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High Performance Computing

Weather forecast, seismic simulations, DNA sequencing, …

… they need to access and write data to files that are 
shared by all processes.



Parallel File Systems

● Allow the access to shared files by all processing nodes

● Parallel access to data (focus on high performance)

● Transparent access: applications do not need to know 

where the file is

● Examples: Lustre, PVFS (OrangeFS)
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Performance Issues

● Some access patterns are known to present 

poor performance:

● Small and sparse accesses

● Small files, large number of files

● “Out-or-order” accesses (by offset order)

● Accesses not aligned with the stripe size

● Concurrency on the access

● ...



I/O Optimizations

● Several techniques try to adapt the 

applications' access patterns to improve 

performance.

● Collective I/O

● Requests reordering and aggregation

● I/O forwarding and offloading

● ...



Example: I/O Scheduling

● Applications access concurrently the shared 

file system infrastructure

● I/O Scheduling: schedule requests to the file 

system in order to minimize interference
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I/O Scheduling
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AGIOS

● I/O Scheduling Library developed in our 

research group

● Easily included in parallel file systems

● aIOLi algorithm for scheduling



AGIOS



Application-aware

● The file system servers do not have information 

about the application

● Information is lost on the I/O stack

● Optimizations could be smarter with 

information about access patterns



AGIOS

● AGIOS = Application-guided I/O Scheduler

● Include information about the application on the 

scheduler

● Through traces from previous executions

● Use information to guide the scheduler's choices

● Wait for incoming requests in order to aggregate 

more

[Boito et al. 2013]



AGIOS – Performance Improvements

● Aggregations ~21% bigger
 

● Performance improvements of ~25% on average

● Over the base scheduling algorithm (aIOLi) 

● 46.3% on average over not using the scheduler

[Boito et al. 2013]



I/O Optimizations

● Several optimizations, like the scheduler, work 

on the assumption that contiguous accesses 

are better than non-contiguous. 

● Developed for hard disks

● Seek costs



Solid State Drive (SSD)

● Non-volatile flash-based (mostly) storage

● No moving components 

● more resistance to physical shocks

● less noise

● less heat dissipation

● less energy consumption

● Difference between sequential and random 

accesses becomes less important



Sequential to Random Ratio

Read Ratio Write Ratio

HDD 143.7 66.8

SSD
1

11.0 3.1

SSD
2

9.2 328.0

SSD
3

2.4 151.6

SSD
4

1.1 1.3

SSD
5

3.2 1.5

Table from 
[Rajimwale, Prabhakaran and Davis 2009]

● The sequential to random 

access time ratio is not 

always smaller on SSDs 

than on HDDs

● We cannot easily make 

assumptions about their 

performance



Ongoing Research @ GPPD

● Storage devices profiling

● Use information about the devices in order to 

select optimizations that will improve 

performance



Ongoing Research @ GPPD

● Hybrid storage infrastructures

● Larger, slower devices for storage space

● Smaller, faster devices for access speed

● Management is done by the file system



Final Remarks



 Final Remarks 

● I/O is an important issue on the path to exascale

● Applications have their performance impaired by I/O 

operations

● Performance depends on the access pattern

● Several optimizations try to adjust the access 

pattern



 Final Remarks 

● With new technologies, assumptions on 

devices' performance cannot be easily made

● All layers benefit from more information in 

order to make better decisions
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AGIOS – Performance Improvements
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aIOLi scheduling algorithm
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aIOLi scheduling algorithm
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