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The Data eXtreme Lab (DEXL) 
Mission 

  To support in-silico science with data management techniques; 
–  To develop interdisciplinary research with contributions on data 

modelling, design and management; 
–  To develop tools and systems in support to in-silico science; 

  Currently 
–  3 researchers 
–  8 PhD students 
–  10 engineers 

  Projects 
–  Astronomy 
–  Medicine 
–  Sports Science 
–  Biology, Ecology 
–  Biodiversity 
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BigData for the 10s 

  BigData Processing and Analyses  
–  Concerns with Obtaining 

  Volume, Variety, Velocity 

–  Concerns with Usage 
  Sparse, infrequent 
  Exploratory, hypotheses driven 

  Interested in processing scientific BigData 



LSST – Large Synoptic Survey Telescope  

EMC Summer School 2013 

•  800 images p/ night 
     during 10 years !! 
•  3D Map of the Universe 
•  30 TeraBytes per night 
•  100 PetaBytes in 10 years 

•  105 disks of 1 TB 
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Skyserver – Sloan Project 
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Dark Energy survey - pipelines 
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Data Processing Pillars 
  Reduce the number of data retrieval 

operations 
  Efficient iterative processing over elements of 

sets; 
  Parallelism obtained by partitioning data;  

–  Or pipelining data trough parallel execution of 
operators 

  Explore the semantics of data operations; 
  Automatic decisions based on data statistics; 
  Data consumed by humans 
  Data of simple structure/semantics 



General Model 

R ---- f(x) R’ 
R1 ----- f(x) R1’ 
R2 ----- f(x) R2’ 

Rn ----- f(x) Rn’ 
… 

Ui=1,nR’i----- g(y) ---R’’ WHAT CHANGES? 



Processing BigData 

  Reduced data is still Big: millions of elements; 
–  Access patterns less predictable 

  Data may be: 
–  Incomplete 
–  Uncertain 
–  Ambiguous  

  Operation semantics are unknown (black box modules) 
–  User code implementation 
–  Arbitrary f  (a workflow) 

  Some operations are blocking, with respect to the consumption 
and production of data 

–  Parallel MPI based programs 
–  Prevent data-driven parallelism 

  Consumption 
–  Data analysis 



Big Data Model 

X---- <T1,M2,…, Vk> ---Z’ 
X1 ----- <T1,M2,…, Vk>  ---X1’ 
X2 ----- <T1,M2,…, Vk>  ---X2’ 

Xn ----- <T1,M2,…, Vk>  ---Xn’ 
… 

Ui=1,nX’i----- g(y) ---X’’ 



Workflow - Partial Ordering of T 

T1 T2 T3 

T5 T1 T4 

T3 

T2 

Where each          is an activity 



T1 T2 T3 T1 T2 T3 

Workflow DB – complete picture 

T1 T2 T3 

DB 

Files 



General Problem 

  To Conceive an efficient and robust workflow 
execution strategy that considers data 
retrieved from databases and files produced 
in intermediate steps 



PREVIOUS WORK IN THE 
COLLABORATION: LNCC, 
COPPE-UFRJ, INRIA - ZENITH 



Partitioning the DB into Blocks 
Work with: Miguel Liroz-Gistau,  
Esther, Patrick, Reza 

R(a1,…,a9) 

B2 

B1 

Bm 

… 

How to compute 
a partitioning 
strategy according 
to a known workload 
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Workflow algebra and optimization 
Eduardo Ogasawara,  
Marta Mattoso, Patrick Valduriez 

  Scientific workflow definition mapped to a 
known data model 
–  Input/output modelled as relations 
–  workflow activities mapped to operators in a 

generic algebra; 
  Algebra operators describe input/output ratio 

–  Enables automatic analysis of workflow definition 
according to type of applied data transformation 

–  Enables automatic workflow transformation  



Objective 

  Processing big data by scientific workflows 
shall benefit from known data processing 
techniques 
–  Activities semantics  
–  Process to data locality 
–  Optimize data and files distribution 
–  Use generic MapReduce parallelism paradigma 



Approach 

  Use MapReduce paradigm to run scientific 
workflow 

  Define a allocation strategy that considers: 
–  The number of database partitions 
–  The number of map tasks 
–  The input/output semantics of workflow activities 
–  The number of reduce tasks 



Three scenarios evaluated 

  Exploring experimentally variations on |P|,     
|T|, |F|  as the basis for the model: 
a)  |P| =  1, |T| >> 1 
b)  |P| = |T|  >> 1 , D is a distributed database  
c)  |P| ≤ |T|  , |P|, |T| >> 1 

  Which data processing parallel strategy 
leads to best results in workflow execution? 



Parallel workflow evaluation  
on BigData 

HaDooPDB 

Dryad 
LINQ 
MS Research 



Architectural Viewpoint 
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Parallel workflow execution over 
Dark Energy Survey Catalog 

DBp1 

DBp2 

DBpn 

… 

SkyMap 

SkyMap 

SkyMap 

SkyAdd 

Partitioned  catalogue stored on PostgreSQL 



HaQoop 
  Hadoop – Open Source apache project 

–  A state of the art task parallelization framework for Big Data 
processing 

–  Split computation into two steps 
  Map (remember f ? ) 
  Reduce (remember g ? ) 

  To reuse Hadoop scalability, fall tolerance 
  To extend Hadoop with workflow expressions 

–  Make f  a general workflow engine (QEF) 
  Restricted workflow expressions 



QEF – Data Processing System 

  Designed based on principles of modern  
database query engines; 

  Extendable for any user code 
  Extendable for any data structure 

  Can be downloaded: http://dexl.lncc.br/qef 



Main technical characteristics 

  Pipeline (iterator execution model)  
  Iterations 
  Algebraic/control operations 

–  Allows both in-memory data exchange as file-based i/o 
–  Run in both CPUs and GPUs 
–  Push and pull data execution (using control operations) 

  Dynamic optimization 
–  Block-size computation 

  Global and local state 
–  Control tuples 

  Catalog 
–  Environment 
–  Statistics 
–  Metadata 

  Synchronous and asynchronous execution 



QEF as a Mappers & Reduce Job 
on Hadoop 

X1 ----- <T1,M2,…, Vk>  ---X1’ 
X2 ----- <T1,M2,…, Vk>  ---X2’ 

Xn ----- <T1,M2,…, Vk>  ---Xn’ 
… 

Ui=1,nX’i----- g(y) ---X’’ 



HaQoop architecture 

QEF 

Database DataNode 

Node 1 

QEF 

Database DataNode 

Node 2 
QEF 

Database DataNode 

Node n 

MapReduce 
Framework 

workflow Planner 

Scientific workflow 
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Example: SkyMap Workflow 
Select ra, dec 
From Catalog 
Where ra between 330 and 333 and  
dec  between -42 and -43 

SkyMapAdd 

SkyMapAdd 

Catalog table 
 - query returns 200 million sky 
objects 
 - uniformly distributed through 
nodes 
 - centralized mode 
    each tuple is logically 
partitioned 

.pkl files 



Example 

a) 

Select ra, dec 
From Catalog 
Where ra between 330 and 333 and  
dec  between -42 and -43 

SkyMap 

Map 

Catalog Table uniformly partitioned 

Reduce 

SCAN 

Map 

QEF 

SkyMapAdd 



Initial Experiments 
  Initial experiments 

–  Skymap scenario; 
  Cluster SGI 

–  Configurations: 20, 40 and 80 nodes; 
–  Each node: 

  2 proc. Intel Zeon – X5650, 6 cores, 2.67 GHz 
  24 GB RAM 
  500 GB HD 

  Data 
–  DES Catalog DC6B 

  Tasks 
–  Python 

  HAQOOP 
  Centralized version 

–  PostgreSQL 9.1 
  Distributed 

–  Pg_pool 
  Partirioned 

–  Multiple postgreSQL 
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Partitioned DB – Elapsed-time (s) 
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Final comments 

  Collaboration with Zenith-Inria team 
  Probable PhD student exchange in 2014 



MERCI – OBRIGADO  
fporto@lncc.br 



Processing Scientific Workflows 

  Analytical Workflows process a large part of Catalog data 
–  Catalogs are supported by few indexes, thus most queries 

scan tens-to-hundreds of millions of tuples 
  Parallelization comes as a rescue to reduce analyses 

elapsed-time, but 
–  Compromise between: 

  Data partitioning and degree of parallelization; 
–  Current solutions consider: 

  Centralized files to be distributed through nodes (MapReduce) 
–  [Alagianins, SIGMOD, 2012] NoDB – reading raw files without data 

ingestion; 
  Distributed databases (Qserv) to serve Workflow engines 

–  [ Wang.D.L,2011],  Qserv: A Distributed Shared-Nothing Database for the 
LSST catalog; 

  Centralized databases to serve Workflow Engine (Orchestration LineA) 
  Partitioned database to serve distributed queries (HadoopDB) 



HadoopDB - a step in between 
[Abouzeid09] 

  Offers parallelism and fault tolerance as Hadoop, 
with SQL queries pushed-down to postgreSQL 
DBMS; 

  Pushed-down queries are implemented as Map-
reduce functions; 

  Data are partitioned through nodes. 
–  Partitioning information stored in the catalog 
–  Distributed through the N nodes 



HadoopDB architecture 
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Example 

a) 

Select Year(SalesDate), 
Sum(revenue) 
From Sales 
Group by year(salesDate) 

FileSink Operator 

Map 

Table partitioned by year(SalesDate) b) 

Select Year(SalesDate), 
Sum(revenue) 
From Sales 
Group by year(salesDate) 

Reduce Sink Operator 

Map 

no partitioning by year(SalesDate) 

Group by Operator 

Sum Operator 

FileSink Operator 

Reduce 

Select year(SalesDate),sum(revenue) 
From Sales 
Group by year(salesDate) 



Processing Astronomy data 

Astronomy 
catalogs 

User access 
  - Ad-hoc queries 
  - downloads 

Scientific workflows 
     - Analysis 



Traditional WF–Database  
decoupled architecture 

act1 act2 act3 

DBp1 

Data is consolidated as  
input to the workflow engine 

Database 

Workflow engine 

DBp2 DBp3 



Problems 

  Data locality 
–  Workflow activities run in remote nodes wrt the 

partitioned data; 
  Load Balance 

–  Local processes facing different processing time 



Data locality 

  Traditional distributed query processing pushes 
operations through joins and unions so that can 
be done close to the data partitions; 

  Can we “localize” workflow activities? 
–  Moving activities in workflows require operation 

semantics to be exposed 
–  Mapping of workflow activities to a known algebra 
–  Equivalence of algebra expressions enabling pushing 

down operations 



Algebraic transformation 
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Workflow optimization process 

Generatation of 
search space 

Evaluation of search 
strategy 

Initial algebraic expressions 

Transformation 
rules 

Cost model 

Optimized algebraic expressions 

Equivalent algebraic expressions 

Searh 
more? 

yes 

no 



Pushing down workflow activities 

  A first naïve attempt 
–  Push down all operations before a Reduce; 

  Use a MapReduce implementation where 
–  Mappers execute the “pushed-down” operations 

close to the data 



Typical Implementation at LineA Portal 

Spatial partitioning 
Catalog DB 



Parallel workflow over partitioned 
data 

DBp1 

DBp2 

DBpn 

… 

SkyMap 

SkyMap 

SkyMap 

SkyAdd 

Partitioned  catalogue stored on PostgreSQL 



HQOOP - Parallelizing 
Pushed-down Scientific Workflows 

  Partition of data across cluster nodes 
–  Partitioning criteria 

  Spatial (currently used and necessary for some applications) 
  Random (possible in SkyMap) 
  Based on query workload (Miguel Liroz-Gestau’s Work) 

  Process the workflow close to data location 
–  Reduce data transfer 

  Use Apache/Hadoop Implementation to manage parallel 
execution 

  Widely used in Big Data processing; 
  Implements Map-Reduce programming paradigm; 
  Fault Tolerance of failed Map processes; 

  Use QEF as workflow Engine 
–  Implements Mapper interface 
–  Run workflows in Hadoop seamlessly; 



Integrated architecture 

act1 act 
2 

act3 act1 act 2 act3 act1 act 
2 

act3 
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Final 
Result 

Workflow engine Workflow engine Workflow engine 



Experiment Set-up 

  Cluster SGI 
–  Configurations: 1, 47 and 95 nodes; 
–  Each node: 

  2 proc. Intel Zeon – X5650, 6 cores, 2.67 GHz 
  24 GB RAM 
  500 GB HD 

  Data 
–  Catalog DC6B 

  Hadoop 
–  QEF workflow engine 



Preliminary Results 

  Preliminary results are encouraging: 
–  Baseline Orchestration layer (234 nodes) – 

approx. 46 min 
–  1 node HQOOP – approx. 35 min 
–  4 nodes HQOOP – approx. 12.3 min 
–  95 nodes (94 workers) HQOOP – approx. 2.10 

min 
–  95 nodes (94 workers) Hadoop+Python – approx. 

2.4 min 



Resulting Image 



Conclusions 
  Big data users (scientists) are in Big Trouble; 

–  Too much data, too fast, too complex; 
  Different expertise required to cooperate towards 

Big Data Management; 
  Adapted software development methods based 

on workflows; 
  Complete support to scientific exploration life-

cycle 
  Efficient workflow execution on Big Data 
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Overall performance 

0 
5 

10 
15 
20 
25 
30 
35 
40 
45 
50 

Baseline 
(234 

nodes) 

1 node 
HQOOP 

4 nodes 
HQOOP 

94 nodes 
HQOOP 

94 nodes 
Hadoop 

elapsed-time (min) 

linear scale-up 

0 

100 

200 

300 

400 

500 

600 

Baseline 
(234 

nodes) 

1 node 
HQOOP 

4 nodes 
HQOOP 

94 
nodes 

HQOOP 

94 
nodes 

Hadoop 

elapsed-time (min) 

linear scale-up 

% Linear Scale-up 



0 

200000 

400000 

600000 

800000 

1000000 

1200000 

1400000 

47 CENT 
QEF 

47 CENT 
SEM QEF 

94 CENT 
QEF 

94 CENT 
SEM QEF 

Tempo 
Hadoop 
Tempo 
Reduce  

0 

20000 

40000 

60000 

80000 

100000 

120000 

140000 

160000 

47 DIST 
QEF 

47 DIST 
SEM QEF 

94 DIST 
QEF 

94 DIST 
SEM QEF 

Tempo 
Hadoop 
Tempo 
Reduce  



Execution with 4 nodes 

Elapsed-time total:  11.27 min 





Adaptive and Extensible Query Engine 

  Extensible to data types 
  Extensible to application algebra 
  Extensible to execution model 
  Extensible to heterogeneous data sources 



Objective  

•  Offer a query processing framework that 
can be extended to adapt to data centric 
application needs;  	


•  Offer transparency in using resources to 
answer queries; 

•  Query optimization transparently introduced 

•  Standardize remote communication using web services even 
when dealing with large amount of unstructured data 

•  Run-time performance monitoring and decision  



Control Operators 
•  Add data-flow and transformation operators 
•  Isolate application oriented operators from 
execution model data-flow concerns 

•  parallel grid based execution model:	

•  Split/Merge -  controls the routing of tuples to parallel 

nodes and the corresponding unification of multiple 
routes to a single flow 

•  Send/Receive - marshalling/ unmarshalling of tuples 
and interface with communication mechanisms 

•  B2I/I2B - blocks and unblocks tuples 
•  Orbit - implements loop in a data-flow 
•  Fold/Unfold - logical serialization of complex structues 

(e.g. PointList to Points) 



The Execution Model 

Example of simple QEF Workflow	


Data sources 
(Input) 

Output 
Operator 

Possibly distributed over a 
Grid environment 

Integration unit (Tuple) 
containing data source units 



Iteration Model 

A B C 

DataSource 

OPEN OPEN OPEN 

A B C 

DataSource 

GETNEXT GETNEXT GETNEXT 

A B C 

DataSource 

CLOSE CLOSE CLOSE 

Results 



Distribution and Parallelization  
Operator distribution	


A Query Optimizer selects a set of operators in the QEP to 
execute over a Grid environment.	


A B2 C 

DataSource 

B1 

B3 



General Parallel Execution 
Model  

Remote QEP	


In order to parallelize an execution, the initial QEP is 
modified and sent to remote nodes to handle the 
distributed execution.	


Control operator 

Distributed operator 

User’s operator 

R : Receiver 

S : Sender 

Sp : Split 

M : Merge 

Initial 
plan 

Modified 
plan 



Modifying IQEP to adapt to 
execution model 

Particles 

Geometry 
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Orbit 

merge 
Split 

Send 

Receive 

B2I 

Send 

I2B 

Receive 

B2I 
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Query optimizer adds 
control operators according 
to execution model and 
IQEP statistics 

Local dataflow 
Remote dataflow 

Logical operator 

Control operator 

Control node 

Remote nodei 
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Grid node allocation algorithm 
(G2N) 

Grid Greedy Node scheduling algorithm (G2N)	


•  Offers maximum usage of scheduled resources 
during query evaluation. 

•  Basic idea : “an optimal parallel allocation strategy 
for an independent query operator … is the one in 
which the computed elapsed-time of its execution is 
as close as possible to the maximum sequential time 
in each node evaluating an instance of the operator”. 

A Bn 

Introduction 

Application 

Architecture 

Implem. 

Conclusion 

Principles 



Implementation 

•  Core development in Java 1.5. 

•  Globus toolkit 4. 

•  Derby DBMS (catalog). 

•  Tomcat, AJAX and Google Web Toolkit for user 
interface. 

•  Runs on Windows, Unix and Linux. 

•  source code, demo, user guide available at: 

http://dexl.lncc.br 



Summing-up 

  HadoopDB extends Hadoop with expressive query 
language, supported by DBMSs 

  Keeps Hadoop MapReduce framework 
  Queries are mapped to MapReduce tasks 
  For scientific applications is a question to be 

answered whether or not scientists will enjoy writing 
SQL queries 

  Algebraic like languages may seem more natural 
(eg. Pig Latin) 



Pig Latin - an high-level language 
alternative to SQL 

  The use of high-level languages such as 
SQL may not please scientific community; 

  Pig Latin tries to give an answer by providing 
a procedural language where primitives are 
Relational albegra operations; 

  Pig Latin: A not-so-foreign language for data 
processing, Christopher Olson, Benjamin 
Reed et al., SIGMOD08; 



Example 
  Urls (url, category, pagerank) 
  In SQL 

–  Select category, avg (pagerank) 
         from urls where pagerank > 0.2 
      group by category 
      having count(*) > 106  
  In PIG 

–  Groupurls = FILTER urls by Pagerank > 0.2; 
–  Groups= Group good-urls by category; 
–  Big-group=FILTER groups BY count(good_urls) > 106 

–  Output = FOREACH big-groups GENERATE 
   category, avg(good_urls_pagerank); 



Pig Latin 

  Program is a sequence of steps 
–  Each step executes one data transformation 

  Optimizations among steps can be 
dynamically generated, example: 
–  1) spam-urls= FILTER urls BY isSpam(url); 
–  2) Highrankurl = FILTER spam-url BY pagerank > 

0.8; 
1 2 
2 1 



Data Model 

  Types: 
–  Atom - a single atomic value; 
–  Tuple - a sequence of fields, eg.(‘DB’,’Science’,7) 
–  Bag - a collection of tuples with possible 

duplicates; 
–  Map - a collection of data items where for each 

data item a key is associated 
‘fanOf’  ‘flamengo’ 

‘music’ 

‘age’  20 



Operations 

  Per tuple processing: Foreach 
–  Allows the specification of iterations over bags 

  Ex: 
–  Expanded-queries=FOREACH queries generate userId,  

 expandedQuery (queryString); 
–  Each tuple in a bag should be independent of all others, so 

parallelization is possible; 

–  Flatten 
  Permits flattening of nested-tuples 

alice,  Ipod,nano 
Ipod, shuffle 

flatten alice, ipod, nano 
alice, ipod, shuffle 



Olympic Laboratory 


