Discontinuous Galerkin methods for solving Helmholtz isotropic wave equations for seismic applications <u>Advisors:</u> Stéphane Lanteri, INRIA, *Nachos* Julien Diaz, INRIA, *Magique 3D*

Henri Calandra, TOTAL

Marie Bonnasse-Gahot

INRIA, Magique 3D

September 2, 2013

2D Helmholtz isotropic elastic equations DG formulation of the equations Numerical results Conclusion-Perspectives

Examples of the seismic applications

2D Helmholtz isotropic elastic equations DG formulation of the equations Numerical results Conclusion-Perspectives

2D Helmholtz isotropic elastic equations DG formulation of the equations Numerical results Conclusion-Perspectives

Imaging method : the full wave inversion

• Quantitative high resolution images of the subsurface physical parameters

Forward problem of the inversion process

• Elastic waves propagation in harmonic domain : Helmholtz equation

2D Helmholtz isotropic elastic equations DG formulation of the equations Numerical results Conclusion-Perspectives

Imaging method : the full wave inversion

• Quantitative high resolution images of the subsurface physical parameters

Forward problem of the inversion process

 Elastic waves propagation in harmonic domain : Helmholtz equation

2D Helmholtz isotropic elastic equations DG formulation of the equations Numerical results Conclusion-Perspectives

Seismic imaging in heterogeneous complex media

- Complex topography
- High heterogeneities

DG method

- Use of triangular unstructured meshes
- Flexible choice of interpolation orders (*p adaptativity*)

2D Helmholtz isotropic elastic equations DG formulation of the equations Numerical results Conclusion-Perspectives

Seismic imaging in heterogeneous complex media

- Complex topography
- High heterogeneities

DG method

- Use of triangular unstructured meshes
- Flexible choice of interpolation orders (*p adaptativity*)

2D Helmholtz isotropic elastic equations DG formulation of the equations Numerical results Conclusion-Perspectives

Drawback of DG method

• Important computational cost

Main objective of the thesis

- Development of an hybridizable DG (HDG) method
- Development of a reference method, a classical DG method

2D Helmholtz isotropic elastic equations DG formulation of the equations Numerical results Conclusion-Perspectives

Drawback of DG method

• Important computational cost

Main objective of the thesis

- Development of an hybridizable DG (HDG) method
- Development of a reference method, a classical DG method

2D Helmholtz isotropic elastic equations DG formulation of the equations Numerical results Conclusion-Perspectives

Table of contents

- 1 2D Helmholtz isotropic elastic equations
- 2 DG formulation of the equations
 - Centered flux DG scheme
 - Upwind flux DG scheme

3 Numerical results

- Plane wave in an homogeneous medium
- Circular diffraction
 - Results for various frequencies
 - Results with the p adaptativity

Motivation 2D Helmholtz isotropic elastic equations DG formulation of the equations Numerical results

1 2D Helmholtz isotropic elastic equations

2D Helmholtz elastic equations

First order formulation of Helmoltz wave equations

 $\mathbf{x} = (x,y) \in \Omega \subset \mathbb{R}^2$,

$$\begin{cases} i\omega\rho(\mathbf{x})\mathbf{v}(\mathbf{x}) = \nabla \cdot \underline{\underline{\sigma}}(\mathbf{x}) + f_s(\mathbf{x}) \\ i\omega\underline{\underline{\sigma}}(\mathbf{x}) = \underline{\underline{C}}(\mathbf{x}) \underline{\underline{\varepsilon}}(\mathbf{v}(\mathbf{x})) \end{cases}$$

- Free surface condition : $\underline{\sigma}\mathbf{n} = 0$ on Γ_I
- Absorbing boundary condition : $\underline{\sigma} \mathbf{n} = v_{\rho}(\mathbf{v} \cdot \mathbf{n})\mathbf{n} + v_{s}(\mathbf{v} \cdot \mathbf{t})\mathbf{t}$ on Γ_{a}
- v : velocity vector
- $\underline{\sigma}$: stress tensor
- $\underline{\varepsilon}$: strain tensor

2D Helmholtz elastic equations

First order formulation of Helmoltz wave equations

 $\mathbf{x} = (x, y) \in \Omega \subset \mathbb{R}^2$,

$$\begin{cases} i\omega\rho(\mathbf{x})\mathbf{v}(\mathbf{x}) = \nabla \cdot \underline{\underline{\sigma}}(\mathbf{x}) + f_s(\mathbf{x}) \\ i\omega\underline{\underline{\sigma}}(\mathbf{x}) = \underline{\underline{C}}(\mathbf{x}) \underline{\underline{\varepsilon}}(\mathbf{v}(\mathbf{x})) \end{cases}$$

- Free surface condition : $\underline{\sigma}\mathbf{n} = 0$ on Γ_I
- Absorbing boundary condition : $\underline{\sigma} \mathbf{n} = v_p(\mathbf{v} \cdot \mathbf{n})\mathbf{n} + v_s(\mathbf{v} \cdot \mathbf{t})\mathbf{t}$ on Γ_a
- ρ : mass density

7/42

• <u>C</u> : tensor of elasticity coefficients

•
$$f_{s}$$
 : source term, $f_{s}\in L^{2}(\Omega)$

- v_p : P-wave velocity
- v_s : S-wave velocity

2D Helmholtz isotropic elastic equations

First order formulation of Helmoltz isotropic wave equations

$$i\omega \mathbf{v}_{\mathbf{x}} = \frac{1}{\rho} \left(\frac{\partial \sigma_{\mathbf{xx}}}{\partial \mathbf{x}} + \frac{\partial \sigma_{\mathbf{xz}}}{\partial z} \right)$$
$$i\omega \mathbf{v}_{\mathbf{z}} = \frac{1}{\rho} \left(\frac{\partial \sigma_{\mathbf{xz}}}{\partial \mathbf{x}} + \frac{\partial \sigma_{\mathbf{zz}}}{\partial z} \right)$$
$$i\omega \sigma_{\mathbf{xx}} = (\lambda + 2\mu) \frac{\partial \mathbf{v}_{\mathbf{x}}}{\partial \mathbf{x}} + \lambda \frac{\partial \mathbf{v}_{\mathbf{z}}}{\partial z}$$
$$i\omega \sigma_{\mathbf{zz}} = \lambda \frac{\partial \mathbf{v}_{\mathbf{x}}}{\partial \mathbf{x}} + (\lambda + 2\mu) \frac{\partial \mathbf{v}_{\mathbf{z}}}{\partial z}$$
$$i\omega \sigma_{\mathbf{xz}} = \mu \left(\frac{\partial \mathbf{v}_{\mathbf{x}}}{\partial z} + \frac{\partial \mathbf{v}_{\mathbf{z}}}{\partial x} \right)$$

$$\lambda$$
 and μ Lamé's constants and $v_{
m p}=\sqrt{rac{\lambda+2\mu}{
ho}}$ and $v_{s}=\sqrt{rac{\mu}{
ho}}$

2D Helmholtz isotropic elastic equations

Vectorial form $i\omega \mathbf{Q} + \mathbf{A}_{\mathbf{x}} \frac{\partial \mathbf{Q}}{\partial \mathbf{x}} + \mathbf{A}_{\mathbf{z}} \frac{\partial \mathbf{Q}}{\partial \mathbf{z}} = 0$ where $\mathbf{Q} = (\mathbf{v}_{x}, \mathbf{v}_{z}, \sigma_{xx}, \sigma_{zz}, \sigma_{xz})^{\mathrm{T}}$ and : $\mathbf{A}_{\mathbf{x}} = - \begin{pmatrix} 0 & 0 & \frac{1}{\rho} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{\rho} \\ \lambda + 2\mu & 0 & 0 & 0 & 0 \\ \lambda & 0 & 0 & 0 & 0 \\ 0 & \mu & 0 & 0 & 0 \end{pmatrix}, \quad \mathbf{A}_{\mathbf{z}} = - \begin{pmatrix} 0 & 0 & 0 & 0 & \frac{1}{\rho} \\ 0 & 0 & 0 & \frac{1}{\rho} & 0 \\ 0 & \lambda & 0 & 0 & 0 \\ 0 & \lambda + 2\mu & 0 & 0 & 0 \\ \mu & 0 & 0 & 0 & 0 \end{pmatrix}$

Centered flux DG scheme Upwind flux DG scheme

Contents

- DG formulation of the equations
 Centered flux DG scheme
 - Upwind flux DG scheme

3 Numerical results

Centered flux DG scheme Upwind flux DG scheme

DG methods in time domain for seismic applications

DG methods in time domain for seismic applications

- M. Dumbser and M. Käser, An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes - II; The three-dimensional isotropic case, 2006 (upwind scheme)
- S. Delcourte, L.Fezoui and N. Glinsky-Olivier, A high order discontinuous Galerkin method for the seismic wave propagation, 2009 (centered scheme)

Centered flux DG scheme Upwind flux DG scheme

Notations and definitions

Notations

- Γ₁ free surface boundary
- Γ_a the absorbing boundary
- \mathcal{T}_h mesh of Ω composed of triangles K
- \mathcal{F}_h set of all faces F of \mathcal{T}_h
- **n** the normal outward vector of an element K

Centered flux DG scheme Upwind flux DG scheme

Notations and definitions

Definitions

• Jump [[·]] of a vector **u** for *F* :

$$\llbracket u \rrbracket = u^+ \cdot n^+ + u^- \cdot n^- = u^+ \cdot n^+ - u^- \cdot n^+$$

• Jump of a tensor $\underline{\sigma}$ for F :

$$\llbracket \underline{\underline{\sigma}} \rrbracket = \underline{\underline{\sigma}}^+ \mathbf{n}^+ + \underline{\underline{\sigma}}^- \mathbf{n}^- = \underline{\underline{\sigma}}^+ \mathbf{n}^+ - \underline{\underline{\sigma}}^- \mathbf{n}^+$$

Centered flux DG scheme Upwind flux DG scheme

Notations and definitions

Definitions

• Average
$$\{\cdot\}$$
 of a variable u , for F :

$$\{u\}=\frac{u^++u^-}{2}$$

Centered flux DG scheme Upwind flux DG scheme

DG formulation of the original equation

$$i\omega \mathbf{Q} + \mathbf{A}_{\mathbf{x}} \frac{\partial \mathbf{Q}}{\partial x} + \mathbf{A}_{\mathbf{z}} \frac{\partial \mathbf{Q}}{\partial z} = \mathbf{0}$$

Centered flux DG scheme Upwind flux DG scheme

DG formulation of the original equation

$$i\omega \mathbf{Q}\varphi + \mathbf{A}_{\mathbf{x}}\frac{\partial \mathbf{Q}}{\partial x}\varphi + \mathbf{A}_{\mathbf{z}}\frac{\partial \mathbf{Q}}{\partial z}\varphi = \mathbf{0}$$

Centered flux DG scheme Upwind flux DG scheme

DG formulation of the original equation

$$\int_{K} i\omega \mathbf{Q}^{K} \varphi - \int_{K} \mathbf{A}_{x}^{K} \frac{\partial \mathbf{Q}^{K}}{\partial x} \varphi - \int_{K} \mathbf{A}_{z}^{K} \frac{\partial \mathbf{Q}^{K}}{\partial z} \varphi = \mathbf{0}$$

Centered flux DG scheme Upwind flux DG scheme

DG formulation of the original equation

$$\int_{K} i\omega \mathbf{Q}^{K} \varphi - \int_{K} \mathbf{A}_{x}^{K} \mathbf{Q}^{K} \frac{\partial \varphi}{\partial x} - \int_{K} \mathbf{A}_{z}^{K} \frac{\partial \varphi}{\partial z} + \sum_{F \in \mathcal{F}(K)} \int_{F} \mathbf{D}_{n} \mathbf{Q} \varphi = \mathbf{0}$$

$$\mathbf{D}_{\mathbf{n}} = n_{\mathbf{x}}\mathbf{A}_{\mathbf{x}} + n_{\mathbf{z}}\mathbf{A}_{\mathbf{z}} = - \begin{pmatrix} 0 & 0 & \frac{n_{\mathbf{x}}}{\rho} & 0 & \frac{n_{\mathbf{z}}}{\rho} \\ 0 & 0 & 0 & \frac{n_{\mathbf{z}}}{\rho} & \frac{n_{\mathbf{x}}}{\rho} \\ n_{\mathbf{x}}(\lambda + 2\mu) & n_{\mathbf{z}}\lambda & 0 & 0 & 0 \\ n_{\mathbf{x}}\lambda & n_{\mathbf{z}}(\lambda + 2\mu) & 0 & 0 & 0 \\ n_{\mathbf{z}}\mu & n_{\mathbf{x}}\mu & 0 & 0 & 0 \end{pmatrix}$$

Centered flux DG scheme Upwind flux DG scheme

DG formulation of the original equation

Global DG formulation

$$\sum_{K \in \mathcal{T}_{h}} \int_{K} i \omega \mathbf{Q} \varphi - \sum_{K \in \mathcal{T}_{h}} \int_{K} \mathbf{A}_{x} \mathbf{Q} \frac{\partial \varphi}{\partial x} - \sum_{K \in \mathcal{T}_{h}} \int_{K} \mathbf{A}_{z} \mathbf{Q} \frac{\partial \varphi}{\partial z} + \sum_{F \in \mathcal{F}_{h}} \int_{F} \left[\mathbf{D}_{n} \mathbf{Q} \varphi \right] = 0$$

Centered flux DG scheme Upwind flux DG scheme

DG formulation of the original equation

Global DG formulation

$$\sum_{K \in \mathcal{T}_{h}} \int_{K} i \omega \mathbf{Q} \varphi - \sum_{K \in \mathcal{T}_{h}} \int_{K} \mathbf{A}_{x} \mathbf{Q} \frac{\partial \varphi}{\partial x} - \sum_{K \in \mathcal{T}_{h}} \int_{K} \mathbf{A}_{z} \mathbf{Q} \frac{\partial \varphi}{\partial z} + \sum_{F \in \mathcal{F}_{h}} \int_{F} \left[\mathbf{D}_{n} \mathbf{Q} \varphi \right] = 0$$

$\llbracket \mathsf{D}_{\mathsf{n}} \mathsf{Q} \varphi \rrbracket \simeq (\mathsf{D}_{\mathsf{n}} \mathsf{Q}) \llbracket \varphi \rrbracket$

Centered flux DG scheme Upwind flux DG scheme

DG formulation of the original equation

Global DG formulation

$$\begin{split} \sum_{K \in \mathcal{T}_{h}} \int_{K} i \omega \mathbf{Q} \varphi &- \sum_{K \in \mathcal{T}_{h}} \int_{K} \mathbf{A}_{x} \mathbf{Q} \frac{\partial \varphi}{\partial x} - \sum_{K \in \mathcal{T}_{h}} \int_{K} \mathbf{A}_{z} \mathbf{Q} \frac{\partial \varphi}{\partial z} \\ &+ \sum_{F \in \mathcal{F}_{h}} \int_{F} \left(\mathbf{D}_{n} \mathbf{Q} \right) \llbracket \varphi \rrbracket = 0 \end{split}$$

Centered flux DG scheme Upwind flux DG scheme

Centered flux DG scheme

Centered flux on a face F

$$(\mathbf{D}_{\mathbf{n}}\mathbf{Q})|_{F} = \{\mathbf{D}_{\mathbf{n}}\mathbf{Q}\} = \frac{1}{2} \left(\mathbf{D}_{\mathbf{n}}{}^{K}\mathbf{Q}^{K} + \mathbf{D}_{\mathbf{n}}{}^{K'}\mathbf{Q}^{K'}\right)$$

Centered flux DG scheme

$$\int_{K} i\omega \mathbf{Q}^{K} \varphi - \int_{K} \mathbf{A}_{x}^{K} \mathbf{Q}^{K} \frac{\partial \varphi}{\partial x} - \int_{K} \mathbf{A}_{z}^{K} \mathbf{Q}^{K} \frac{\partial \varphi}{\partial z} + \sum_{F} \int_{F} \frac{1}{2} \left(\mathbf{D}_{\mathbf{n}}^{K} \mathbf{Q}^{K} + \mathbf{D}_{\mathbf{n}}^{K'} \mathbf{Q}^{K'} \right) \varphi = \mathbf{0}$$

Centered flux DG scheme Upwind flux DG scheme

Upwind flux DG scheme

Definition

$$\left\{ \begin{array}{rcl} \mathsf{D}_n^{\,+} &=& \mathsf{R}_n \Gamma^+ \left(\mathsf{R}_n\right)^{-1} \\ \mathsf{D}_n^{\,-} &=& \mathsf{R}_n \Gamma^- \left(\mathsf{R}_n\right)^{-1} \end{array} \right.$$

where

Centered flux DG scheme Upwind flux DG scheme

Upwind flux DG scheme

Definition

$$\begin{cases} D_{n}^{+} = R_{n}\Gamma^{+}(R_{n})^{-1} \\ D_{n}^{-} = R_{n}\Gamma^{-}(R_{n})^{-1} \end{cases}$$

and

$$\mathbf{R}_{n} = \begin{pmatrix} n_{x}\mathbf{v}_{p} & -n_{z}\mathbf{v}_{s} & 0 & n_{z}\mathbf{v}_{s} & -n_{x}\mathbf{v}_{p} \\ n_{z}\mathbf{v}_{p} & n_{x}\mathbf{v}_{s} & 0 & -n_{x}\mathbf{v}_{s} & -n_{z}\mathbf{v}_{p} \\ \lambda + 2n_{x}^{2}\mu & -2n_{z}n_{x}\mu & n_{z}^{2} & -2n_{z}n_{x}\mu & \lambda + 2n_{x}^{2}\mu \\ \lambda + 2n_{z}^{2}\mu & 2n_{z}n_{x}\mu & n_{x}^{2} & 2n_{z}n_{x}\mu & \lambda + 2n_{z}^{2}\mu \\ 2n_{z}n_{x}\mu & \mu(n_{x}^{2} - n_{z}^{2}) & -n_{x}n_{z} & \mu(n_{x}^{2} - n_{z}^{2}) & 2n_{z}n_{x}\mu \end{pmatrix}$$

Centered flux DG scheme Upwind flux DG scheme

Upwind flux DG scheme

Upwind flux on a face F

$$\left(\mathsf{D}_{\mathsf{n}}\mathsf{Q}\right)|_{\mathsf{F}} = \left(\mathsf{D}_{\mathsf{n}}^{\mathsf{K}}\right)^{+}\mathsf{Q}^{\mathsf{K}} + \left(\mathsf{D}_{\mathsf{n}}^{\mathsf{K}'}\right)^{-}\mathsf{Q}^{\mathsf{K}'}$$

Upwind flux DG scheme

$$\int_{K} i\omega \mathbf{Q}^{K} \varphi - \int_{K} \mathbf{A}_{x}^{K} \mathbf{Q}^{K} \frac{\partial \varphi}{\partial x} - \int_{K} \mathbf{A}_{z}^{K} \mathbf{Q}^{K} \frac{\partial \varphi}{\partial z} + \sum_{F} \int_{F} \left[\left(\mathbf{D}_{\mathbf{n}}^{K} \right)^{+} \mathbf{Q}^{K} + \left(\mathbf{D}_{\mathbf{n}}^{K'} \right)^{-} \mathbf{Q}^{K'} \right] \varphi = 0$$

Plane wave in an homogeneous medium Circular diffraction

Contents

1 2D Helmholtz isotropic elastic equations

2 DG formulation of the equations

3 Numerical results

- Plane wave in an homogeneous medium
- Circular diffraction
 - Results for various frequencies
 - Results with the p adaptativity

Plane wave

Computational domain Ω setting

Plane wave in an homogeneous medium Circular diffraction

• Physical parameters :

•
$$\rho = 2.10^3 kg.m^{-3}$$

•
$$\lambda = 1, 6.10^{1}0Pa$$

•
$$v_p = 4.10^3 m.s^{-1}$$

•
$$v_s = 2.10^3 m.s^{-1}$$

- Boundary :
 - boundary conditions on ∂Ω such as :

$$u = \nabla e^{i(k\cos\theta x + k\sin\theta y)}$$

where $k = \frac{\omega}{v_p}$ or $k = \frac{\omega}{v_s}$

Plane wave in an homogeneous medium Circular diffraction

Plane wave for a frequency f = 2 Hz, component V_x

Exact solution

 P_2 centered flux DG formulation

Plane wave in an homogeneous medium Circular diffraction

Plane wave for a frequency f = 2 Hz, component V_x

Exact solution

 P_2 upwind flux DG formulation

Plane wave in an homogeneous medium Circular diffraction

Plane wave

Plane wave in an homogeneous medium Circular diffraction

Plane wave

Mesh size h

L₂-error for the upwind flux

Plane wave in an homogeneous medium Circular diffraction

Circular diffraction

Configuration of the computational domain $\boldsymbol{\Omega}$

- Physical parameters :
 - $\rho = 2.10^3 kg.m^{-3}$
 - $\lambda = 1, 6.10^{1}0Pa$
 - $\mu = 8.10^9 Pa$

•
$$v_p = 4.10^3 m.s^{-1}$$

•
$$v_s = 2.10^3 m.s^{-1}$$

- Boundary :
 - Γ_1 is a free surface : $\sigma \mathbf{n} = 0$
 - $\overline{\overline{\Gamma}}_a$ absorbing boundary : $\underline{\sigma}\mathbf{n} = v_p(\mathbf{v}\cdot\mathbf{n})\mathbf{n} + v_s(\mathbf{v}\cdot\mathbf{t})\mathbf{t}$

• *a* = 2000*m*

• b = 8000m

• \mathcal{T}_h composed of 9653 elements

M. Bonnasse-Gahot

Plane wave in an homogeneous medium Circular diffraction

Results for various frequencies : f = 2 Hz

Exact solution

 P_1 centered scheme

Plane wave in an homogeneous medium Circular diffraction

Results for various frequencies : f = 2 Hz

Exact solution

 P_1 upwind scheme

Plane wave in an homogeneous medium Circular diffraction

Results for various frequencies : f = 2 Hz

Nb dof		Centered	Upwind
144795	V_x L_2 -error	3.44e-01	1.49e-01
(P_1)	Factres. time (s)	13	16
	Memory	800	980
289590	V_x L_2 -error	4.41e-02	4.67e-02
(<i>P</i> ₂)	Factres. time (s)	40	57
	Memory	1900	2800

Numerical statistics

Plane wave in an homogeneous medium Circular diffraction

Results for various frequencies : f = 4 Hz

Exact solution

 P_2 centered scheme

Plane wave in an homogeneous medium Circular diffraction

Results for various frequencies : f = 4 Hz

Exact solution

P2 upwind scheme

Plane wave in an homogeneous medium Circular diffraction

Results for various frequencies : f = 4 Hz

Nb dof		Centered	Upwind
144795	V_x L_2 -error	1.19	0.506
	Factres. time (s)	13	16
	Memory	800	970
289590	V_x L_2 -error	4.24e-01	1.66e-01
	Factres. time (s)	40	57
	Memory	1900	2800

Numerical statistics

Plane wave in an homogeneous medium Circular diffraction

Results with p - adaptativity

Area of the triangle	Interpolation order	Number of triangles	
]0 ;10000]	0	3	
]10000 ;15000]	1	1745	
]15000 ;20000]	2	3999	
]20000 ;25000]	3	2658	
]25000 ;30000]	4	1248	

Distribution of the interpolation orders

Plane wave in an homogeneous medium Circular diffraction

Results with p - adaptativity: f = 2 Hz

Exact solution

"p-local" centered scheme

Plane wave in an homogeneous medium Circular diffraction

Results with p - adaptativity: f = 2 Hz

Exact solution

"p-local" upwind scheme

Plane wave in an homogeneous medium Circular diffraction

Results with p - adaptativity: f = 4 Hz

Exact solution

"p-local" centered scheme

Plane wave in an homogeneous medium Circular diffraction

Results with p - adaptativity: f = 4 Hz

Exact solution

"p-local" upwind scheme

Plane wave in an homogeneous medium Circular diffraction

Results with p - adaptativity

	f = 2 Hz		f = 4 Hz	
	Centered	Upwind	Centered	Upwind
V_x L_2 -error	5.02e-02	6.00e-02	2.83e-01	2.76e-01
Factres. time (s)	57	79	57	80
Memory	3000	3800	3000	3800

Numerical statistics for both schemes as function of the frequency

Plane wave in an homogeneous medium Circular diffraction

Comparison between p - adaptativity and p - global for f = 2Hz

	p — adaptativity		p — global	
	Centered	Upwind	Centered	Upwind
V_x L_2 -error	5.02e-02	6.00e-02	4.41e-02	4.41e-02
Factres. time (s)	57	79	40	57
Memory	3000	3800	1900	2800

Plane wave in an homogeneous medium Circular diffraction

Comparison between p - adaptativity and p - global for f = 4Hz

	p — adaptativity		p — global	
	Centered	Upwind	Centered	Upwind
V_x L_2 -error	2.83e-01	2.75e-01	4.24e-01	1.66e-01
Factres. time (s)	57	80	40	57
Memory	3000	3800	1900	2800

- 2 DG formulation of the equations
- 3 Numerical results
- 4 Conclusion-Perspectives

Conclusion-Perspectives

Conclusion

- Upwind flux DG formulation gives better results on coarse meshes or for high frequencies than centered flux DG formulation
- With the upwind flux DG formulation we obtain one convergence order more than the centered flux DG formulation

- Develop 3D upwind flux DG formulation for Helmholtz equations
- Adapt the program for parallel computing

Conclusion-Perspectives

Conclusion

- Upwind flux DG formulation gives better results on coarse meshes or for high frequencies than centered flux DG formulation
- With the upwind flux DG formulation we obtain one convergence order more than the centered flux DG formulation

- Develop 3D upwind flux DG formulation for Helmholtz equations
- Adapt the program for parallel computing

Perspectives

Drawback

• Linear system with 5 unknowns to store

- Use of the upwind flux DG formulation as a reference method
- Compare upwind DG formulation with hybridizable DG formulation
- Construction of a HDG formulation
- Develop other linear solvers for sparse matrices (in collaboration with INRIA team, *Hiepacs*)

Perspectives

Drawback

• Linear system with 5 unknowns to store

- Use of the upwind flux DG formulation as a reference method
- Compare upwind DG formulation with hybridizable DG formulation
- Construction of a HDG formulation
- Develop other linear solvers for sparse matrices (in collaboration with INRIA team, *Hiepacs*)