Fourth Brazil-France Workshop On High Performance Computing and Scientific Data Management Driven by Highly Demanding Applications

Recent Advances in High Performance Computing for Multiphysics Problems

Alvaro Coutinho alvaro@nacad.ufrj.br

High Performance Computing Center COPPE/Federal University of Rio de Janeiro www.nacad.ufrj.br

15-18 September, **2014** Gramado, Brazil

Contents

- **□** First things first: Who we are and what we do!
- **A Few Words on Benchmarking**
- Multiphysics and Multiscale
 - Example Computations
 - Algorithms and Simulation Software
 - Adaptive Mesh Refinement and Coarsening

Pushing the limits

- Parallel Mesh Generation
- Exploring the Stochastic Space
- **D** Final Remarks and Discussion

First things first

WHO WE ARE AND WHAT WE DO

COPPE/UFRJ Innovation Ecosystem

COPPE - FEDERA

Intel® Parallel Computing Centers

HPC Center Systems

NetApp Storage 100TB

Dell's Tiled Wall Display

NACAD's Schedule on HOSCAR

App Track

- Multiphysics (me)
- Unstructured CFD Apps
 - on Xeon Phi (Elias)

- Regular Stencil Apps
 - (Seismic) on Xeon Phi

(Costa)

Scientific Workflows

Track

- Iterations on UQ
 - (Mattoso)

Gateways (Horta)

– Adaptive Techniques

A FEW WORDS ON BENCHMARKING

Brazil in TOP500 List¹, Jun 2014

Rank	Site	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)
95	SENAI/CIMATEC Brazil	CIMATEC01 - SGI ICE X, Intel Xeon E5-2690v2 10C 3GHz, Infiniband FDR SGI	17,200	405.4	412.8	
190	Petróleo Brasileiro S.A Brazil	Grifo04 - Itautec Cluster, Xeon X5670 6C 2.930GHz, Infiniband QDR, NVIDIA 2050 Itautec	17,408	251.5	563.4	365.5
231	INPE (National Institute for Space Research) Brazil	Tup - Cray XE6, Opteron 6172 12C 2.10GHz, Cray Gemini interconnect Cray Inc.	31,104	214.2	261.3	
380	Petróleo Brasileiro S.A Brazil	Grifo06 - Itautec Cluster, Xeon E5-2643 4C 3.300GHz, Infiniband FDR, NVIDIA 2075 Itautec	10,368	160.3	357.5	
	Dongarra, Luszczek, Petitet, The LINPACK Benchmark: past, present and future Concurrency Computat.: Pract. Exper. 2003; 15:803–820					nd future

¹http://www.top500.org Lists the top 500 supercomputers; Updated in 06/XX and 11/XX

The HPCG Benchmark¹

We Need a New Yardstick

As a candidate for a new HPC metric, the HPC Preconditioned Conjugate Gradient Benchmark (HPCG) implements the preconditioned conjugate gradient method with a local symmetric Gauss-Seidel preconditioner.

In doing so, HPCG is designed to measure performance that is representative of many important calculations, like Type 1 patterns. with low computation-to-data-access ratios. To simulate patterns commonly found in real applications, HPCG exhibits the same irregular accesses to memory and fine-grain recursive computations that dominate so many scientific workloads.

In contrast to the new HPCG metric, the older HPL standard is a program that factors and solves a large dense system of linear equations using Gaussian Elimination with partial pivoting. The dominant calculations in this algorithm are dense matrix-matrix multiplication and related kernels, Type 2 patterns. With proper organization of the computation, data access is predominantly unit-stride and is mostly hidden by concurrently

HPCG on Galileu

Distributed Processes: 1400 Global Problem Dimensions: nx: 1040 ny: 1040 nz: 1456 Number of Equations: 1,574,809,600 Number of Nonzero Terms: 42,445,920,184 GFLOP/s rating of: 234.165 ~50X Total time: 234.165 s 60X

ioody maaon by concarro	na) performing					
Site	Computer	Cores	HPL Rmax (Pflops)	HPL Rank	HPCG (Pflops)	
NSCC / Guangzhou	Tianhe-2 NUDT, Xeon 12C 2.2GHz + Intel Xeon Phi 57C + Custom	3,120,000	33.9	1	.580	HPL
RIKEN Advanced Inst for Comp Sci	K computer Fujitsu SPARC64 VIIIfx 8C + Custom	705,024	10.5	4	.427	HPCG
DOE/OS Oak Ridge Nat Lab	Titan, Cray XK7 AMD 16C + Nvidia Kepler GPU 14C + Custom	560,640	17.6	2	.322	
DOE/OS Argonne Nat Lab	Mira BlueGene/Q, Power BQC 16C 1.60GHz + Custom	786,432	8.59	5	.101#	
Swiss CSCS	Piz Daint, Cray XC30, Xeon 8C + Nvidia Kepler 14C + Custom	115,984	6.27	6	.099	
Leibniz Rechenzentrum	SuperMUC, Intel 8C + IB	147,456	2.90	12	.0833	* scaled to reflect the same
CEA/TGCC-GENCI	Curie tine nodes Bullx B510 Intel Xeon 8C 2.7 GHz + IB	79,504	1.36	26	.0491	# unoptimized implement
Exploration and Production Eni S.p.A.	HPC2, Intel Xeon 10C 2.8 GHz + Nvidia Kepler 14C + IB	62,640	3.00	11	.0489	
DOE/OS L Berkeley Nat Lab	Edison Cray XC30, Intel Xeon 12C 2.4GHz + Custom	132,840	1.65	18	.0439 #	
Texas Advanced Computing Center	Stampede, Dell Intel (8c) + Intel Xeon Phi (61c) + IB	78,848	.881*	7	.0161	
Meteo France	Beaufix Bullx B710 Intel Xeon 12C 2.7 GHz + IB	24,192	.469 (.467*)	<i>79</i>	.0110	
Meteo France	Prolix Bullx B710 Intel Xeon 2.7 GHz 12C + IB	23,760	.464 (.415*)	80	.00998	
U of Toulouse	CALMIP Bullx DLC Intel Xeon 10C 2.8 GHz + IB	12,240	.255	184	.00725	
Cambridge U	Wilkes, Intel Xeon 6C 2.6 GHz + Nvidia Kepler 14C + IB	3584	.240	201	.00385	
TiTech	TUSBAME-KFC Intel Xeon 6C 1.2 GHz + IB	2720	. 150	436	.00370	

he same ementation

NACAD

¹from: //software.sandia.gov/hpcg/

64

128

CORES

256

512

32

MULTIPHYSICS: WHAT IS IT?

Multiphysics Basics

 According Keyes et al (IJHPC Apps, 2013), a multiphysics system consists of more than one component governed by its own principle(s) for evolution or equilibrium, typically conservation or constitutive laws

 Multiphysics systems are analyzed by decomposition or breakdown.

Coupling occurs in the bulk (e.g., through source terms or constitutive relations that are active in the overlapping domains of the individual components) or it occurs over an idealized interface that is lower dimensional.

From Felippa, Park and Farhat (CMAME, 2002)

Multiphysics Basics (cont'd)

- Multiphysics problems are coupled systems characterized as 2field, 3-field, etc.
- Coupling can be weak or strong, systems may have different time and spatial scales
- Fields are discretized in space and time. A field partition is a fieldby-field decomposition of the space discretization. A splitting is a decomposition of the time discretization of a field within its time interval.
- Partitioning may be algebraic or differential.
 - Algebraic partitioning; coupled system is spatially discretized and then decomposed.
 - Differential partitioning: decomposition is done first and each field is then discretized.

Examples of Coupled Multiphysics Problems

- Fluid-Structure Interaction (2-field)
- Thermal-Structure Interaction (2-field)
- Control-Structure Interaction (2-field)
- Solid-Fluid-Thermal Interaction (3-field)
- Fluid-Structure-Combustion (3-field)
- Chemo-Thermal-Structure (3-field)
- Fluid-Porous Media-Thermal (3-field)
- Fluid-Fluid Interaction (n-field)
- Fluid-Particle Interaction (1 field, n-particles)
- etc

Wide ranges of interacting length and time scales are present, such as in turbulence, micromechanics, failure and damage, etc.

Strategies to Multiphysics Simulation

Monolithic or Simultaneous Treatment

 The whole problem is treated as a monolithic entity, advancing all fields simultaneously in time.

Description Partitioned Treatment

- Field models are computationally treated as isolated entities that are separately stepped in time.
- Interaction effects are communicated between the individual components.

Monolithic and Partitioned Approaches are General

- We prefer the partitioned approach, because it allows the coupling of different programs, maybe written by different teams, etc.
- However, we may see degradation of time-stepping stability in linear problems. Accuracy can be improved by iterating the state between fields. However, these iterations can be more costly than simply to reduce stepsize.

EXAMPLE COMPUTATIONS

Ship-Wave Interaction

Elias et al, A stabilized edge-based finite element approach to wave-structure interaction assessment, ASME 32th OMAE 2013 Nantes, France, 9 - 14 June 2013

Turbidity Currents Simulation

Figure 1

(a) Context of turbidity currents on the margins of continents and intracontinental basins, including deep lakes. (b) Schema of a turbidity current showing generalized velocity and density profiles based on integral length scale for current thickness, $b = \frac{\int_0^\infty u dz}{\bar{u}}$, where $\bar{u} = \frac{\int_0^\infty u^2 dz}{\int_0^\infty u dz}$.

Underwater turbidite flow

NACAD

Turbidity Currents are a Multiphysics/Multiscale Process

Name	Fluid Phase	Solid Phase	Coupling	Scale
Two-Fluid Model (TFM)	Eulerian	Eulerian	Polydisperse mixtures	Engineering (1 m)
Unresolved Discrete Particle Model (UDPM)	Eulerian (unresolved)	Lagrangian	Fluid-Particle drag closures	Laboratory (10 ⁻¹ m)
Resolved Discrete Particle Model (RDPM)	Eulerian (resolved)	Lagrangian	Boundary conditions at particle surface	Laboratory (10 ⁻² m)
Molecular Dynamics (MD)	Lagrangian	Lagrangian	Elastic collisions at particle surface	Mesoscopic (< 10 ⁻³ m)

Adapted from: Meiburg and Kneller, , Annu. Rev. Fluid Mech. 2010. 42:135–56 and M.A. van der Hoef, et al Annu. Rev. Fluid Mech. 2008. 40:47–70

Real Test Case on a Paleobathymetry

Camata et al, FEM Simulation of Coupled Flow and Bed Morphodynamic Interactions due to Sediment Transport Phenomena, Journal of Computational Science and Technology, JSME, 2013 NACAD

Profiling Reservoir Simulators

Horizontal permeability distribution in B2

- 1. SLB lintersect (IX) Multiphase flow in porous media
- 2. B2 Benchmark
 - Compositional model
 - Realistic reservoir
 - 2 million cell
- 3. IX Numerics
 - □ Multistage parallel linear solver framework
 - Two-stage CPR1 (Constraint Pressure Residual) scheme for large-scale parallel runs
 - Parallel Algebraic Multigrid solver with a F-GMRES outer iteration

Schlumberger

Cavalcante Filho et al, Increasing Performance of Commercial Reservoir Simulators by Core Skew Allocation, NABA D PARCFD 2012, Atlanta, USA

ALGORITHMS AND SOFTWARE

What is large?

- □ Large in size → unstructured grids with 10^8 - 10^9 elements (cells)
- □ Large in coupling → many fields interacting
- □ Large in physical parameters → different viscosities, densities, ...
- □ Large in control parameters → tolerances, solver options, etc
- Large in complexity → several softwares, human intervention, reproducibility, uncertainty quantification, data provenance.
- What do we have to worry about besides multiphysics itself?
 - Efficient algorithms and solvers
 - Data structures, data storage and management
 - Parallel mesh generation and adaptivity
 - Visualization

Challenges on Multiphysics Algorithms and Software* (1)

Modern simulation software is complex:

- Implicit numerical methods
- Massively parallel computers
- Adaptive methods
- Multiple, coupled physical processes
- There are a host of existing software libraries that excel at treating various aspects of this complexity.
- Leveraging existing software whenever possible is the most efficient way to manage this complexity.

Challenges on Multiphysics Algorithms and Software (2)

D Modern simulation software is multidisciplinary:

- Physical Sciences
- Engineering
- Computer Science
- Applied Mathematics
- Etc ...
- It is not reasonable to expect a single person to have all the necessary skills for developing & implementing high-performance numerical algorithms on modern computing architectures.
- **D** Teaming is a prerequisite for success.

Single Simulation Code: Major Components

Pre-processing

Input data

Time integration loop

Nonlinear iteration loop

Form system of linear equations

Solve system of linear equations

End NL loop

Update time step

Output results

End time loop

Post-processing

Visualization

Complexity O(n^{4/3}), n #unknowns

Optimal solvers require O(n) work per time step, and time accurate integration often implies $O(n^{1/3})$ time steps.

Finite Element Method

- Unstructured grid method characterized by:
 - Discontinuous data
 - Gather/scatter operations
 - Random memory access
 - Data dependencies
- Main Computational Kernels
 for Implicit Time Marching
 - Forming system matrix and RHS
 - Solving linearized systems by preconditioned Krylov solvers

Meshes, Graphs and Matrices

SIMULATION SOFTWARE

EdgeCFD[®] Fluid Flow/Free-surface/FSI Solver

General:

- Edge based data structure. "EDE has been proving to be more efficient than other FEM data structures like CSR or EBE"
- Segregated predictor-multicorrector time marching;
- Adaptive time stepping with PID controller;
- Supports hybrid parallelism (MPI, OpenMP or both at the same time);
- Unstructured grids with linear tetrahedra for velocity, pressure and scalar transport;
- Mesh partitioning performed by Metis or ParMetis;
- Best data reordering defined by EdgePack[®] in a preprocessing phase;
- Thermal-flow coupling with Boussinesq approximation; FSI
- Input/Output file formats: ANSYS/Ensight/Paraview, neutral files, Xdmf/hdf5

Incompressible Flow:

- SUPG/PSPG/LSIC stabilized finite element method in Eulerian or ALE frames
- Fully coupled u-p system (4-dofs per node/non-symmetric);
- Inexact Newton-GMRES;
- LES (Smagorinsky, Dynamic Smagorinsky), ILES, RB-VMS
- Newtonian or non-Newtonian flows (Power Law, Bingham and Hershel-Buckley)

Transport:

- SUPG/CAU/YZBeta stabilized finite element method in Eulerian and ALE frames
- Supports free-surface flows through Volume-Of-Fluid and Level-Sets.
- (UFMM) Unstructured Fast Marching Method for fast computation of signed distance functions
- PDD: Parallel dynamic deactivation. "Restrict the computation only in regions with high solution gradients"

EdgeCFD Software Stack

Ansys Classic, ICEM-CFD, CFX and/or GMSH

- Computational model
- Mesh Generation
- Preprocessor (EdgeCFDPre)
 - 1. Takes a serial mesh;
 - 2. Creates partitions with Metis (could be Scotch...)
 - 3. Extracts edges and reorders data with EdgePack
 - 4. Stores data prepared to solver
- Solver (EdgeCFDSolver)
- ParaView, Vislt, Ensight
 - Visualization: Ensight, Xdmf/HDF5 or Parallel VTK

Blue: "Home made" code Green: Third party code

> Workflow management and provenance by Chiron

> > Chiron

NACAD

libMesh

- High level interface for finite element analysis (Kirk et al., Eng. with Computers, 2006)
- Keep focus on the physical problem instead of the computational aspects related to the adaptive mesh refinement/coarsening and parallel computing
- Developed initially at UT Austin
- Available at:

http://libmesh.sourceforge.net/

libMesh interfaces

AMR/C

- libMesh utilizes a statistical scheme based on Kelly's error estimator
- As the simulation goes on, the statistical distribution of the error spreads and then the refinement and coarsening begin
- As the solution reaches equilibrium, the error distribution reaches steady state and then the adaptive process stops

Probability density function. Kirk et al., 2006

Nonlinear solvers and adaptive time step control

SMART ALGORITHMS

Advanced Nonlinear Solver

Algorithm 2: Inexact Krylov-Newton Backtracking Method - INKB **1** Set η_0 ; $\bar{2} \quad k = 0;$ $\tau_{NL} = \tau_{res} \|\mathbf{F}(\mathbf{x}^k)\|_2;$ 3 while $\|\mathbf{F}(\mathbf{x}^k)\|_2 > au_{NL}$ do 4 5 Compute $J(x^k)$; 6 Solve $\mathbf{J}(\mathbf{x}^k)\mathbf{s} = -\mathbf{F}(\mathbf{x})$ by a Krylov method with tolerance η_k ; 7 Set $\lambda_1 = 1$; 8 9 Compute $\mathbf{x}^{k+1} = \mathbf{x}^k + \lambda_1 \mathbf{s}$; i = 0: 10 $\mathbf{x}^t = \mathbf{x}^{k+1}$: 11 while $\|\mathbf{F}(\mathbf{x}^t)\|_2 > (1 - \alpha \lambda_i) \|\mathbf{F}(\mathbf{x}^{k-1})\|_2$ and $i \leq nbt$ do 12 Choose λ_{i+1} ; 13 14 Update $\mathbf{x}^{t} = \mathbf{x}^{k} + \lambda_{i+1}\mathbf{s};$ i = i + 1;15 endw 16 if i < nbt then Update $\mathbf{x}^{k+1} = \mathbf{x}^t$; 17 18 else **1**9 backtracking loop rejected ; **20** endif 21 22 k = k + 1;Select η_k ; 23 endw

Adaptive Time Step Control

How to speed-up time marching schemes?

- Adapting time step according to the solution evolution;
- Track the solution with interventions (feedback) when needed.
- Particularly useful in stiff systems
- Key idea:
 - Tracking × Feedback \rightarrow Controllers
 - Theory on ODE solvers
 - G. Soderlind, Automatic control and adaptive time-stepping. Numerical Algorithms, 2002; 31:281–310
 - Application on PDE's:
 - A. M. P. Valli, G. F. Carey and A. L. G. A. Coutinho, Control strategies for timestep selection in finite element simulation of incompressible flows and coupled reaction–convection–diffusion processes, IJNMF, 2005.

Coupled Fluid Flow and Heat Transfer Rayleigh-Benard 4:1:1 Container

Adaptive Time Stepping and IN Performance

Max IN Tol	CFL min	CFL max	SS time	time steps	wall time
0.001	2	10	0.5686	109	1110.49
		5	0.2410	90	855.42
		2	0.1829	171	1184.81
0.1	2	10	0.5635	108	803.89
		5	0.2418	90	637.71
		2	0.1840	172	1017.02
0.99	2	10	0.7436	142	1652.06
		5	0.2417	90	991.96
		2	0.1839	172	1501.97

SS Tolerance: 10⁻⁵ Transport P-GMRES Tol: 10⁻³ # Krylov Space Vectors: 25

NACAD

Rayleigh-Benard 4:1:1 - 501×125×125 mesh

¹http://www.cs.uoregon.edu/research/tau

NACAD

AMR/C COMPUTATIONS

Geometry, boundary and initial conditions:

- ✓ Simulation Domain: $\Omega = [-15,15]x[0,3]x[-1,1]$
- ✓ No-slip on top and bottom walls; slip on all others
- ✓ Half right filled with "heavy" fluid ($\rho_h = 1$) and left half filled with "light" fluid ($\rho_l = 0$)

Dimensionless parameters:

 $Gr = 1.5 \times 10^6$ Sc = 0.71

$$\Delta t = 0.025$$

Run on 240 cores, Viz with ParaView, parallel rendering

GMRES(30) BILU(1) RCM reordering

Planar 3D Lock-Exchange with AMR/C

Rossa & Coutinho, Parallel adaptive simulation of gravity currents on the lock-exchange problem, Computer and Fluids, 2013

Parallel Visualization

Data for ParaView Parallel Remote Visualization in XDMF/HDF5 formats Spatial collection of temporal collections

More details: Elias et al, ParCFD09

Planar 3D Lock-Exchange with AMR/C

X = |x| Front evolution

Chemical convection benchmark w/ AMR/C: **Stokes flow**

Initial mesh: locally Equivalent uniform r

D. F. M. Vasconcelos, A. L. Rossa and A. L. G. A. Coutinho, A residual-based Allen-Cahn phase field model for the mixture of incompressible fluid flows, IJNMF, 2014.

NACAD

terface

Chemical convection benchmark w/ AMR/C

Heavy fluid below the interface

Present Solution, AMR, RB-AC

Freeman et al, 2005, mesh 32³

PARALLEL COMPUTATIONS

Distributed Memory Parallelism

¹for a recent study see: Z. Shang, Impact of mesh partitioning methods in CFD for large scale parallel computing, Computers & Fluids 103 (2014) 1–5

NACAD

Threaded Parallelism

Standard blocked loops to remove memory dependency


```
!$OMP PARALLEL DO
do i=1,nel
  ! retrieve element nodes
  x(no) = x(no) + a
enddo
!$OMP END PARALLEL DO
```



```
ielm = 0
do icor = 1, ncores
    nvec = ielblk(icor)
!$OMP PARALLEL DO
    do i = ielm+1, ielm+nvec
        ! Retrieve element nodes
        x(no) = x(no) + a
    enddo
!$OMP END PARALLEL DO
    ielm = ielm+nvec
enddo
```


Hybrid Matrix-Vector Product

NACAD

MPI Collective Communications

MPI collective

- 1. All shared equations are synchronized in just one collective operation;
- 2. Easy to implement;
- 3. Poor performance for massive parallelism;
- 4. Some (small) improvements can be done (... but there's no miracle...).

(a) Original mesh (b) Redundant communication = =

P2P Subdomain Communication

Master-Slave subdomain relationship

(b) Communication Graph

Exchange information between neighboring processors implemented in two stages:

(i) slaves processes send their information to be operated by masters(ii) solution values are copied from masters to slaves.

EdgeCFD uses non-blocking send and receive MPI primitives

See also: Karanam, Jansen, Whiting, Geometry based pre-processor for parallel fluid dynamic simulations using a hierarchical basis, Engineering with Computers (2008)

AMR/C and Solver Performance

- **Implicit time integration schemes require a solution of large and sparse linear system**
- Krylov subspace methods + preconditioning strategies
 - Incomplete LU factorizations methods
 - Powerful method in terms to improve convergence
 - Complex parallel implementation
 - New hierarchical and nested versions
 - Improved version of BiCGSTAB with independent and overlapped dot products
- Making ILU more suitable for parallel architectures
 - Block preconditioners with local ILU factorizations
 - Domain decomposition preconditioners: Additive-Schwartz and
 - Block Jacobi
- How the choice of block ILU affects the simulation performance using AMR/C using different unknowns orderings

16 cores, with 4 Jacobi Blocks at each level for preconditioning.

16 Jacobi-Blocks and IBiCGStab (all with ILU(0))

McInnes, L. C., Smith, B., Zhang, H., & Mills, R. T. (2014). Hierarchical Krylov and nested Krylov methods for extreme-scale computing. Parallel Computing, 40(1), 17–31.

NACAD

Three-dimensional deformation problem with AMR/C

- The sphere is deformed by vortices and stretched out very thinly.
- The velocity field is given by

- AMR Parameters:
 - Initial Mesh: 1,130,949 linear tetrahedra
 - Refine fraction: 0.9
 - Coarse fraction: 0.1
 - h level: 4
 - AMR every 5 time steps
- Solver Parameters:
 - GMRES(30) relative tolerance 10^{-6} .
 - Preconditioners: ASM (1 level) and Block-Jacobi
 - Local ILU(0) and ILU(1)

SUPG FEM with linear tets

See Camata et al, IJNMF, 2012

Results 3D deformation problem

• Solution and mesh configuration of the 3D deformation problem at three times, T = 0, T = 1.5, T = 3.0 time units.

Results 3D deformation problem

GMRES(30) + local ILU(0) performance using Block-Jacobi and ASM on Altix ICES 8200⁻¹

¹Each compute node has two Intel Quad-Core 2.66GHz, 8MB L2 cache on-die and 16GB of memory

Nonzeros allocated using ILU(1) preconditioner and 64 processors

ASM

Block-Jacobi

Pushing the Limits

PARALLEL OCTREE MESH GENERATION

Parallel Octree Mesh Generation

- **Growing availability of parallel machines**
- Improvements on scalability of numerical solutions (FEM, FVM)
- Scalable Octree meshing and solver strategies
 - Dendro lib: scales oup to 4,000 cores (Sundar et al, 2007)
 - Tu et al, runs in 67,000 cores (2005)
 - p4est: scales up to 220,320 cores, Burstedde et al (2011)
 - Park & Shin (2012): octree meshes using GPGPU
- Our objectives
 - Present a parallel octree generator able to representing arbitrary surfaces
 - Extract conforming tetrahedral meshes from the resulting octree
 - Perform a parallel scalability analysis

Linear Octree

- An octree is a tree data structure in which internal nodes has exactly eight children [3] (Figure 1)
- Often used to partition a three dimensional domain space by recursively subdividing it into eight octants
- Linear Octree
 - ✓ complete list of leaf nodes
 - ✓ octants are encoded by a scalar key: Morton Code
- > Advantages:
 - ✓ do not require to store internal nodes
 - ✓ reduce overhead associated with pointers use

Figure 1: Octree – sudivision of a cube into octants

Octree Algorithms

- Octree Construction
 - ✓ generate a list of octants equally distributed between the cores.
- Octree partition
 - ✓ redistribution of the octants among processes with the objective to reach load balance
 - ✓ each process stores a contiguous chunk of leaf octants
- Octree Refinement
 - ✓ non-recursive refinement algorithm transverses all leaf octants for each local octree replacing an octant with its eight children
- > 2:1 Balancing
 - no leaf octants sharing at level I shares an edge or face with another leaf at level greater than I + 1

- > Meshing
 - ✓ Find anchors and hanging nodes
 - ✓ Find sharing nodes
 - ✓ Get element connectivity

Manipulating STL surfaces

- Necessary to represent complex solid boundaries present in computational solid and fluid mechanics applications
 - Surfaces are given by a triangulation, typically obtained from CAD package as STL files
- Finding interceptions is based on bounding box threes (BBT)
 - ✓ Advantage: Allows fast overlap rejection test
 - ✓ Computational cost: O(*nlogn*)
- Finding octants located inside the solid boundaries is based on ray tracing

NACAD

Conforming Techniques

FREY e GEORGE (2000) / BERG et. al (1998)

- Decompose octants in 6 pyramidal elements by inserting a central node
- Define 9 templates for face triangulation
- Connect all face nodes with the central node

- Does not require modifications in the octree construction
- Embarrassing parallel (does not need neighboring info)
- Templates for all possible hanging nodes configuration

High Fidelity Parallel Mesh Generation

Data	Storage (TB)		
Solver Edge-by-Edge	3.5		
Solver EBE	17.5		
Solver CSR+ILU(0)	5.83		
Solution (10 ⁴ saved time steps)	524.0		

Experiments conducted in Stampede at TACC UT-Austin, USA

Igor T. Ghisi, Jose J. Camata and Alvaro L. G. A. Coutinho, Impact of tetrahedralization on parallel conforming octree mesh generation, IJNMF, 2014

NACAD

Pushing the limits: Uncertainty Propagation on Particle Laden Flows

EXPLORING THE STOCHASTIC SPACE

Why currents move and deposit?

Investigation on how uncertainty in initial conditions and settling velocities propagate Initial concentrations and settling velocities considered random fields Simulations done with EdgeCFD¹ with Stochastic Collocation Method

¹G. M. Guerra, et al, Numerical simulation of particle-laden flows by the residual-based variational multiscale method, IJNMF 73 (8) (2013) 729–749.

Computational Infrastructure for Exploring the Stochastic Space

Concurrency and Computation: Practice and Experience 25 (16) (2013) 2327-2341.

Two-level Parallel Strategy

Computational Data

- Level 6 Sparse Grid Stochastic
 Collocation Method
- 1073 samples (each one a parallel job) run on HPC machine. Average run time for each sample: 5h
- 108 jobs with 10 samples managed with Chiron
- Sequential time: 202 days
- Two-level parallel run: 24 days

What geologists want to know

3D representation of the deposition for both constituents at t=30: top and lateral views. Colors on the surfaces correspond to the deposits thickness.

What geologists want to know

CONCLUDING REMARKS AND DISCUSSION

COPPE - FEDERAL UNIVERSITY OF RID DE JANEIRO

Multiphysics problems have been addressed

- Prospect of predicting the behavior of complex systems combining multiple physical phenomena is one of the main motivations for extreme computing
- Scaling-up components is challenging. How to effectively combine them? How to generate, manage and visualize data?
- Need of an integrated infrastructure

Advanced Algorithms and Solvers

- Smart algorithms (Inexact Newton, timestep control) really pays off
- Solvers are still challenging

Parallel Computations

- Communication issues of paramount importance
- Adaptivity introduces an extra complexity layer (needs repartition)
- Mesh generation still a problem

Stochastic Multiphysics: New Frontier

- Managing the complexity of sampling stochastic space
- Issues: data management, fault tolerance, data provenance, etc

COPPE - FEDERAL UNIVERSITY OF RID DE JANEIRO

Acknowledgements:

- Faculty:
 - HPC: A. Coutinho (PI), R.Elias
 - Civil Engineering: J. Alves
 - Mechanical Engineering: F. Rochinha
 - Computer Science: M. Mattoso
- Pos-Docs, Research Staff and Students:
 - A. Aveleda, C. Barbosa, D. Barcarolo, D. de Bruyckner, O. Caldas, J. Camata, A. Cortes, J. Dias, I. Ghisi, M. Goncalves Jr, J. Gonzalez, G. Guerra, N. Guevara Jr, F. Horta, E. Lins, A. Mendonça, E. Ogasawara, D. Oliveira, A. Rossa, F. Seabra, C. Silva, D. Vasconcelos, S. Zio
- □ Funding: Petrobras, ANP, MCT/CNPq, MCT/FINEP, Petrobras
- Computer Resources: NACAD/COPPE/UFRJ, TACC/UT Austin, Intel

COPPE - FEDERAL UNIVERSITY OF RID DE JANEIRO

Visit us at www.nacad.ufrj.br

