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2D Helmholtz elastic equations

First order formulation of Helmoltz wave equations

x = (x , y) ∈ Ω ⊂ R2,{
iωρ(x)v(x) = ∇·σ(x) + fs(x)
iωσ(x) = C (x) ε(v(x))

Free surface condition : σn = 0 on Γl

Absorbing boundary condition : σn = vp(v · n)n + vs(v · t)t on Γa

v : velocity vector

σ : stress tensor

ε : strain tensor
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First order formulation of Helmoltz wave equations

x = (x , y) ∈ Ω ⊂ R2,{
iωρ(x)v(x) = ∇·σ(x) + fs(x)
iωσ(x) = C (x) ε(v(x))

Free surface condition : σn = 0 on Γl

Absorbing boundary condition : σn = vp(v · n)n + vs(v · t)t on Γa

ρ : mass density

C : tensor of elasticity
coe�cients

fs : source term, fs ∈ L2(Ω)

vp : P-wave velocity

vs : S-wave velocity
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2D Helmholtz isotropic elastic equations

First order formulation of Helmoltz isotropic wave equations

iωvx =
1

ρ

(
∂σxx

∂x
+
∂σxz

∂z

)
iωvz =

1

ρ

(
∂σxz

∂x
+
∂σzz

∂z

)
iωσxx = (λ+ 2µ)

∂vx
∂x

+ λ
∂vz
∂z

iωσzz = λ
∂vx
∂x

+ (λ+ 2µ)
∂vz
∂z

iωσxz = µ

(
∂vx
∂z

+
∂vz
∂x

)

λ and µ Lamé's constants and vp =

√
λ+ 2µ

ρ
and vs =

√
µ

ρ
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2D Helmholtz isotropic elastic equations

Vectorial form

iωQ+ Ax

∂Q

∂x
+ Az

∂Q

∂z
= 0

where Q = (vx , vz , σxx , σzz , σxz)T and :

Ax = −



0 0
1

ρ
0 0

0 0 0 0
1

ρ
λ+ 2µ 0 0 0 0

λ 0 0 0 0

0 µ 0 0 0


, Az = −



0 0 0 0
1

ρ

0 0 0
1

ρ
0

0 λ 0 0 0

0 λ+ 2µ 0 0 0

µ 0 0 0 0


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DG methods in time domain for seismic applications

DG methods in time domain for seismic applications

M. Dumbser and M. Käser, An arbitrary high-order

discontinuous Galerkin method for elastic waves on

unstructured meshes - II ; The three-dimensional isotropic

case, 2006 (upwind scheme)

S. Delcourte, L.Fezoui and N. Glinsky-Olivier, A high order

discontinuous Galerkin method for the seismic wave

propagation, 2009 (centered scheme)
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Notations and de�nitions

Notations

Γl free surface boundary

Γa the absorbing boundary

Th mesh of Ω composed of triangles K

Fh set of all faces F of Th
n the normal outward vector of an element K
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De�nitions

Jump [[·]] of a vector u for F :

[[u]] = u+ ·n++u− ·n− = u+ ·n+−u− ·n+

Jump of a tensor σ for F :

[[σ]] = σ+n+ + σ−n− = σ+n+ − σ−n+

K+

K−
n+

n−
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De�nitions

Average {·} of a variable u, for F :

{u} =
u+ + u−

2

K+

K−
n+

n−
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Local DG formulation∫
K

iωQKϕ−
∫
K

Ax
K ∂Q

K

∂x
ϕ−

∫
K

Az
K ∂Q

K

∂z
ϕ = 0
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DG formulation of the original equation

Local DG formulation∫
K

iωQKϕ−
∫
K

Ax
KQK ∂ϕ

∂x
−
∫
K

Az
K ∂ϕ

∂z
+

∑
F∈F(K)

∫
F

DnQϕ = 0

Dn = nxAx+nzAz = −



0 0
nx

ρ
0

nz

ρ

0 0 0
nz

ρ

nx

ρ
nx(λ+ 2µ) nzλ 0 0 0

nxλ nz(λ+ 2µ) 0 0 0
nzµ nxµ 0 0 0


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Global DG formulation

∑
K∈Th

∫
K

iωQϕ−
∑
K∈Th

∫
K

AxQ
∂ϕ

∂x
−
∑
K∈Th

∫
K

AzQ
∂ϕ

∂z

+
∑
F∈Fh

∫
F

[[DnQϕ]] = 0

15/42 M. Bonnasse-Gahot DG methods for Helmholtz wave equations



Motivation
2D Helmholtz isotropic elastic equations

DG formulation of the equations
Numerical results

Conclusion-Perspectives

Centered �ux DG scheme
Upwind �ux DG scheme

DG formulation of the original equation

Global DG formulation

∑
K∈Th

∫
K

iωQϕ−
∑
K∈Th

∫
K

AxQ
∂ϕ

∂x
−
∑
K∈Th

∫
K

AzQ
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Centered �ux DG scheme

Centered �ux on a face F

(DnQ) |F = {DnQ} =
1

2

(
Dn

KQK +Dn

K ′
QK ′

)
Centered �ux DG scheme∫

K

iωQKϕ−
∫
K

Ax
KQK ∂ϕ

∂x
−
∫
K

Az
KQK ∂ϕ

∂z

+
∑
F

∫
F

1

2

(
Dn

KQK +Dn

K ′
QK ′

)
ϕ = 0
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Upwind �ux DG scheme

De�nition {
Dn

+ = RnΓ+ (Rn)−1

Dn

− = RnΓ− (Rn)−1

where

Γ− = −



vp 0 0 0 0

0 vs 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


, Γ+ =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 vs 0

0 0 0 0 vp


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Upwind �ux DG scheme

De�nition {
Dn

+ = RnΓ+ (Rn)−1

Dn

− = RnΓ− (Rn)−1

and

Rn =



nxvp −nzvs 0 nzvs −nxvp

nzvp nxvs 0 −nxvs −nzvp

λ+ 2n2xµ −2nznxµ n2z −2nznxµ λ+ 2n2xµ

λ+ 2n2zµ 2nznxµ n2x 2nznxµ λ+ 2n2zµ

2nznxµ µ(n2x − n2z ) −nxnz µ(n2x − n2z ) 2nznxµ


17/42 M. Bonnasse-Gahot DG methods for Helmholtz wave equations



Motivation
2D Helmholtz isotropic elastic equations

DG formulation of the equations
Numerical results

Conclusion-Perspectives

Centered �ux DG scheme
Upwind �ux DG scheme

Upwind �ux DG scheme

Upwind �ux on a face F

(DnQ) |F =
(
Dn

K
)+

QK +
(
Dn

K ′
)−

QK ′

Upwind �ux DG scheme

∫
K

iωQKϕ−
∫
K

Ax
KQK ∂ϕ

∂x
−
∫
K

Az
KQK ∂ϕ

∂z

+
∑
F

∫
F

[(
Dn

K
)+

QK +
(
Dn

K ′
)−

QK ′
]
ϕ = 0

18/42 M. Bonnasse-Gahot DG methods for Helmholtz wave equations



Motivation
2D Helmholtz isotropic elastic equations

DG formulation of the equations
Numerical results

Conclusion-Perspectives

Plane wave in an homogeneous medium
Circular di�raction

Contents

1 2D Helmholtz isotropic elastic equations

2 DG formulation of the equations

3 Numerical results
Plane wave in an homogeneous medium
Circular di�raction

Results for various frequencies

Results with the p − adaptativity

4 Conclusion-Perspectives

19/42 M. Bonnasse-Gahot DG methods for Helmholtz wave equations



Motivation
2D Helmholtz isotropic elastic equations

DG formulation of the equations
Numerical results

Conclusion-Perspectives

Plane wave in an homogeneous medium
Circular di�raction

Plane wave

4000

4000

Computational domain Ω
setting

Physical parameters :

ρ = 2.103kg .m−3

λ = 1, 6.1010Pa
µ = 8.109Pa
vp = 4.103m.s−1

vs = 2.103m.s−1

Boundary :

boundary conditions on ∂Ω
such as :

u = ∇e i(k cos θx+k sin θy)

where k =
ω

vp
or k =

ω

vs
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Plane wave for a frequency f = 2 Hz, component Vx

Exact solution P2 upwind �ux DG formu-
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Circular di�raction

ΓlΓa

Ω

a

b

Con�guration of the computa-
tional domain Ω

Physical parameters :

ρ = 2.103kg .m−3

λ = 1, 6.1010Pa
µ = 8.109Pa
vp = 4.103m.s−1

vs = 2.103m.s−1

Boundary :

Γl is a free surface :

σn = 0

Γa absorbing boundary :

σn = vp(v ·n)n+ vs(v · t)t
a = 2000m

b = 8000m

Th composed of 9653
elements
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Plane wave in an homogeneous medium
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Results for various frequencies : f = 2 Hz

Nb dof Centered Upwind

144795 Vx L2-error 3.44e-01 1.49e-01
(P1) Fact.-res. time (s) 13 16

Memory 800 980

289590 Vx L2-error 4.41e-02 4.67e-02
(P2) Fact.-res. time (s) 40 57

Memory 1900 2800

Numerical statistics
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Results for various frequencies : f = 4 Hz

Nb dof Centered Upwind

144795 Vx L2-error 1.19 0.506
Fact.-res. time (s) 13 16

Memory 800 970

289590 Vx L2-error 4.24e-01 1.66e-01
Fact.-res. time (s) 40 57

Memory 1900 2800

Numerical statistics
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Results with p − adaptativity

Area of the triangle Interpolation order Number of triangles

]0 ;10000] 0 3
]10000 ;15000] 1 1745
]15000 ;20000] 2 3999
]20000 ;25000] 3 2658
]25000 ;30000] 4 1248

Distribution of the interpolation orders
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Plane wave in an homogeneous medium
Circular di�raction

Results with p − adaptativity

f = 2 Hz f = 4 Hz
Centered Upwind Centered Upwind

Vx L2-error 5.02e-02 6.00e-02 2.83e-01 2.76e-01
Fact.-res. time (s) 57 79 57 80

Memory 3000 3800 3000 3800

Numerical statistics for both schemes as function of the frequency
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Plane wave in an homogeneous medium
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Comparison between p − adaptativity and p − global for

f = 2Hz

p − adaptativity p − global

Centered Upwind Centered Upwind

Vx L2-error 5.02e-02 6.00e-02 4.41e-02 4.41e-02
Fact.-res. time (s) 57 79 40 57

Memory 3000 3800 1900 2800
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Comparison between p − adaptativity and p − global for

f = 4Hz

p − adaptativity p − global

Centered Upwind Centered Upwind

Vx L2-error 2.83e-01 2.75e-01 4.24e-01 1.66e-01
Fact.-res. time (s) 57 80 40 57

Memory 3000 3800 1900 2800
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