$ | 1      | 32               |
|       | $x_2 \mapsto 2$ | 1      | 32.2             |

| Y1[a] | $V_1 \mapsto D_1$ | $V_2 \mapsto D_2$ | $\  \phi$ | v | a     |
|-------|-------------------|-------------------|-----------|---|-------|
|       | $x_1 \mapsto 1$   | $x_2 \mapsto 1$   | 1         | 1 | -32   |
|       | $x_1 \mapsto 1$   | $x_2 \mapsto 2$   | 1         | 1 | -32.2 |
|       |                   |                   |           |   |       |
| Y[a]  | $V_1 \mapsto D_1$ | $V_2 \mapsto D_2$ | $ \phi $  | v | a     |
|       | $x_1 \mapsto 1$   | $x_2 \mapsto 1$   | 1         | 1 | -32   |
|       | $x_1 \mapsto 1$   | $x_2 \mapsto 2$   | 1         | 1 | -32.2 |
|       | $x_1 \mapsto 2$   | -                 | 1         | 2 | 0     |
|       | $x_1 \mapsto 3$   | -                 | 1         | 3 | 0     |

![](_page_33_Picture_6.jpeg)

![](_page_34_Picture_0.jpeg)

#### **Competing hypotheses**

![](_page_34_Figure_2.jpeg)

![](_page_34_Picture_3.jpeg)

![](_page_35_Figure_0.jpeg)

#### **Predictive analytics**

- What is the value of v in time=100 for hypothesis=1 and how confident we are about that value?
- What is the average velocity among hypotheses {1,2} between time 100 and 150?

![](_page_35_Picture_4.jpeg)

![](_page_36_Figure_0.jpeg)

#### Final Remarks

- Y-DB is an innovative approach for Big Data management;
  - Reflects Hypothesis as data principle
  - Is formal and guards equivalence between data and models
  - Models uncertainty in the model and in the data
  - must be extended
    - to cope with observation validation (Bayesian Model)
    - to support multidimensional representation
  - read our paper at VLDB 2014  $\ensuremath{\textcircled{}}$

![](_page_36_Picture_10.jpeg)

#### DEXL Team @HOSCAR

![](_page_37_Picture_1.jpeg)

Dr Ramon G. Costa UFLA ramongomescosta@gmail.com

PhD Std. Bernardo Gonçalves (bgonc@lncc.br)

![](_page_37_Picture_4.jpeg)

MSc Std Amir Khatibi (amir.khatibi.m@gmail.com)

![](_page_37_Picture_6.jpeg)

MSc std Hermano Lustosa (hllustosa@gmail.com)

![](_page_37_Picture_8.jpeg)

PhD std Daniel Gaspar (gaspar@lncc.br)

![](_page_37_Picture_10.jpeg)

PhD Std Vinicius F. Pires (UFC) (vpires@Incc.br)

![](_page_37_Picture_12.jpeg)

![](_page_38_Picture_0.jpeg)

#### Obrigado !ⓒ http://dexl.lncc.br

![](_page_38_Picture_2.jpeg)

![](_page_38_Picture_3.jpeg)

![](_page_38_Picture_4.jpeg)

![](_page_39_Picture_0.jpeg)

#### Physiome Project Hypotheses http://www.physiome.org/jsim/docs/MML Intro.html.

| 1 Steady-sate effects on vessel diameter in response 1 113 | 1 |
|------------------------------------------------------------|---|
| to change in intraluminal pressure. 1 186                  | 1 |
| 2 Dynamics of vessel diameter in response to pul-<br>2 60  | 1 |
| satile intraluminal pressure. 2 89                         | 1 |

| HYPOTHESIS | υ                    | Name                                                       | Pub         | Data        | Description                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------|----------------------|------------------------------------------------------------|-------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | 60                   | Myogenic_Compliant_Vessel                                  | N           | N           | This model simulates the flow through a passive and actively respond-                                                                                                                                                                                                                                                                                                                                                                      |
|            |                      |                                                            |             |             | ing vessel driven by a sinusoidal pressure input.                                                                                                                                                                                                                                                                                                                                                                                          |
|            | 89                   | Myo_Dyn_Resp_wFit                                          | N           | Y           | This model describes the dynamic response of a vessel after a step                                                                                                                                                                                                                                                                                                                                                                         |
|            |                      |                                                            |             |             | increase in intraluminal pressure.                                                                                                                                                                                                                                                                                                                                                                                                         |
|            | 113 Vessel_Mechanics |                                                            |             |             | This model describes how a microvessel responds to changes in intra-                                                                                                                                                                                                                                                                                                                                                                       |
|            |                      |                                                            |             |             | luminal pressure in the steady state. This change in vessel diameter to                                                                                                                                                                                                                                                                                                                                                                    |
|            |                      |                                                            |             |             | pressure is known as the myogenic response.                                                                                                                                                                                                                                                                                                                                                                                                |
|            | 186                  | Regulatory_Vessel                                          | Y           | Y           | This model describes the steady state regulatory vessel response to                                                                                                                                                                                                                                                                                                                                                                        |
|            |                      |                                                            |             |             | changes in pressure across and shear stress on the vessel wall.                                                                                                                                                                                                                                                                                                                                                                            |
|            | 89<br>113<br>186     | Myo_Dyn_Resp_wFit<br>Vessel_Mechanics<br>Regulatory_Vessel | N<br>N<br>Y | Y<br>Y<br>Y | This model describes the dynamic response of a vessel after a st<br>increase in intraluminal pressure.<br>This model describes how a microvessel responds to changes in intr<br>luminal pressure in the steady state. This change in vessel diameter<br>pressure is known as the myogenic response.<br>This model describes the steady state regulatory vessel response<br>changes in pressure across and shear stress on the vessel wall. |

![](_page_39_Picture_4.jpeg)

![](_page_40_Figure_0.jpeg)

 $\Sigma_{89} = \{ \phi \rightarrow$  C1a C1p C2a C2p C3a Cglobal Cmyo Dp100 Pc t\_delta t\_max t\_min taua taud,  $\phi v t \rightarrow \text{DelP},$ C1a C1p C2a C2p C3a Cglobal Cmyo Dp100 Pc  $\upsilon \rightarrow$  Dc, Dc Pc  $v \rightarrow$  Tc, Cglobal Cmyo Dc Pc  $\upsilon \rightarrow$  Ac,  $Dc v \rightarrow D_t_min$ , Ac  $v \rightarrow A\_t\_min$ , DelP Pc  $v \rightarrow P$ .  $\mathsf{D} \mathsf{P} v \to \mathsf{T}$ , A C1a C1p C2a C2p C3a Dp100 P T  $\upsilon \rightarrow$  Ttarget, Cglobal Cmyo D P  $\upsilon \rightarrow$  Atarget, D\_t\_min DcT Tc Ttarget t taud  $v \rightarrow D$ , A\_t\_min Atarget t taua  $v \rightarrow A$  }.  $\Sigma'_{89} = \{ \phi \rightarrow C1a C1p C2a C2p C3a Cglobal Cmyo$ Dp100 Pc t\_delta t\_max t\_min taua taud,  $\phi \upsilon \rightarrow A\_t\_min Ac D\_t\_min Dc Tc,$  $\phi v t \rightarrow A$  Atarget D DelP P T Ttarget }.

![](_page_40_Picture_2.jpeg)

![](_page_41_Picture_0.jpeg)

#### Synthesized relations from $\boldsymbol{\Sigma}$

| H89_KEY1                                              | $\phi$ | tid       | C1a            | C1p            | C2a       | C2p                   | C3a                | a Cglobal                      | Cmy                            | o Dp100                                                       | Pc       | t_delta | a   t         | _max         | t_min   | taua    | taud        |         |         |             |
|-------------------------------------------------------|--------|-----------|----------------|----------------|-----------|-----------------------|--------------------|--------------------------------|--------------------------------|---------------------------------------------------------------|----------|---------|---------------|--------------|---------|---------|-------------|---------|---------|-------------|
|                                                       | 2      | 1 2       | 2.306<br>1.965 | 1.043<br>4.924 | 0.91 0.91 | 8.293<br>18.530       | 0.37               | 74 15.97 38.<br>74 15.121 35.6 |                                | $ \begin{array}{cccc} 9 & 156.4 \\ 87 & 156.992 \end{array} $ | 60<br>50 | 0.1     |               | 500<br>500   | 0 60    |         | 1<br>9.034  |         |         |             |
|                                                       |        |           |                |                |           |                       |                    |                                | .                              | 00 1                                                          | 0.01     |         | 000 1         | ÷ 1          |         | 1 0.001 |             |         |         |             |
| H89_KEY2 φ υ tid A_t_min Ac D_t_min                   |        |           |                |                |           |                       | Dc 97.057 0        | Tc                             |                                |                                                               |          |         |               |              |         |         |             |         |         |             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |        |           |                |                |           |                       |                    |                                | 388                            |                                                               |          |         |               |              |         |         |             |         |         |             |
| H89_KEY3                                              | φ      | v tid t A |                | Atarget        |           | D                     | D                  | elP                            | Р                              |                                                               | т        |         | Ttarget       |              |         |         |             |         |         |             |
|                                                       | 2      | 89        | 1              | 0              | 0.2710    | 028407679             | 7991 0.27100284077 |                                | )77                            | 97.0568250529                                                 | (        | 0       | 60            | 0.388        | 1953736 | 24 0.   | 38819537272 |         |         |             |
|                                                       | 2      | 89        | 1              | 0.1            | 0.2710    | 02840768              | 531                | 0.271002841                    | 40                             | 97.0568250735                                                 |          | 0       | 60            | 0.388        | 1953737 | )7   0. | 38819537296 |         |         |             |
|                                                       | 2      | 89        | 1              | 0.2            | 0.2710    | 271002840770027 0.271 |                    | 0.271002840770027 0.2          | .271002840770027 0.27100284192 | 0770027 0.2710028                                             |          | 92      | 97.0568250906 | 0568250906 0 | 0       | 60      | 0.388       | 1953737 | 75   0. | 38819537315 |
|                                                       |        |           |                |                |           |                       |                    |                                |                                | •••                                                           | -        | ••      | •••           |              | • • •   |         |             |         |         |             |
|                                                       | 2      | 89        | 2              | 0              | 0.2167    | 406640959             | 983                | 0.216740664                    | 096                            | 116.3278134698                                                | 3   (    | 0       | 50            | 0.387        | 7274901 | 26 0.3  | 87727492846 |         |         |             |
|                                                       | 2      | 89        | 2              | 0.01           | 0.2167    | 16740664095982        |                    | 2 0.2167406640                 |                                | 116.3278134689                                                |          | 0       | 50            | 0.387        | 7274901 | 23 0.3  | 87727492837 |         |         |             |
|                                                       | 2      | 89        | 2              | 0.02           | 0.2167    | 40664095              | 979                | 0.216740664060                 |                                | 116.3278134680                                                |          | 0       | 50            | 0.387        | 7274901 | 20 0.3  | 87727492828 |         |         |             |
|                                                       |        |           |                |                |           |                       |                    |                                |                                |                                                               | -        | ··      | • • •         |              |         |         |             |         |         |             |

![](_page_41_Picture_3.jpeg)

![](_page_42_Picture_0.jpeg)

## Computing the Uncertainty in D

| Y[Exp]  |    | $V \mapsto D$<br>$z_1 \mapsto 1$                | $\phi$ | 0 U<br>60                  |               |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                           |                |                              |     |
|---------|----|-------------------------------------------------|--------|----------------------------|---------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------|------------------------------|-----|
|         | x  | $r_1 \mapsto 2$                                 | 2    2 | 89                         |               | W       | $V \mapsto$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | D                                                                         | Pri            | or Pos                       | st. |
| Y89[tic | i] | $V \mapsto h$<br>$x_2 \mapsto$<br>$x_2 \mapsto$ | D 0    | $\phi = v$<br>2 89<br>2 89 | tid<br>1<br>2 |         | $x_1 \vdash x_1 \vdash x_2 $ | <pre>&gt; 1 &gt; 2 &gt; 1 &gt; 1 &gt; 1 &gt; 1 &gt; 1 &gt; 1 &gt; 2</pre> | .5<br>.5<br>.5 | 0 0<br>0 1<br>0 .30<br>0 .69 | 4   |
| Y[D]    | φ  | v                                               | tid    | t                          |               | D       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pric                                                                      | or             | Posterio                     | r   |
|         | 2  | 60                                              | 1      | 14.8                       | 194.99        | 6792066 | 6637                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .5                                                                        | 0              | .000                         | - · |
|         | 2  | 89                                              | 1      | 14.8                       | 97.056        | 8250956 | 5827                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .2                                                                        | 5              | .304                         |     |
|         | 2  | 89                                              | 2      | 14.8                       | 116.32        | 7813203 | 3282                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .2                                                                        | 5              | .696                         |     |
|         | 2  | 60                                              | 1      | 30.5                       | 195.68        | 4170988 | 3267                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .5                                                                        | 0              | .000                         |     |
|         | 2  | 89                                              | 1      | 30.5                       | 97.056        | 8250767 | 7574                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .2                                                                        | 5              | .304                         |     |
|         | 2  | 89                                              | 2      | 30.5                       | 116.32        | 7813337 | 7087                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .2                                                                        | 5              | .696                         |     |
|         | 2  | 60                                              | 1      | 43.7                       | 195.28        | 3917333 | 5101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .5                                                                        | 0              | .000                         |     |
|         | 2  | 89                                              | 1      | 43.7                       | 97.056        | 825073  | 539                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .2                                                                        | 5              | .304                         |     |
|         | 2  | 89                                              | 2      | 43.7                       | 116.32        | 7813382 | 2024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .2                                                                        | 5              | .696                         |     |

![](_page_42_Picture_3.jpeg)

![](_page_43_Picture_0.jpeg)

### Managing a Research

- Different Hypotheses maybe raised;
- Ranking Hypotheses
  - Hypothesis information Capacity

![](_page_43_Picture_5.jpeg)

#### Research Lattices – structure hypotheses of a phenomenon

![](_page_44_Figure_1.jpeg)

[B. Gonçalves, F. Porto, Research Lattices, AMW 2013]

![](_page_44_Picture_3.jpeg)

![](_page_45_Figure_0.jpeg)

#### **Research Lattices**

- Each Node is a hypotheses
- Given two hypotheses h1 and h2, in a R.L., if h1 ≥ h2 then h1 shows greater predictive capacity than h2;
  - capacity, similar to view capacity [Ullman
- *Top* corresponds to all knowledge of a domain;
- Bottom is the empty representation of lack of knowledge;

![](_page_45_Picture_7.jpeg)

![](_page_46_Picture_0.jpeg)

#### **Research Lattice: Acceleration**

![](_page_46_Figure_2.jpeg)

![](_page_47_Picture_0.jpeg)

#### **Research lattice Operations**

- Add/delete hypotheses
  - consistently keep the partial ordering;
  - automatic placement of hypotheses in the RL
- Querying
  - finding hypotheses based on "Free Fall" hypothesis
  - find competing hypotheses wrt "Dark Energy"
     Hypothesis

![](_page_47_Picture_8.jpeg)

![](_page_48_Figure_0.jpeg)

#### Sum up

- Research Lattice enables a formal yet bound representation of a research domain
- Different Hypotheses order according to their predictive capacity.

![](_page_48_Picture_4.jpeg)