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The Helmholtz Equation

e Wave propagation at a given frequency
e Radar, Acoustics, Seismic (Inverse Problems)

@ Heterogeneous media (Seismic)
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The Helmholtz Equation

e Wave propagation at a given frequency
e Radar, Acoustics, Seismic (Inverse Problems)

@ Heterogeneous media (Seismic)

Numerical Method

@ Integral Equations (Homogeneous case)
@ Finite Differences

@ Finite Elements

@ Pollution effect (High frequency)

@ Highly heterogeneous media
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@ A simple Helmholtz Problem

© The MHM method
© Discretization

@ Numerical Experiments
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A simple Helmholtz Problem
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A simple Helmholtz Problem

Model Problem

Find u € HY(Q) such that

—K2u—Au = f inQ
Vu-n—iku = 0 on 09,

where k is the wave number, and f € L2(Q) is the source.
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A simple Helmholtz Problem

Model Problem

Find u € HY(Q) such that

—K2u—Au = f inQ
Vu-n—iku = 0 on 09,

where k is the wave number, and f € L2(Q) is the source.

Find u € HY(Q) such that a(u, v) = (f, v)q for all v € H}(Q), with

a(u,v) = —k?(u, v)q — ik(u, v)aq + (Vu, Vv)q.
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Introduction

The Primal Hybrid Formulation
The MHM method Local Problems

Global Problem

The MHM method

Interpretation of the global problem

The MHM method

C. Harder, D. Paredes and F. Valentin 2012 (Darcy Equation).
Elliptic problems (Elasticity, Reaction-Advection-Diffusion).

Primal Hybrid Formulation.

Multiscale Method.

Adapted to highly heterogenous media.
Interpretation as modified basis functions.

Fine scales are localy captured by the basis functions.
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The Primal Hybrid Formulation
The MHM method Local Problems

Global Problem

The MHM method

Interpretation of the global problem

Let 7, be a partition of €.

Let &, be the set of edges in Tp,.

Let £/ be the set of internal edges.
Let £ be the set of external edges.
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Let 7, be a partition of €.

Let &, be the set of edges in Tp,.
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Introduction

The Primal Hybrid Formulation
The MHM method Local Problems

Global Problem

The MHM method

Interpretation of the global problem

Let 7, be a partition of €.

Let &, be the set of edges in Tp,.

Let £/ be the set of internal edges.
Let £ be the set of external edges.

Functional Spaces

We define

V=HY(Ty) ={vel’(Q)|veH(K) VKeTh},

and

N=Spe [] H2(0K)
KeTh
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Interpretation of the global problem

Bilinear form

Definea: VxV —-Cand b:V xA— C by

a(u,v) = —k(u,v)7, — ik(u, V)gee + (Vu, V)7,
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KeTh
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Bilinear form

Definea: VxV —-Cand b:V xA— C by

a(u,v) = —k(u,v)7, — ik(u, V)gee + (Vu, V)7,
blu,p) = = > { u)ok-
KEeTh

Primal Hybrid Formulation

Find (u, \) € V x A such that

a(u,v)+b(v,\) = (f,v), VveV
b(u,p) = 0 Vi e A.
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Local proble

We can rewrite the first equation as
a(u,v) = (f,v); —b(v,\) VveV.
Now, pick vk € V such that supp vk C K, then

a(u,vk) = —k*(u,vi)k — ik(u, vik)akroa + (Vuk, Vvk)k
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The Primal Hybrid Formulation
The MHM method Local Problems

Global Problem

The MHM method

Interpretation of the global problem

Local proble

We can rewrite the first equation as
a(u,v) = (f,v); —b(v,\) VveV.
Now, pick vk € V such that supp vk C K, then

a(u,vk) = —k*(u,vi)k — ik(u, vik)akroa + (Vuk, Vvk)k
b(vk, M) — (A vik)ak\a0
(f7 VK)T;, = (f, VK)K-

So that uk = u|k is solution of

—KPuk —Aug = f inK
Vuk-ng = XA ondK\9oQ
Vuk -n—ikugy = 0 ondKNOoA.
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The Primal Hybrid Formulation
The MHM method Local Problems

Global Problem

The MHM method

Interpretation of the global problem

Well posedness of the local problems

We only need check for unicity

—K2u—Au = 0 inK
Vu-n = 0 ondK)\oQ
u = 0 ondKnNOoA.

The problem is well-posed when k? is not an eigenvalue of —A.
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Well posedness of the local problems

We only need check for unicity

—K2u—Au = 0 inK
Vu-n = 0 ondK)\oQ
u = 0 ondKnNOoA.

The problem is well-posed when k? is not an eigenvalue of —A.

For an interior square K = (0, h) x (0, h) C R?.

Ao =0, X\ =h72

If kh < 7, then Ao < k? < A1, and we have well posedness.

8/30) T. Chaumont-Frelet, F. Valentin The MHM method for the Helmholtz equation




Introduction
The Primal Hybrid Formulation
The MHM method Local Problems

Global Problem
The MHM method
Interpretation of the global problem

haumont-Frelet, F. Valentin The MHM method for the Helmholtz equation

9/30)



Introduction

The Primal Hybrid Formulation
The MHM method Local Problems

Global Problem

The MHM method

Interpretation of the global problem

haumont-Frelet, F. Valentin The MHM method for the Helmholtz equation

9/30)



Introduction

The Primal Hybrid Formulation
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Global Problem

The MHM method

Interpretation of the global problem

Local operators

We define Tk : H"Y2(0K) — HY(K) for all u € H=Y/2(9K) with

a(Tkp, vik) = —(u, vik)ok  Vvk € H'(K).
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Local operators

We define Tk : H"Y2(0K) — HY(K) for all u € H=Y/2(9K) with
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Introduction

The Primal Hybrid Formulation
The MHM method Local Problems

Global Problem

The MHM method

Interpretation of the global problem

Local operators

We define Tk : H"Y2(0K) — HY(K) for all u € H=Y/2(9K) with
a(Trp, vik) = —{p, vikox  Vvk € HY(K).
We define T : L2(K) — HY(K) for all g € [2(K) with
a(Tkg,vi) = (g, vk)k Vvk € HY(K).

Local expression of uk

uk = T+ ?-Kf
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Grouping up the pieces we define T : A — V and T L2(Q) — V.
Then
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The Primal Hybrid Formulation
The MHM method Local Problems

Global Problem

The MHM method

Interpretation of the global problem

Gobal expression of u

Grouping up the pieces we define T : A — V and T L2(Q) — V.
Then
u=TN+Tf.

Global Problem

To obtain the global problem, we simply substitute u = TA+ Tf
in the the second equation (b(u, i) = 0).

| \

b(TAu)=—b(Tf,u) YueN
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o First, localy define the operator T and T such that

a(T:U’JV) = —b(th)
a(Tg,v) = (g,v)a

forall u €N, g€ L?(Q) and v e V.
@ Find )\ € A solution of
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The MHM method

@ First, localy define the operator T and T such that

a(T:U’JV) = —b(th)
a(Tg,v) = (g,v)a

forall u €N, g€ L?(Q) and v e V.
@ Find )\ € A solution of

b(TAp) =—b(TF, ) Vel

@ Thenu=TX\+ TF.
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nterpretation of the global problem

@ Recall that the global problem reads as

b(TA ) = —b(TF,u) YueA
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Interpretation of the global problem

@ Recall that the global problem reads as

b(TA ) = —b(TF,u) YueA

@ By definition of T with v = T\

a(TA, Tp)=a(Tp, TA) = —b(TA, ).

o By definition of T with v = T and T with v = Tp
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The MHM method

Interpretation of the global problem

Interpretation of the global problem

@ Recall that the global problem reads as

b(TA ) = —b(TF,u) YueA

@ By definition of T with v = T\

a(TA, Tp)=a(Tp, TA) = —b(TA, ).

o By definition of T with v = T and T with v = Tp

@ We can rewrite the global problem as

a(TA, Tp) = (f, Ty, VYueA
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@ The operators Tk and Tk are computed with a second level
method (e.g. FEM).
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Introduction

@ The operators Tk and Tk are computed with a second level
method (e.g. FEM).

@ We only need to discretise A, C A.

@ The quality of the solution only depends upon Ay,.
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Introduction

@ The operators Tk and Tk are computed with a second level
method (e.g. FEM).

@ We only need to discretise A, C A.

@ The quality of the solution only depends upon Ay,.

@ We have to approximate A = Vu - n.
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Introduction
Notations

Discretization Local problems
Global Problem

Introduction

@ The operators Tk and Tk are computed with a second level
method (e.g. FEM).

@ We only need to discretise A, C A.
@ The quality of the solution only depends upon Ay,.
@ We have to approximate A = Vu - n.

@ In 2d, we need basis functions living on one dimensional edges.
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Notations
Discretization Local problems

Global Problem

Some notations

@ We note (yj); a global basis of Ay,.
o In each cell K, we note (X) a local basis in each K.
o If we consider a ¢}, it lives on an edge F = 0K, NOK_.

@ There are corresponding functions ¢,’§fr and ¥p,_.
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Local Problems

@ Pick a cell K € Tj. For all X, we solve

a(nis, vk) = — (v, b)ok  Yvk € H(K),
as well as

a(f,vk) = (f,vk)k, Yk € HY(K).
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@ Pick a cell K € Tj. For all X, we solve

a(nis, vk) = — (v, b)ok  Yvk € H(K),
as well as

a(f,vk) = (f,vk)k, Yk € HY(K).

o Then its clear that n = TyK and K = Txf.

mont-Frelet, F. Valentin The MHM method for the Helmholtz equation



Introduction
Notations

Discretization Local problems
Global Problem

Local Problems

@ Pick a cell K € Tj. For all X, we solve

a(nis, vk) = — (v, b)ok  Yvk € H(K),
as well as

a(f,vk) = (f,vk)k, Yk € HY(K).

o Then its clear that ¢ = TvK and K = Txf.
o By regrouping, we have n; = Tyj and f = Tf.

mont-Frelet, F. Valentin The MHM method for the Helmholtz equation



Introduction
Notations

Discretization Local problems
Global Problem

Local Problems

@ Pick a cell K € Tj. For all X, we solve

a(nis, vk) = — (v, b)ok  Yvk € H(K),
as well as

a(f,vk) = (f,vk)k, Yvk € HY(K).

o Then its clear that ¢ = TvK and K = Txf.
@ By regrouping, we have n; = Ty; and f = Tf.

haumont-Frelet, F. Valentin The MHM method for the Helmholtz equation



Introduction
Notations

Discretization Local problems
Global Problem

Local Problems

@ Pick a cell K € Tj. For all X, we solve
a(nis, vk) = — (v, b)ok  Yvk € H(K),
as well as

a(f,vk) = (f,vk)k, Yvk € HY(K).

o Then its clear that 7% = TxyK and 7K = 71'Kf.
@ By regrouping, we have n; = Ty; and f = Tf.

@ The 7; will be used as basis functions in the global problem.

haumont-Frelet, F. Valentin The MHM method for the Helmholtz equation



Introduction
Notations

Discretization Local problems
Global Problem

Local Problems

@ Pick a cell K € Tj. For all X, we solve
a(nis, vk) = — (v, b)ok  Yvk € H(K),
as well as

a(f,vk) = (f,vk)k, Yvk € HY(K).

o Then its clear that ¢ = TvK and K = Txf.
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Discretization Local problems
Global Problem

Local Problems

@ Pick a cell K € Tj. For all X, we solve
a(nis, vk) = — (v, b)ok  Yvk € H(K),
as well as

a(f,vk) = (f,vk)k, Yvk € HY(K).

o Then its clear that 7% = TxyK and 7K = 71'Kf.
@ By regrouping, we have n; = Ty; and f = Tf.

@ The 7; will be used as basis functions in the global problem.

o f will be used in the second member of the global problem.
@ We only need to store their value on the edge of the mesh.
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Global Proble

@ We seek the discrete solution A\, € A as A\ = Zj Q;jp;.
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Global Proble

@ We seek the discrete solution A\, € A as A\ = Zj Q;jp;.
@ Then the global problem reads

Z b(pi, T@j)aj = —b(?—f,gp,') Vi.
J
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Global Probl

@ We seek the discrete solution A\, € A as A\ = Zj Q;jp;.
@ Then the global problem reads

Z b(pi, Tgoj-)aj = —b(?—f,gp,') Vi.
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@ Using the previous stage we can transform it into

Z b(go,-,nj)ozj = —b(?, QD;) Vi.
J
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Global Problem

Global Problem

@ We seek the discrete solution A\, € A as A\ = Zj Q;jp;.
@ Then the global problem reads

Z b(pi, Tgoj-)aj = —b(?—f,gp,') Vi.
J

@ Using the previous stage we can transform it into

Z b(go,-,nj)ozj = —b(?, QD;) Vi.
J

@ So that we can easily assemble the matrix and solve the linear
system. Then we have

up = Zaﬂ]j ar f.

J
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Interpretation of the global problem

@ The global problem may be seen as

a(TA, Tp) =(f, Tu)7,.
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@ The global problem may be seen as

a(TA, Tp) =(f, Tu)7,.

@ In this case, the discrete counterpart is

N
> alni,m)aj = (F,mi)r, Vi

j=1

@ It looks like we have solve the classical FEM formulation, with
special basis functions 7;.
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Introduction

Notations
Discretization Local problems

Global Problem

Interpretation of the global problem

@ The global problem may be seen as

a(TA, Tp) =(f, Tu)7,.

@ In this case, the discrete counterpart is

N
> alni,m)aj = (F,mi)r, Vi

j=1

@ It looks like we have solve the classical FEM formulation, with
special basis functions 7;.

@ The basis functions 7; being computed localy as solution of
local subproblems.
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A simple test

Let @ =(0,1) x(0,1) and y = (0.5,1.1). We consider the problem
—k’u—Au = 0 in Q
Vu-n—iku = VH-n—ikH on 01,

where
H(x) = Y(k|x = y|) + iJ(k|x — yI),

for all x € Q. We set k = 2xf, with f = 12.1.
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Anisotropy study

We still consider Q = (0,1) x (0,1) and f = 12.1. For every angle
6 € [0, 7/4], we consider the plane wave
ikv-x

eg(x) =e )

for x € Q with v = (cos 8, sin #). We solve the following problem

—k’u—Au = 0 in Q
Vu-n—iku = Vey-n—ikey on 0N.
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Exactness of the scheme for 6 = jm/2

o Consider an edge F. We can parametrize it as

F={xo+tve | te(0,h)}.
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Exactness of the scheme for 6 = jm/2
o Consider an edge F. We can parametrize it as

F={xo+tve | te(0,h)}.

@ The derivative of ey in the normal direction is

ikv-x

(Vep - ng)(x) = ikng - ve

@ Taking x = x(t) = xo + tvF, we get

(Veg - ng)|p(t) = ike ™ >ong . pekvvrt
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@ The derivative of ey in the normal direction is
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A simple test
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. . Comparison with the classical FEM
Numerical Experiments parison wi © cessl

Exactness of the scheme for § = j/2

o Consider an edge F. We can parametrize it as

F={xo+tve | te(0,h)}.

@ The derivative of ey in the normal direction is

(Veg - ng)(x) = ikng - ve >

@ Taking x = x(t) = xo + tvF, we get

(Veg - ng)|p(t) = ike ™ >ong . pekvvrt

o If np-v =0, then (Vey -ng)|[p=0€C
o If vi - v =0, then (Veg - ng)|f = ike> = C € C.
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Plane Wave-Adapted Elements

@ We can make the scheme exact for plane waves with angle
0 =mn/4, 3n/4, —m/4, —37/4.
@ To do that, remember that

(VEQ . nF)|F(t) _ ikeiky-)q)n,__ X Veiku-v,:t _ Ceikzwv,:t‘
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Plane Wave-Adapted Elements

@ We can make the scheme exact for plane waves with angle
0 =mn/4, 3n/4, —m/4, —37/4.
@ To do that, remember that
(Veg - ng)|p(t) = ike>ong - pelkv Vet — Celkvvet,
@ On a cartesian mesh, we have either v = (1,0) or (0,1) and

V2

V‘VF::t?.
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@ In each edge, consider the following basis functions
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Plane Wave-Adapted Elements

@ In each edge, consider the following basis functions
polt) =1, pu(t) = V22, o (1) = emhVA2,

@ Then the corresponding scheme is exact for plane waves with
angle 0 = jm /4.
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Plane Wave-Adapted Elements

@ In each edge, consider the following basis functions

polt) =1, pu(t) = V22, o (1) = emhVA2,

@ Then the corresponding scheme is exact for plane waves with
angle 0 = jm /4.

@ We can generalize make the scheme exact for plane waves
with angles 6 = jm/2n,
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Plane Wave-Adapted Elements

@ In each edge, consider the following basis functions

polt) =1, pu(t) = V22, o (1) = emhVA2,
@ Then the corresponding scheme is exact for plane waves with
angle 0 = jm /4.
@ We can generalize make the scheme exact for plane waves

with angles 6 = jm/2n,

so(t) =1, oT(t) = ekomt  pm(r) = elkamt,

with apy = cos(mm/2n), and m=1,n— 1.
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A more complex test

We solve
—K2u—Au = 0 inQ
Vu-n—iku = g ondQ\T
Vu-n = 0 onl,

where g is composed of 3 ponctual sources with different locations
and amplitudes.
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Conclusion and perspectives

@ The MHM methodology works on the Helmholtz equation.
@ The results are good compared to the classical FEM.

@ Up to 7 times less degrees of freedom.
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The results are good compared to the classical FEM.

Up to 7 times less degrees of freedom.

We need to investigate resonance in subproblems.

We could also try to derive conditions on the mesh.

There is a solution in the MHM framework.
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Conclusion and perspectives

@ The MHM methodology works on the Helmholtz equation.
@ The results are good compared to the classical FEM.

@ Up to 7 times less degrees of freedom.

We need to investigate resonance in subproblems.

We could also try to derive conditions on the mesh.

There is a solution in the MHM framework.

We want to tackle (highly) heterogeneous problems.

Condition on the mesh to avoid resonance?

Choice of basis functions?
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