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Model Problem

Find u ∈ H1(Ω) such that{
−k2u −∆u = f in Ω
∇u · n− iku = 0 on ∂Ω,

where k is the wave number, and f ∈ L2(Ω) is the source.

Weak Form

Find u ∈ H1(Ω) such that a(u, v) = (f , v)Ω for all v ∈ H1(Ω), with

a(u, v) = −k2(u, v)Ω − ik(u, v)∂Ω + (∇u,∇v)Ω.
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C. Harder, D. Paredes and F. Valentin 2012 (Darcy Equation).
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Primal Hybrid Formulation.

Multiscale Method.

Adapted to highly heterogenous media.

Interpretation as modified basis functions.

Fine scales are localy captured by the basis functions.
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Partition

Let Th be a partition of Ω.
Let Eh be the set of edges in Th.
Let E inth be the set of internal edges.
Let Eexth be the set of external edges.

Functional Spaces

We define

V = H1(Th) =
{
v ∈ L2(Ω) | v ∈ H1(K ) ∀K ∈ Th

}
,

and

Λ =

µ ∈ ∏
K∈Th

H−1/2(∂K )

∣∣∣∣ µ+|F + µ−|F = 0 ∀F ∈ E inth

µ|F = 0 ∀F ∈ Eexth

 .
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Bilinear form

Define a : V × V → C and b : V × Λ→ C by

a(u, v) = −k2(u, v)Th − ik(u, v)Eexth
+ (∇u,∇v)Th ,

b(u, µ) = −
∑
K∈Th

〈µ, u〉∂K .

Primal Hybrid Formulation

Find (u, λ) ∈ V × Λ such that{
a(u, v) + b(v , λ) = (f , v)Th ∀v ∈ V

b(u, µ) = 0 ∀µ ∈ Λ.
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Local problems

We can rewrite the first equation as

a(u, v) = (f , v)Th − b(v , λ) ∀v ∈ V .

Now, pick vK ∈ V such that supp vK ⊂ K , then

a(u, vK ) = −k2(u, vK )K − ik(u, vK )∂K∩∂Ω + (∇uK ,∇vK )K

b(vK , λ) = −〈λ, vK 〉∂K\∂Ω

(f , vK )Th = (f , vK )K .

So that uK = u|K is solution of
−k2uK −∆uK = f in K

∇uK · nK = λ on ∂K \ ∂Ω
∇uK · n− ikuK = 0 on ∂K ∩ ∂Ω.
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Well posedness of the local problems

We only need check for unicity
−k2u −∆u = 0 in K

∇u · n = 0 on ∂K \ ∂Ω
u = 0 on ∂K ∩ ∂Ω.

The problem is well-posed when k2 is not an eigenvalue of −∆.

Example

For an interior square K = (0, h)× (0, h) ⊂ R2.

λ0 = 0, λ1 = h2π2.

If kh < π, then λ0 < k2 < λ1, and we have well posedness.
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Local operators

We define TK : H−1/2(∂K )→ H1(K ) for all µ ∈ H−1/2(∂K ) with

a(TKµ, vK ) = −〈µ, vK 〉∂K ∀vK ∈ H1(K ).

We define T̂K : L2(K )→ H1(K ) for all g ∈ L2(K ) with

a(T̂Kg , vK ) = (g , vK )K ∀vK ∈ H1(K ).

Local expression of uK

uK = TKλ+ T̂K f
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Gobal expression of u

Grouping up the pieces we define T : Λ→ V and T̂ : L2(Ω)→ V .
Then

u = Tλ+ T̂ f .

Global Problem

To obtain the global problem, we simply substitute u = Tλ+ T̂ f
in the the second equation (b(u, µ) = 0).

b(Tλ, µ) = −b(T̂ f , µ) ∀µ ∈ Λ
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The MHM method

First, localy define the operator T and T̂ such that

a(Tµ, v) = −b(µ, v)

a(T̂ g , v) = (g , v)Ω

for all µ ∈ Λ, g ∈ L2(Ω) and v ∈ V .

Find λ ∈ Λ solution of

b(Tλ, µ) = −b(T̂ f , µ) ∀µ ∈ Λ.

Then u = Tλ+ T̂ f .
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Interpretation of the global problem

Recall that the global problem reads as

b(Tλ, µ) = −b(T̂ f , µ) ∀µ ∈ Λ.

By definition of T with v = Tλ

a(Tλ,Tµ) = a(Tµ,Tλ) = −b(Tλ, µ).

By definition of T with v = T̂ f and T̂ with v = Tµ

−b(T̂ f , µ) = a(Tµ, T̂ f ) = a(T̂ f ,Tµ) = (f ,Tµ)Th .

We can rewrite the global problem as

a(Tλ,Tµ) = (f ,Tµ)Th ∀µ ∈ Λ.
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Introduction

The operators TK and T̂K are computed with a second level
method (e.g. FEM).

We only need to discretise Λh ⊂ Λ.

The quality of the solution only depends upon Λh.

We have to approximate λ = ∇u · n.

In 2d, we need basis functions living on one dimensional edges.
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Some notations

We note (ϕj)j a global basis of Λh.

In each cell K , we note (ψK
m)m a local basis in each K .

If we consider a ϕj , it lives on an edge F = ∂K+ ∩ ∂K−.

There are corresponding functions ψK+
m+ and ψ

K−
m− .
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Local Problems

Pick a cell K ∈ Th. For all ψK
m , we solve

a(ηKm , vK ) = −〈vK , ψK
m〉∂K ∀vK ∈ H1(K ),

as well as

a(f̂ , vK ) = (f , vK )K , ∀vK ∈ H1(K ).

Then its clear that ηKm = TKψ
K
m and f̂ K = T̂K f .

By regrouping, we have ηj = Tϕj and f̂ = T̂ f .

Storage

The ηj will be used as basis functions in the global problem.

f̂ will be used in the second member of the global problem.
We only need to store their value on the edge of the mesh.
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Global Problem

We seek the discrete solution λh ∈ Λh as λh =
∑

j αjϕj .
Then the global problem reads∑

j

b(ϕi ,Tϕj)αj = −b(T̂ f , ϕi ) ∀i .

Using the previous stage we can transform it into∑
j

b(ϕi , ηj)αj = −b(f̂ , ϕi ) ∀i .

So that we can easily assemble the matrix and solve the linear
system. Then we have

uh =
∑
j

αjηj + f̂ .
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Interpretation of the global problem

The global problem may be seen as

a(Tλ,Tµ) = (f ,Tµ)Th .

In this case, the discrete counterpart is

N∑
j=1

a(ηi , ηj)αj = (f , ηi )Th ∀i .

It looks like we have solve the classical FEM formulation, with
special basis functions ηj .
The basis functions ηj being computed localy as solution of
local subproblems.
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A simple test

Let Ω = (0, 1)× (0, 1) and y = (0.5, 1.1). We consider the problem{
−k2u −∆u = 0 in Ω
∇u · n− iku = ∇H · n− ikH on ∂Ω,

where
H(x) = Y (k|x − y |) + iJ(k |x − y |),

for all x ∈ Ω. We set k = 2πf , with f = 12.1.
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Anisotropy study

We still consider Ω = (0, 1)× (0, 1) and f = 12.1. For every angle
θ ∈ [0, π/4], we consider the plane wave

eθ(x) = e ikν·x ,

for x ∈ Ω with ν = (cos θ, sin θ). We solve the following problem{
−k2u −∆u = 0 in Ω
∇u · n− iku = ∇eθ · n− ikeθ on ∂Ω.
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Exactness of the scheme for θ = jπ/2

Consider an edge F . We can parametrize it as

F = {x0 + tvF | t ∈ (0, h)}.

The derivative of eθ in the normal direction is

(∇eθ · nF )(x) = iknF · νe ikν·x

Taking x = x(t) = x0 + tvF , we get

(∇eθ · nF )|F (t) = ike ikν·x0nF · νe ikν·vF t

If nF · ν = 0, then (∇eθ · nF )|F = 0 ∈ C
If vF · ν = 0, then (∇eθ · nF )|F = ike ikν·x0 = C ∈ C.
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Plane Wave-Adapted Elements

We can make the scheme exact for plane waves with angle

θ = π/4, 3π/4, −π/4, −3π/4.

To do that, remember that

(∇eθ · nF )|F (t) = ike ikν·x0nF · νe ikν·vF t = Ce ikν·vF t .

On a cartesian mesh, we have either ν = (1, 0) or (0, 1) and

ν · vF = ±
√

2

2
.
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Plane Wave-Adapted Elements

In each edge, consider the following basis functions

ϕ0(t) = 1, ϕ+(t) = e ik
√

2/2t , ϕ−(t) = e−ik
√

2/2t .

Then the corresponding scheme is exact for plane waves with
angle θ = jπ/4.

We can generalize make the scheme exact for plane waves
with angles θ = jπ/2n,

φ0(t) = 1, φm+(t) = e ikαmt , φm−(t) = e ikαmt ,

with αm = cos(mπ/2n), and m = 1, n − 1.
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A more complex test

We solve 
−k2u −∆u = 0 in Ω
∇u · n− iku = g on ∂Ω \ Γ

∇u · n = 0 on Γ,

where g is composed of 3 ponctual sources with different locations
and amplitudes.
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Conclusion and perspectives

The MHM methodology works on the Helmholtz equation.

The results are good compared to the classical FEM.

Up to 7 times less degrees of freedom.

We need to investigate resonance in subproblems.

We could also try to derive conditions on the mesh.

There is a solution in the MHM framework.

We want to tackle (highly) heterogeneous problems.

Condition on the mesh to avoid resonance?

Choice of basis functions?
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