Multiscale Hybrid-Mixed Method for Reactive-Advective Dominated Models

Frédéric Valentin¹

Applied Mathematics Department, LNCC BRAZIL

> INRIA-Bordeaux September 2-5, 2013

¹Joint work with C. Harder and D. Paredes

Multiscale Hybrid-Mixed Method

HOSCAR Inspiration

Switch from

Making Existing Numerical Algorithm Parallel

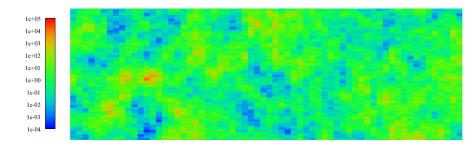
to

Making Parallel Numerical Algorithm

Multiscale Hybrid-Mixed Method

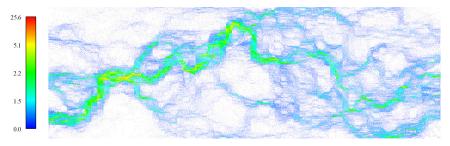
Motivation and Model

A Log-Normal Permeability Field



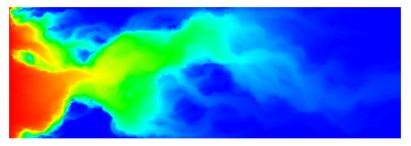
Multiscale Hybrid-Mixed Method Motivation and Model

A Typical Velocity Field



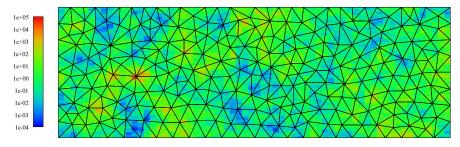
Multiscale Hybrid-Mixed Method Motivation and Model

A Typical Advective Dominated Transport



Multiscale Hybrid-Mixed Method Motivation and Model

Upscalling



Reactive-Advective-Diffusive Model

Find u such that

 $-\nabla\cdot D\,u+\sigma\,u=f\quad\text{in }\Omega,\quad u=0\quad\text{on }\partial\Omega$

where

$$D u := \varepsilon \nabla u - \boldsymbol{\alpha} u$$

•
$$\varepsilon, \sigma > 0$$
 and $\nabla \cdot \boldsymbol{\alpha} = 0$

 $\boldsymbol{\varepsilon} \ll |\boldsymbol{\alpha}| \ h \quad \text{and/or} \quad \boldsymbol{\varepsilon} \ll \sigma \ h^2$

 $\triangleright \varepsilon$ and α may have *multi-scale* features

Finite Element: u and Du

Galerkin method with \mathbb{P}_k elements

Basis functions are "ignorant" of multi-scale structures

₩

Lack of approximation on coarse meshes

A (incomplete) State-of-the-Art: RAD

Boundary Layers

Brezzi et al. (1996)RFB Hughes et al. (2000)VMS Hou et al. (2004)MsFEM Franca et al. (2005)PGEM LDG-H Cockburn et al. (2009)

Heterogenous Media

MsFEM	Hou et al. (1997)
UpFEM	Sangalli (2003)
RFB	Arbogast (2004)
MMMFEM	Yotov et al. (2011)
	Wheeler et al. (2011)

The General MHM Idea

Hybrid Formulation (Raviart-Thomas '77)

Classical Weak Form: Find $u \in U$ such that

$$a(u,v)_{\Omega}=(f,v)_{\Omega} \quad \forall v\in U$$

Take \mathcal{T}_h a (coarse) partition of Ω and set

$$V := \oplus \sum_{K \in \mathcal{T}_h} U(K)$$

Hybrid Form : Find $(u, \lambda) \in V \times \Lambda$ such that

$$\begin{aligned} a(u,v)_{\mathcal{T}_h} + (\lambda,v)_{\partial \mathcal{T}_h} &= (f,v)_{\mathcal{T}_h} \quad \forall v \in V \\ (\mu,u)_{\partial \mathcal{T}_h} &= 0 \quad \forall \mu \in \Lambda \end{aligned}$$

Solution Decomposition Hybrid Form : Find $(u, \lambda) \in V \times \Lambda$ such that

$$\begin{aligned} a(u,v)_{\mathcal{T}_h} + (\lambda,v)_{\partial \mathcal{T}_h} &= (f, v)_{\mathcal{T}_h} \quad \forall v \in V \\ (\mu,u)_{\partial \mathcal{T}_h} &= 0 \quad \forall \mu \in \Lambda \end{aligned}$$

▶ First equation \Leftrightarrow Collection of Local Problems²

$$a(u,v)_K = (f, v)_K - (\lambda, v)_{\partial K} \Rightarrow \quad u|_K = T \lambda + \hat{T} f$$

▶ Second Equation \Leftrightarrow Global Coarse Problem on Faces

$$(\mu, u)_{\partial \mathcal{T}_h} = 0 \quad \Leftrightarrow \quad (\mu, T \lambda)_{\partial \mathcal{T}_h} = -(\mu, \hat{T} f)_{\partial \mathcal{T}_h}$$

 $^2\mathrm{Hyp:}~T,\,\hat{T}$ are well-defined. Else see Harder-Paredes-Valentin, JCP '13

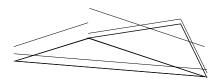
The MHM Method

Finite Dimensional Space

We only need to select

 $\Lambda_h \subset \Lambda$

$$\lambda_h = \sum_i c_i \, \psi_i$$



The MHM Method

Find $\lambda_h \in \Lambda_h$ such that $(\mu_h, T \lambda_h)_{\partial \mathcal{T}_h} = -(\mu_h, \hat{T} f)_{\partial \mathcal{T}_h} \quad \forall \mu_h \in \Lambda_h$

where $T \lambda_h = \sum_i c_i \eta_i$ and $\hat{T} f$

$$a(\boldsymbol{\eta_i}, v)_K = -(\boldsymbol{\psi_i}, v)_{\partial K}$$
$$a(\hat{T} f, v)_K = (f, v)_K$$



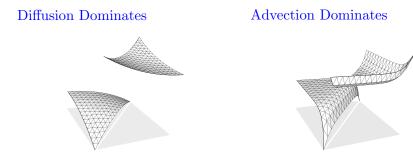
 ψ_i

 Set

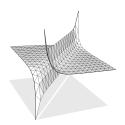
$$u_h = T\,\lambda_h + \hat{T}\,f$$

Reactive-Advective-Diffusive Case

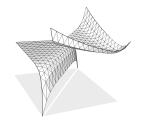
Setting MHM for RAD



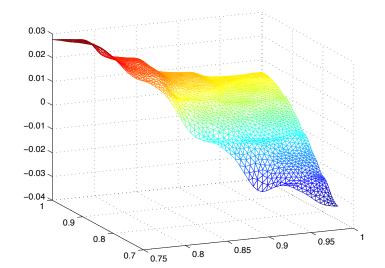
Reaction Dominates



Reaction-Advection Dominates



A Typical Heterogenous Base Function



Considerations on the Method

HMH Method is Well-Posed and Optimal Convergent

$$u_h := T\lambda_h + \hat{T}f \quad ext{and} \quad {\pmb{\sigma}}_h := D\,u_h + rac{1}{2}{\pmb{lpha}}\,u_h \in H(div,\Omega)$$

$$\int_{K} \nabla \cdot D \, u_h + \sigma \, u_h = \int_{K} f \quad \text{(Local Conservation)}$$

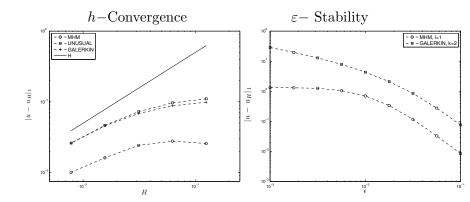
An (Face) A Posteriori Error Estimator + Adaptativity

INVITATION TO DIEGO PAREDES' TALK

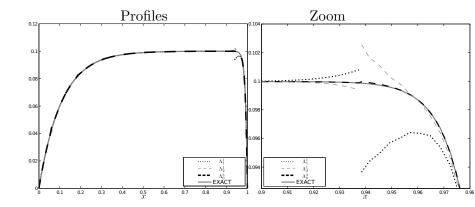
Numerical Validation

Multiscale Hybrid-Mixed Method └─MHM Method

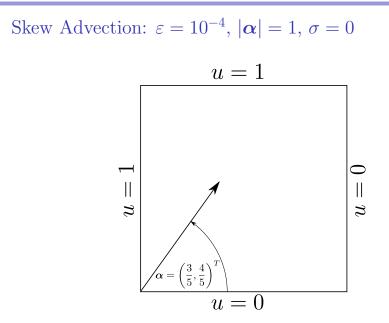
 $\varepsilon = 10^{-2}, |\boldsymbol{\alpha}| = 1 \text{ and } \sigma = 100$



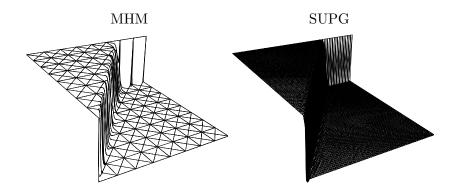
Space Λ_h : Piecewise Low-Order Λ_h is the Best



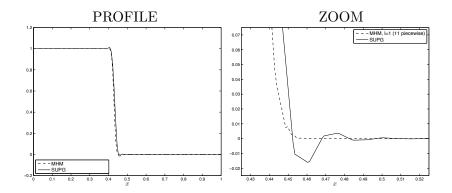
Multiscale Hybrid-Mixed Method └─MHM Method

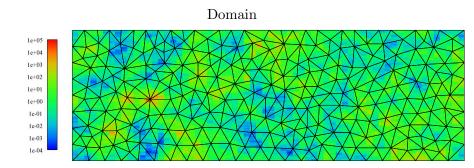


Same Order and D.O.Fs

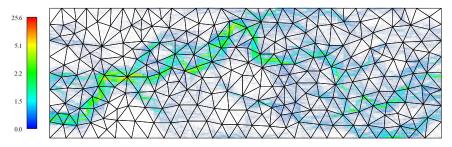


Internal Layer: No Need of Shock-Capturing



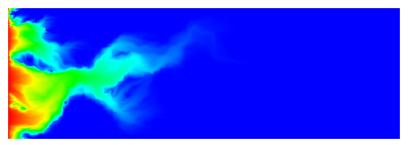


Darcy Velocity³

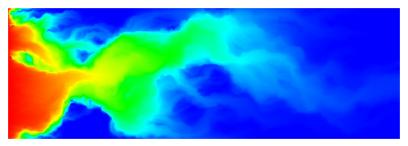


 $^{^{3}\}mathrm{Harder}\text{-}\mathrm{Paredes}\text{-}\mathrm{Valentin},$ JCP 2013

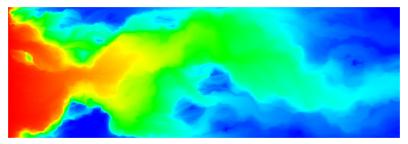
$$T = 1$$

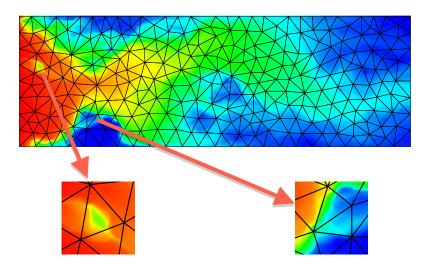


$$T = 2.5$$



$$T = 5.0$$





Conclusion

- ▶ New multiscale method for heterogenous RAD problems
- ▶ Include local upscaling and crossing interfaces
- ▶ Capture boundary layers on coarse meshes
- Locally conservative
- ▶ Highly adapted to parallel computation

 $\begin{array}{c} \mbox{Multiscale Hybrid-Mixed Method} \\ \mbox{${\sqsubseteq$Conclusion}$} \end{array}$

Coming Up Soon

MHM Method for Wave Problems

on

Highly Heterogeneous Media

Acoustic Model

Elasto-Dynamics Model

One Year Visiting Position and (possible) Pos-Doctoral Position at INRIA Sophia-Antipolis