
I/O Research @ 
GPPD UFRGS

Francieli Zanon Boito
Rodrigo Virote Kassick

Philippe O. A. Navaux
Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil

Yves Denneulin
INRIA – LIG - University of Grenoble, France



High Performance Computing

Weather forecast, seismic simulations, DNA sequencing, …

… they need to access and write data to files that are 
shared by all processes.



Parallel File Systems

● Allow the access to shared files by all processing nodes

● Parallel access to data (focus on high performance)

● Transparent access: applications do not need to know 

where the file is

● Examples: Lustre, PVFS (OrangeFS)



Parallel File Systems

File System

Meta-data Server

Data Server

Client

Data Server Data Server



Data Striping

Data Server Data Server Data Server

File

Data striping



Data Striping

Data Server Data Server Data Server

File

0 21

3

Data striping



Parallel Access

Data Server Data Server Data Server

Client

Parallel Access

File?



Parallel Access

Data Server Data Server Data Server

Client

0
21

3

Parallel Access



Parallel Access

Data Server Data Server Data Server

Client

0
21

3

File

Parallel Access



Performance Issues

● Some access patterns are known to present 

poor performance:

● Small and sparse accesses

● Small files, large number of files

● “Out-or-order” accesses (by offset order)

● Accesses not aligned with the stripe size

● Concurrency on the access

● ...



I/O Optimizations

● Several techniques try to adapt the 

applications' access patterns to improve 

performance.

● Collective I/O

● Requests reordering and aggregation

● I/O forwarding and offloading

● ...



Example: I/O Scheduling

● Applications access concurrently the shared 

file system infrastructure

● I/O Scheduling: schedule requests to the file 

system in order to minimize interference



I/O Scheduling

Server

Application A

Client 0

Client 1

Client 2

Application B

Client 3

Client 4 File A File B

A0A1A2

B0B1

Concurrent access



I/O Scheduling

Server

Application A

Client 0

Client 1

Client 2

Application B

Client 3

Client 4 File A File B

A0A1A2

B0B1

A0A1A2 B0B1

Access pattern at the 
server does not present 
good performance

Interference



I/O Scheduling

Server

File A File B

A0A1A2 B0B1

A0A1A2B0B1The 
scheduler 
improves 
performance 
through 
requests 
reordering 
and 
aggregation



I/O Research 
@ GPPD UFRGS



AGIOS

● I/O Scheduling Library developed in our 

research group

● Easily included in parallel file systems

● aIOLi algorithm for scheduling



AGIOS



Application-aware

● The file system servers do not have information 

about the application

● Information is lost on the I/O stack

● Optimizations could be smarter with 

information about access patterns



AGIOS

● AGIOS = Application-guided I/O Scheduler

● Include information about the application on the 

scheduler

● Through traces from previous executions

● Use information to guide the scheduler's choices

● Wait for incoming requests in order to aggregate 

more

[Boito et al. 2013]



AGIOS – Performance Improvements

● Aggregations ~21% bigger
 

● Performance improvements of ~25% on average

● Over the base scheduling algorithm (aIOLi) 

● 46.3% on average over not using the scheduler

[Boito et al. 2013]



I/O Optimizations

● Several optimizations, like the scheduler, work 

on the assumption that contiguous accesses 

are better than non-contiguous. 

● Developed for hard disks

● Seek costs



Solid State Drive (SSD)

● Non-volatile flash-based (mostly) storage

● No moving components 

● more resistance to physical shocks

● less noise

● less heat dissipation

● less energy consumption

● Difference between sequential and random 

accesses becomes less important



Sequential to Random Ratio

Read Ratio Write Ratio

HDD 143.7 66.8

SSD
1

11.0 3.1

SSD
2

9.2 328.0

SSD
3

2.4 151.6

SSD
4

1.1 1.3

SSD
5

3.2 1.5

Table from 
[Rajimwale, Prabhakaran and Davis 2009]

● The sequential to random 

access time ratio is not 

always smaller on SSDs 

than on HDDs

● We cannot easily make 

assumptions about their 

performance



Ongoing Research @ GPPD

● Storage devices profiling

● Use information about the devices in order to 

select optimizations that will improve 

performance



Ongoing Research @ GPPD

● Hybrid storage infrastructures

● Larger, slower devices for storage space

● Smaller, faster devices for access speed

● Management is done by the file system



Final Remarks



 Final Remarks 

● I/O is an important issue on the path to exascale

● Applications have their performance impaired by I/O 

operations

● Performance depends on the access pattern

● Several optimizations try to adjust the access 

pattern



 Final Remarks 

● With new technologies, assumptions on 

devices' performance cannot be easily made

● All layers benefit from more information in 

order to make better decisions



I/O Research @ 
GPPD UFRGS

Francieli Zanon Boito
Rodrigo Virote Kassick

Philippe O. A. Navaux
Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil

Yves Denneulin
INRIA – LIG - University of Grenoble, France



AGIOS – Performance Improvements

0

5

10

15

small large small large
contiguous non-contigous

0

1

2

3

4

5

write

read

AGIOS (base) AGIOS + predict

-0.1%
32%

-5%

31%

35%

24%

30%
17%

15%
13%

28% 34%

19% 22%

[Boito et al. 2013]



aIOLi scheduling algorithm

R0
0

R1
0

R2
128K

R3
0

R4
32K

Requests of 32KB
offset

Step 1

[Lebre et al. 2006]



aIOLi scheduling algorithm

Step 1

R0
0

R1
0

R2
128K

R3
0

R4
32K File 1

File 2

File 3

Sort requests by 
type, offset and 
insert in queue



aIOLi scheduling algorithm

Step 1

R0
0

R1
0

R2
128K

R3
0

R4
32K File 1

File 2

File 3

Quantum = 0
Q=0 Q=0 Q=0

Q=0

Q=0



aIOLi scheduling algorithm

Step 1

R0
0

R1
0

R2
128K

R3
0

R4
32K File 1

File 2

File 3

Perform 
aggregations Q=0 Q=0

Q=0

Q=0



aIOLi scheduling algorithm

Step 1

R0
0

R1
0

R2
128K

R3
0

R4
32K File 1

File 2

File 3

Quanta are 
increased by a 
fixed value

Q=32K Q=32K

Q=32K

Q=32K



aIOLi scheduling algorithm

Step 1

R0
0

R1
0

R2
128K

R3
0

R4
32K File 1

File 2

File 3

Q=32K Q=32K

Q=32K

Q=32K

Select request

- by offset order
- FIFO between 
queues
- quantum is large 
enough for the 
request size



aIOLi scheduling algorithm

Step 1

R0
0

R2
128K

R3
0

R4
32K File 1

File 2

File 3

Q=32K Q=32K

Q=32K

R1
0

Execution



aIOLi scheduling algorithm

Step 2

R0
0

R2
128K

R3
0

R4
32K File 1

File 2

File 3

Q=32K Q=32K

Q=32K

R1
0

Execution

R5
160K



aIOLi scheduling algorithm

R0
0

R2
128K

R3
0

R4
32K File 1

File 2

File 3

Q=32K Q=32K

Q=32K

R1
0

Execution

R5
160K

Step 2



aIOLi scheduling algorithm

R0
0

R2
128K

R3
0

R4
32K File 1

File 2

File 3

Q=32K Q=32K

Q=32K

R1
0

Execution

R5
160K

Step 2



aIOLi scheduling algorithm

R0
0

R2
128K

R3
0

R4
32K File 1

File 2

File 3

Q=64K Q=64K

Q=64K

R1
0

Execution

R5
160K

Step 2



aIOLi scheduling algorithm

R0
0

R2
128K

R3
0

R4
32K

File 1

File 2

File 3

Q=64K

Q=64K

R1
0

Execution

R5
160K

Step 2



aIOLi scheduling algorithm

File 1

File 2

File 3

Execution

...


	Slide 1
	Slide 2
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

