HaQoop: scientific workflows over BigData

3rd HOSCAR Meeting Bordeaux, Sept. 2013

<u>Fabio Porto</u>, Douglas Ericson Oliveira Matheus Bandini, Henrique Kloh Reza Akbarinia, Patrick Valduriez

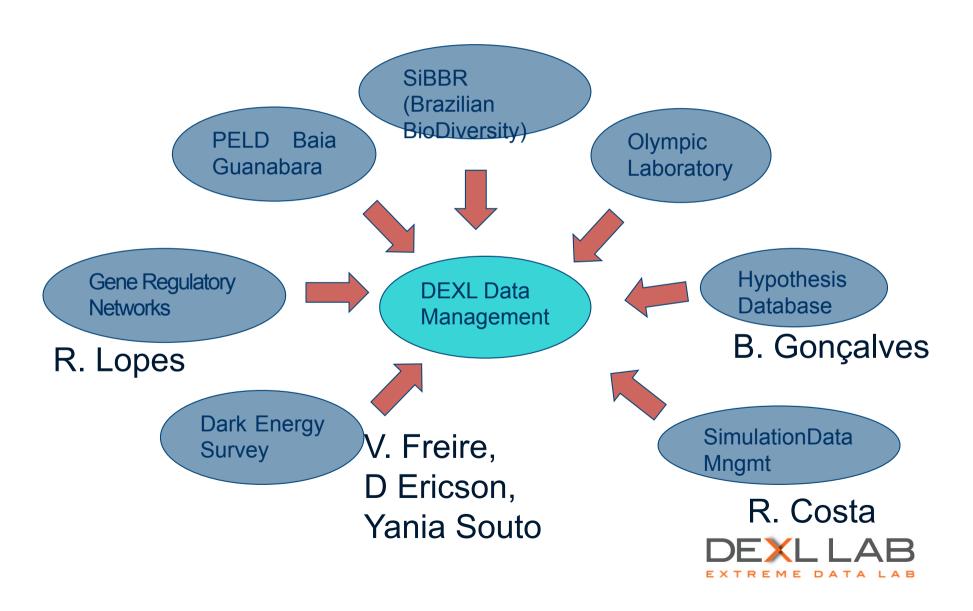
Outline

- Introduction
- Previous work in the collaboration
- HaQoop
- Initial experiments
- Final Comments

The Data eXtreme Lab (DEXL) Mission

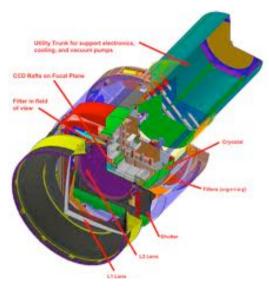
- To support in-silico science with data management techniques;
 - To develop interdisciplinary research with contributions on data modelling, design and management;
 - To develop tools and systems in support to in-silico science;
- Currently
 - 3 researchers
 - 8 PhD students
 - 10 engineers
- Projects
 - Astronomy
 - Medicine
 - Sports Science
 - Biology, Ecology
 - Biodiversity

Current projects



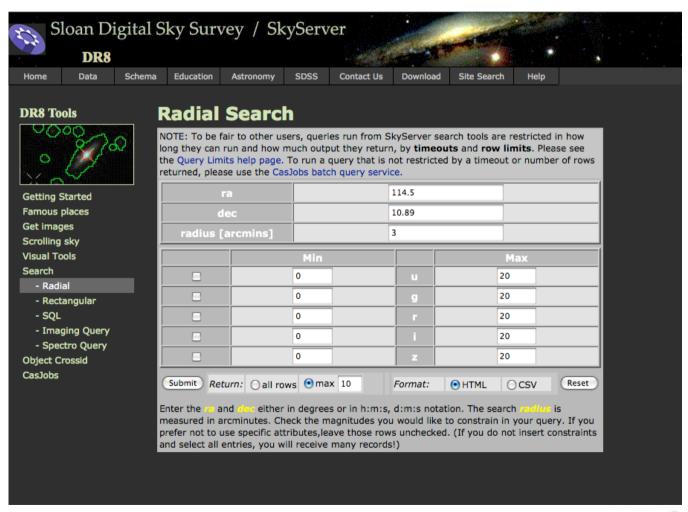
- BigData Processing and Analyses
 - Concerns with Obtaining
 - Volume, Variety, Velocity
 - Concerns with Usage
 - Sparse, infrequent
 - Exploratory, hypotheses driven
- Interested in processing scientific BigData

LSST – Large Synoptic Survey Telescope

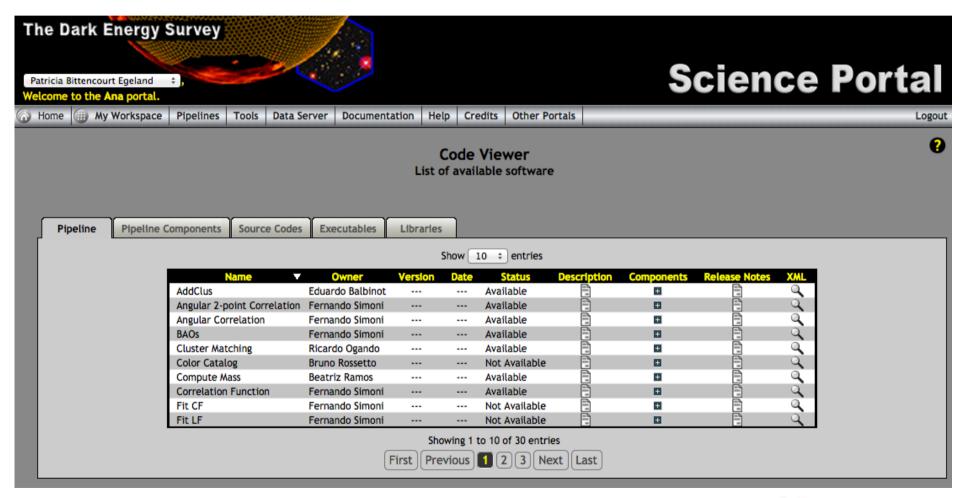


- 800 images p/ night during 10 years !!
- 3D Map of the Universe
- 30 TeraBytes per night
- 100 PetaBytes in 10 years
 - 10⁵ disks of 1 TB

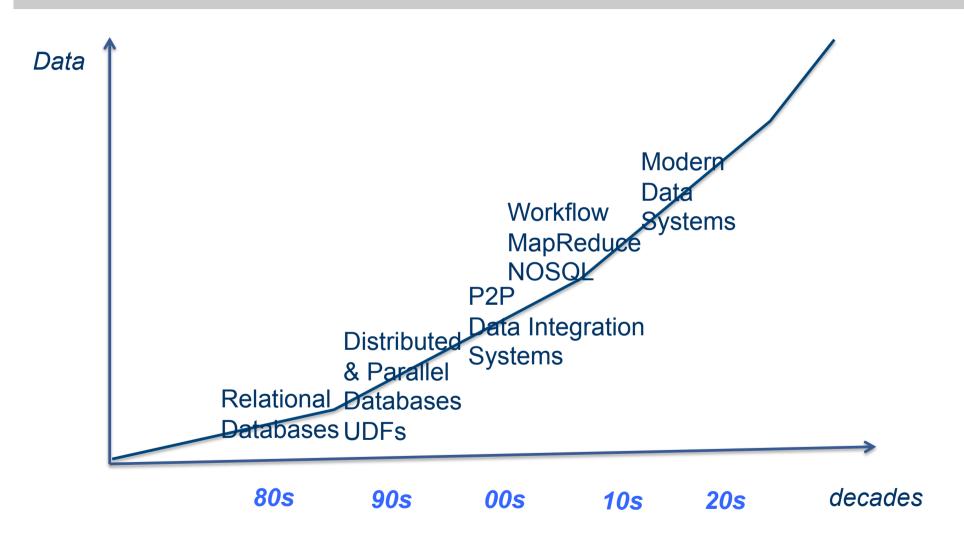
Skyserver – Sloan Project



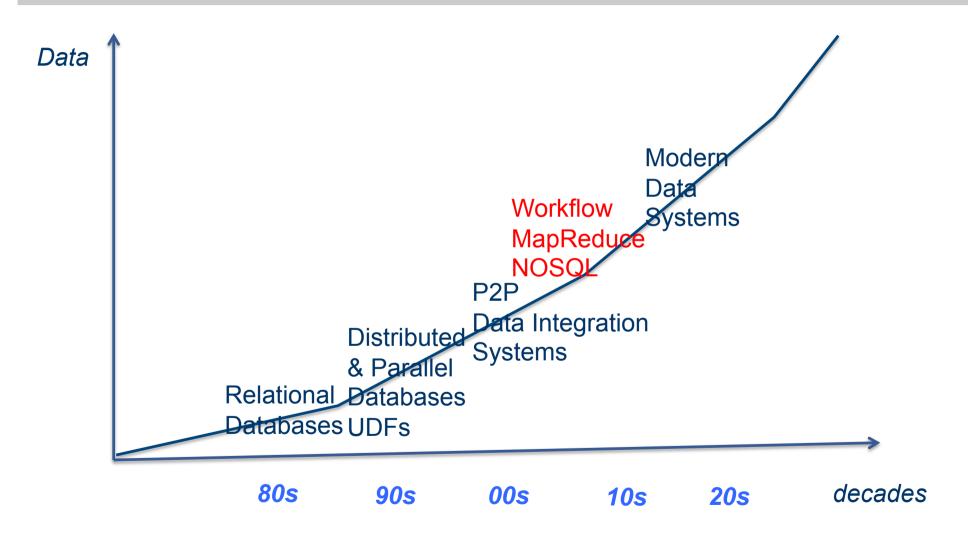
Dark Energy survey - pipelines



Data Processing Systems: an Evolution



Data Processing Systems: an Evolution



Data Processing Pillars

- Reduce the number of data retrieval operations
- Efficient iterative processing over elements of sets;
- Parallelism obtained by partitioning data;
 - Or pipelining data trough parallel execution of operators
- Explore the semantics of data operations;
- Automatic decisions based on data statistics;
- Data consumed by humans
- Data of simple structure/semantics

General Model

$$\mathcal{R} \longrightarrow f(x) \rightarrow \mathcal{R}'$$

$$\mathcal{R}_1 \longrightarrow f(x) \rightarrow \mathcal{R}_1'$$

$$\mathcal{R}_2 \longrightarrow f(x) \rightarrow \mathcal{R}_2'$$

$$\Re n - f(x) \rightarrow \Re n'$$

WHAT CHANGES?

- Reduced data is still Big: millions of elements;
 - Access patterns less predictable
- Data may be:
 - Incomplete
 - Uncertain
 - Ambiguous
- Operation semantics are unknown (black box modules)
 - User code implementation
 - Arbitrary f (a workflow)
- Some operations are blocking, with respect to the consumption and production of data
 - Parallel MPI based programs
 - Prevent data-driven parallelism
- Consumption
 - Data analysis

Big Data Model

$$\chi_{----} < \tau'_{1}, M_{2}, ..., \nu_{k} > --- > Z'$$

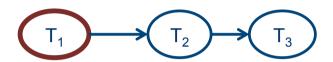
$$\chi_{1} ---- < \tau'_{1}, M_{2}, ..., \nu_{k} > --- > \chi'_{1}$$

$$\chi_{2} ---- < \tau'_{1}, M_{2}, ..., \nu_{k} > --- > \chi'_{2}$$

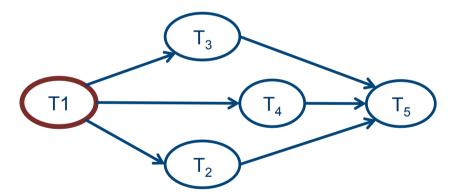
$$\chi_{n} \longrightarrow \langle \mathcal{T}'_{1}, \mathcal{M}_{2}, \dots, \mathcal{V}_{k} \rangle \longrightarrow \chi_{n}'$$

$$\mathcal{U}_{i=1,n} \chi'_{i} \longrightarrow \mathcal{G}(y) \longrightarrow \chi''$$

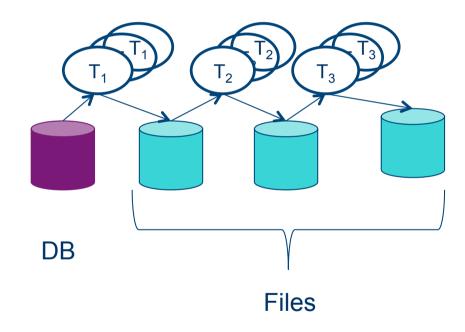
Workflow - Partial Ordering of \mathcal{T}



Where each is an activity



Workflow DB – complete picture

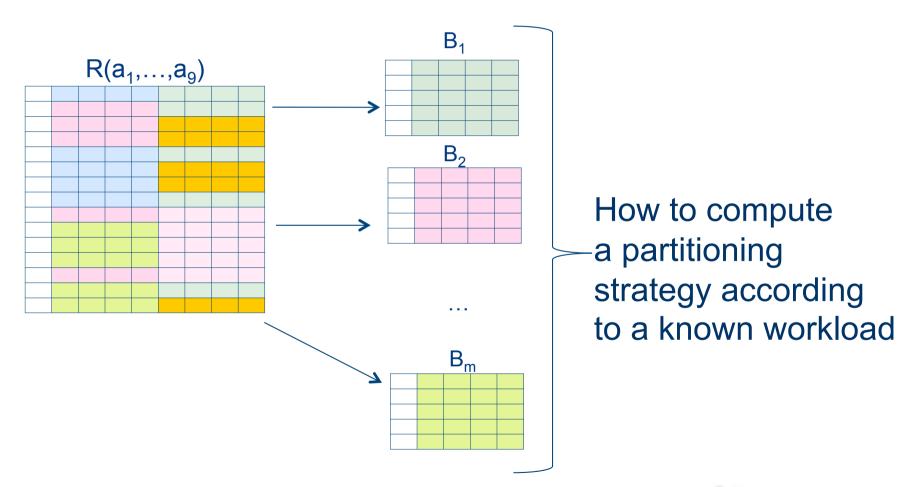


General Problem

 To Conceive an efficient and robust workflow execution strategy that considers data retrieved from databases and files produced in intermediate steps

PREVIOUS WORK IN THE COLLABORATION: LNCC, COPPE-UFRJ, INRIA - ZENITH

Partitioning the DB into Blocks Work with: Miguel Liroz-Gistau, Esther, Patrick, Reza



Workflow algebra and optimization Eduardo Ogasawara, Marta Mattoso, Patrick Valduriez

- Scientific workflow definition mapped to a known data model
 - Input/output modelled as relations
 - workflow activities mapped to operators in a generic algebra;
 - Algebra operators describe input/output ratio
 - Enables automatic analysis of workflow definition according to type of applied data transformation
 - Enables automatic workflow transformation

Objective

- Processing big data by scientific workflows shall benefit from known data processing techniques
 - Activities semantics + +
 - Process to data locality +
 - Optimize data and files distribution
 - Use generic MapReduce parallelism paradigma

Approach

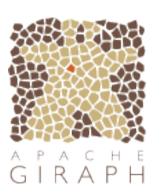
- Use MapReduce paradigm to run scientific workflow
- Define a allocation strategy that considers:
 - The number of database partitions
 - The number of map tasks
 - The input/output semantics of workflow activities
 - The number of reduce tasks

Three scenarios evaluated

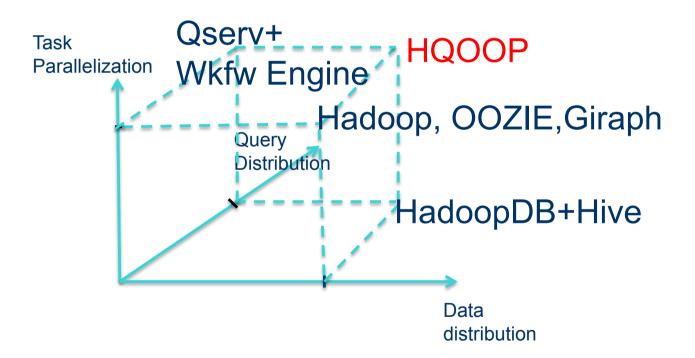
- Exploring experimentally variations on |P|,
 |T|, |F| as the basis for the model:
 - a) |P| = 1, |T| >> 1
 - b) |P| = |T| >> 1, D is a distributed database
 - c) $|P| \le |T|$, |P|, |T| >> 1
- Which data processing parallel strategy leads to best results in workflow execution?

Parallel workflow evaluation on BigData

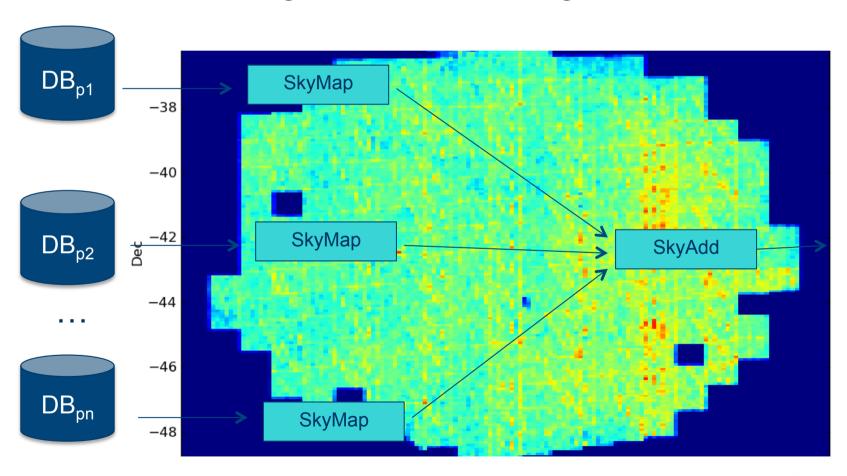
HaDooPDB



Architectural Viewpoint



Partitioned catalogue stored on PostgreSQL



HaQoop

- Hadoop Open Source apache project
 - A state of the art task parallelization framework for Big Data processing
 - Split computation into two steps
 - Map (remember f?)
 - Reduce (remember g?)
- To reuse Hadoop scalability, fall tolerance
- To extend Hadoop with workflow expressions
 - Make f a general workflow engine (QEF)
- Restricted workflow expressions

QEF - Data Processing System

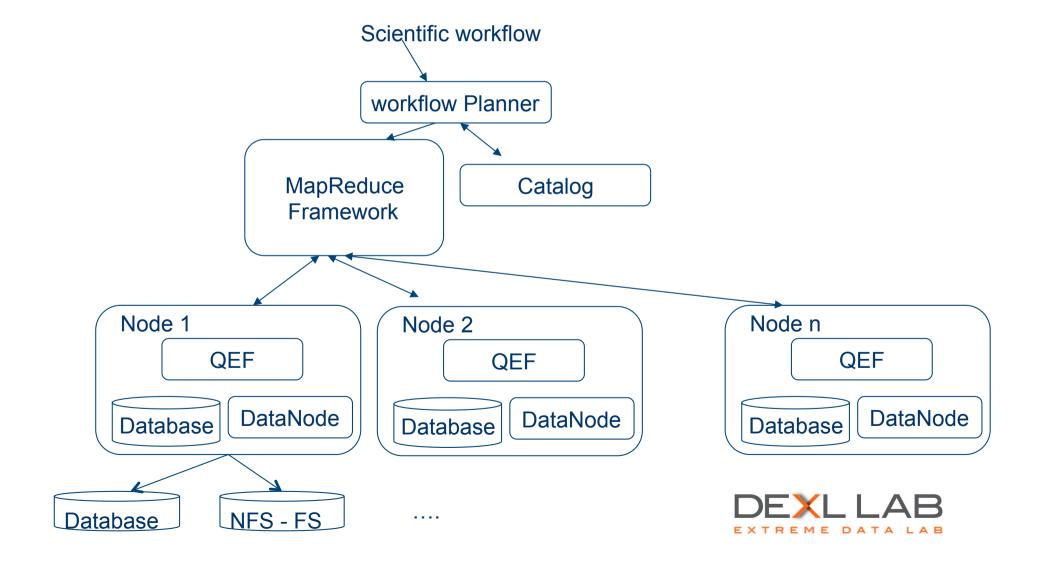
- Designed based on principles of modern database query engines;
- Extendable for any user code
- Extendable for any data structure
- Can be downloaded: http://dexl.lncc.br/qef

Main technical characteristics

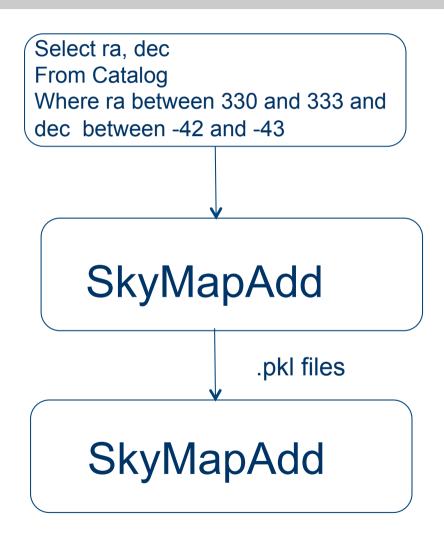
- Pipeline (iterator execution model)
- Iterations
- Algebraic/control operations
 - Allows both in-memory data exchange as file-based i/o
 - Run in both CPUs and GPUs
 - Push and pull data execution (using control operations)
- Dynamic optimization
 - Block-size computation
- Global and local state
 - Control tuples
- Catalog
 - Environment
 - Statistics
 - Metadata
- Synchronous and asynchronous execution

QEF as a Mappers & Reduce Job on Hadoop

HaQoop architecture



Example: SkyMap Workflow

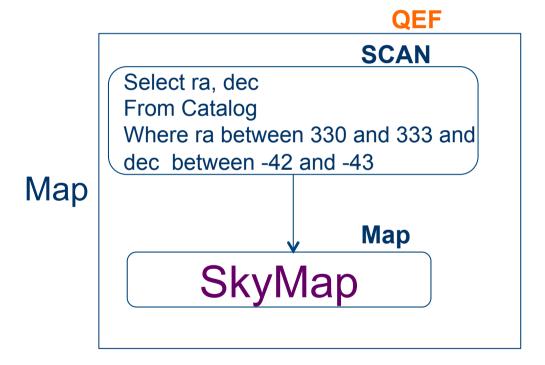


Catalog table

- query returns 200 million sky objects
- uniformly distributed through nodes
- centralized mode
 each tuple is logically
 partitioned

Example

a) Catalog Table uniformly partitioned



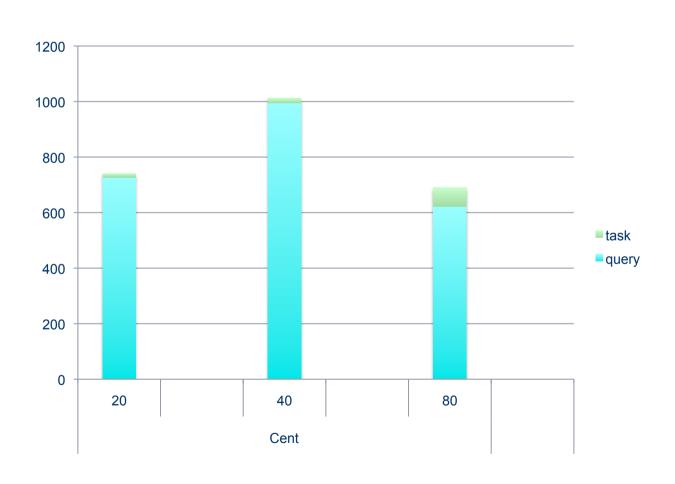
Reduce

SkyMapAdd

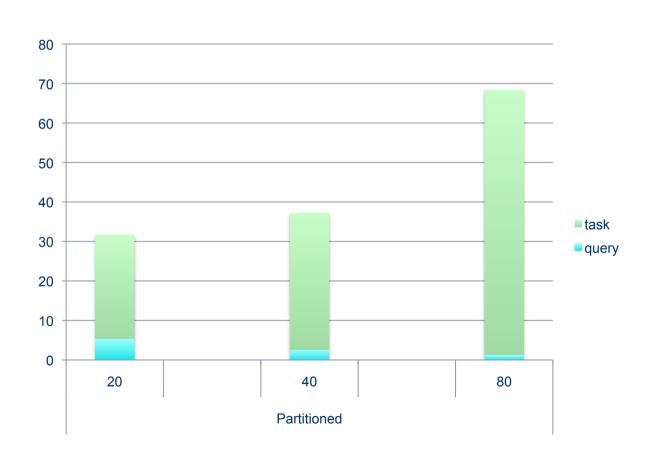
Initial Experiments

- Initial experiments
 - Skymap scenario;
- Cluster SGI
 - Configurations: 20, 40 and 80 nodes;
 - Each node:
 - 2 proc. Intel Zeon X5650, 6 cores, 2.67 GHz
 - 24 GB RAM
 - 500 GB HD
- Data
 - DES Catalog DC6B
- Tasks
 - Python
- HAQOOP
- Centralized version
 - PostgreSQL 9.1
- Distributed
 - Pg_pool
- Partirioned
 - Multiple postgreSQL

Centralized - Elapsed-time (s)



Partitioned DB - Elapsed-time (s)



Final comments

- Collaboration with Zenith-Inria team
- Probable PhD student exchange in 2014

MERCI - OBRIGADO

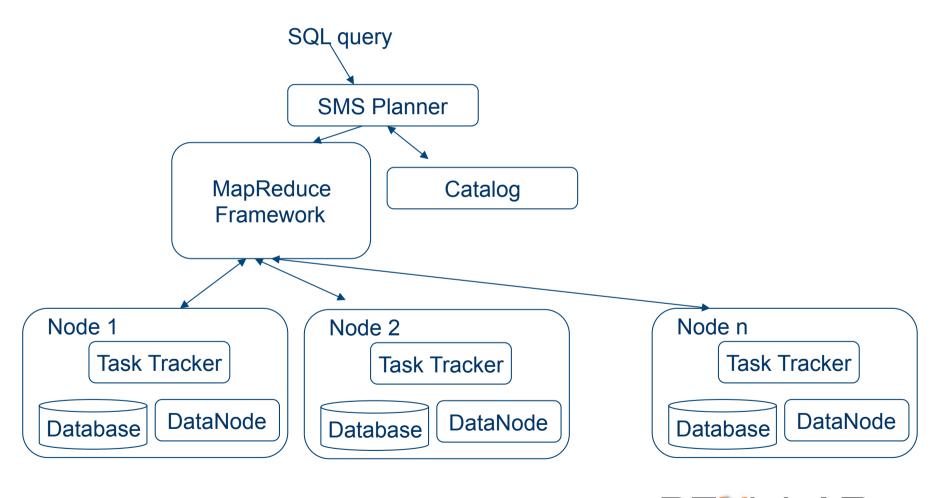
fporto@Incc.br

Processing Scientific Workflows

- Analytical Workflows process a large part of Catalog data
 - Catalogs are supported by few indexes, thus most queries scan tens-to-hundreds of millions of tuples
- Parallelization comes as a rescue to reduce analyses elapsed-time, but
 - Compromise between:
 - Data partitioning and degree of parallelization;
 - Current solutions consider:
 - Centralized files to be distributed through nodes (MapReduce)
 - [Alagianins, SIGMOD, 2012] NoDB reading raw files without data ingestion;
 - Distributed databases (Qserv) to serve Workflow engines
 - [Wang.D.L,2011], Qserv: A Distributed Shared-Nothing Database for the LSST catalog;
 - Centralized databases to serve Workflow Engine (Orchestration LineA)
 - Partitioned database to serve distributed queries (HadoopDB)

- Offers parallelism and fault tolerance as Hadoop, with SQL queries pushed-down to postgreSQL DBMS;
- Pushed-down queries are implemented as Mapreduce functions;
- Data are partitioned through nodes.
 - Partitioning information stored in the catalog
 - Distributed through the N nodes

HadoopDB architecture



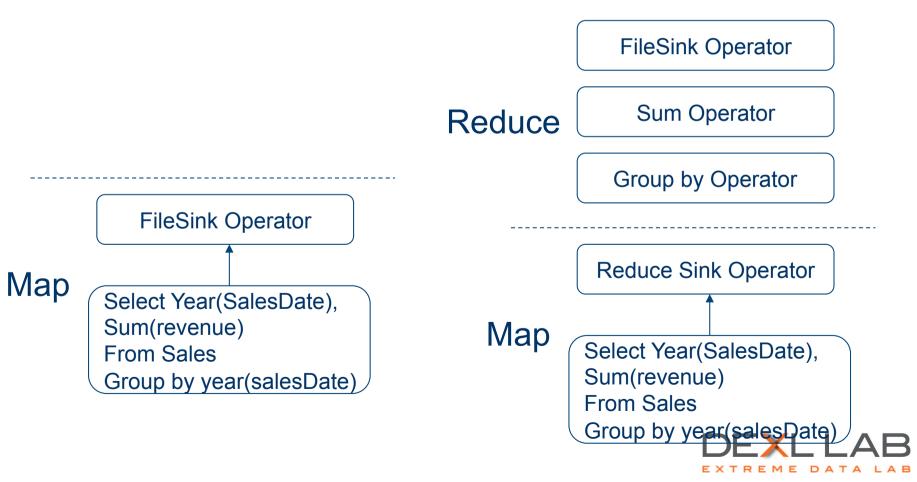
Example

Select year(SalesDate),sum(revenue)

From Sales

Group by year(salesDate)

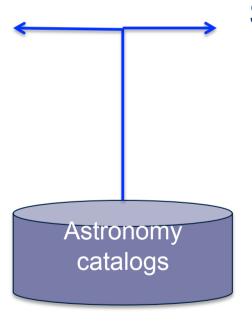
a) Table partitioned by year(SalesDate) b) no partitioning by year(SalesDate)



Processing Astronomy data

User access

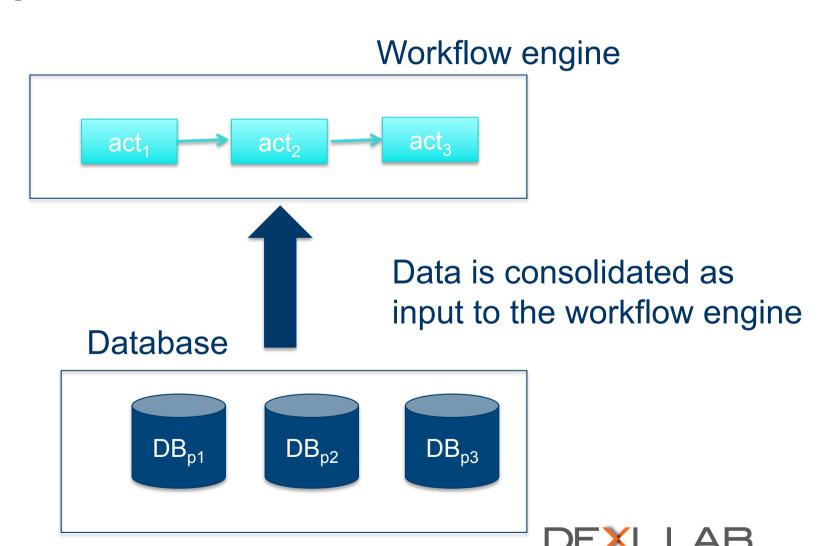
- Ad-hoc queries
- downloads



Scientific workflows

- Analysis

Traditional WF-Database decoupled architecture



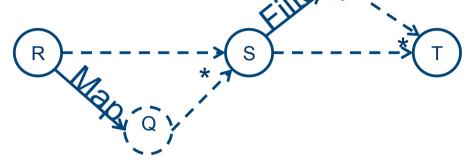
Problems

- Data locality
 - Workflow activities run in remote nodes wrt the partitioned data;
- Load Balance
 - Local processes facing different processing time

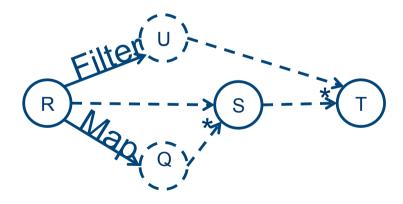
Data locality

- Traditional distributed query processing pushes operations through joins and unions so that can be done close to the data partitions;
- Can we "localize" workflow activities?
 - Moving activities in workflows require operation semantics to be exposed
 - Mapping of workflow activities to a known algebra
 - Equivalence of algebra expressions enabling pushing down operations

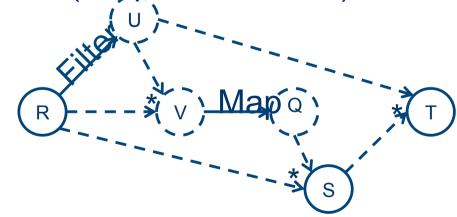
(i - workflow - relation perspective) (ii - decomposition)



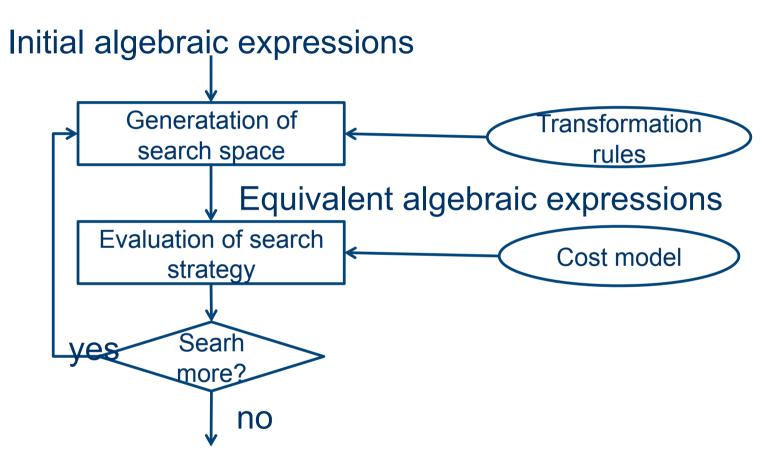
(iiii - anticipation)



(iv - procastination)



Workflow optimization process

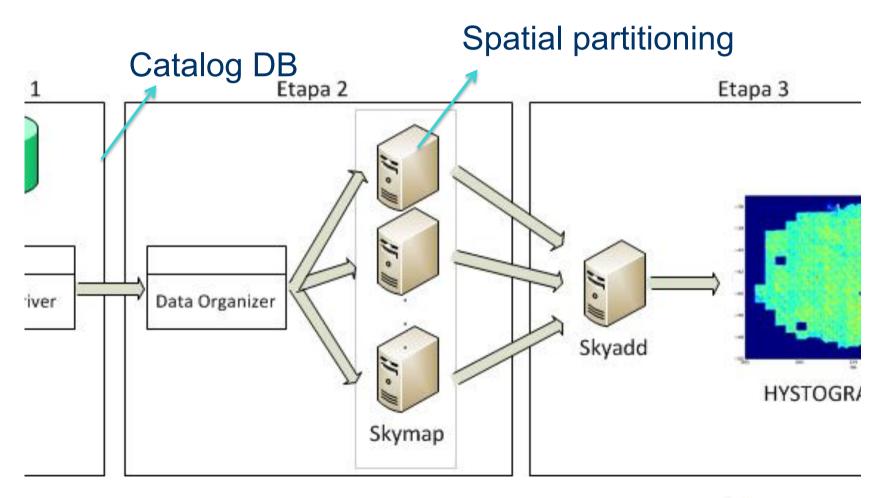


Optimized algebraic expressions

Pushing down workflow activities

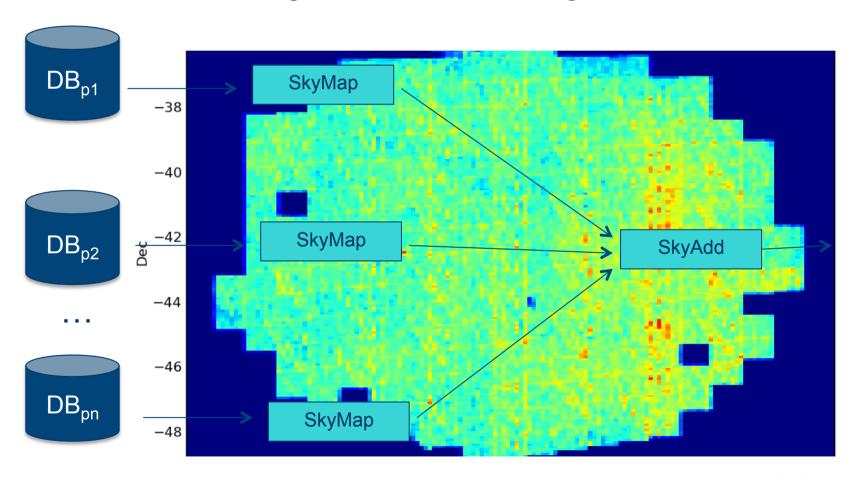
- A first naïve attempt
 - Push down all operations before a Reduce;
- Use a MapReduce implementation where
 - Mappers execute the "pushed-down" operations close to the data

Typical Implementation at LineA Portal



Parallel workflow over partitioned data

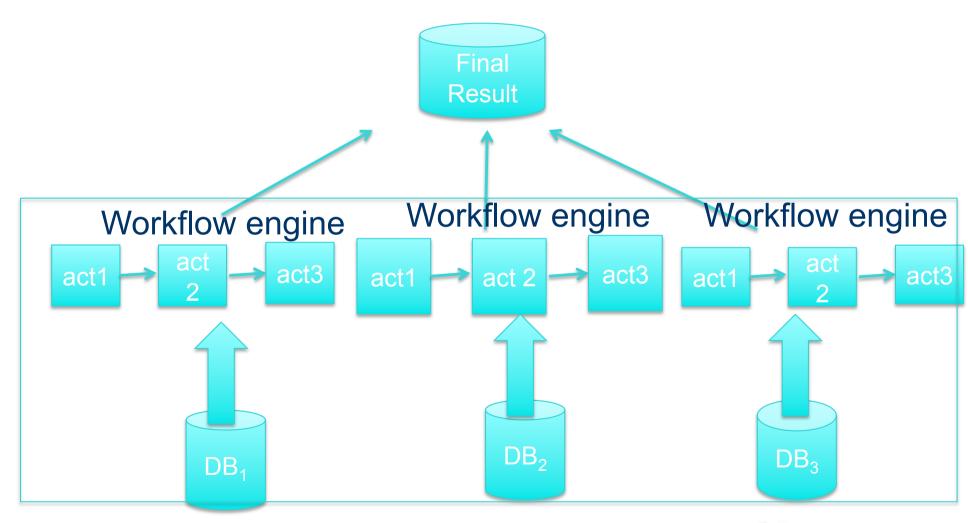
Partitioned catalogue stored on PostgreSQL



HQOOP - Parallelizing Pushed-down Scientific Workflows

- Partition of data across cluster nodes
 - Partitioning criteria
 - Spatial (currently used and necessary for some applications)
 - Random (possible in SkyMap)
 - Based on query workload (Miguel Liroz-Gestau's Work)
- Process the workflow close to data location
 - Reduce data transfer
- Use Apache/Hadoop Implementation to manage parallel execution
 - Widely used in Big Data processing;
 - Implements Map-Reduce programming paradigm;
 - Fault Tolerance of failed Map processes;
- Use QEF as workflow Engine
 - Implements Mapper interface
 - Run workflows in Hadoop seamlessly;

Integrated architecture



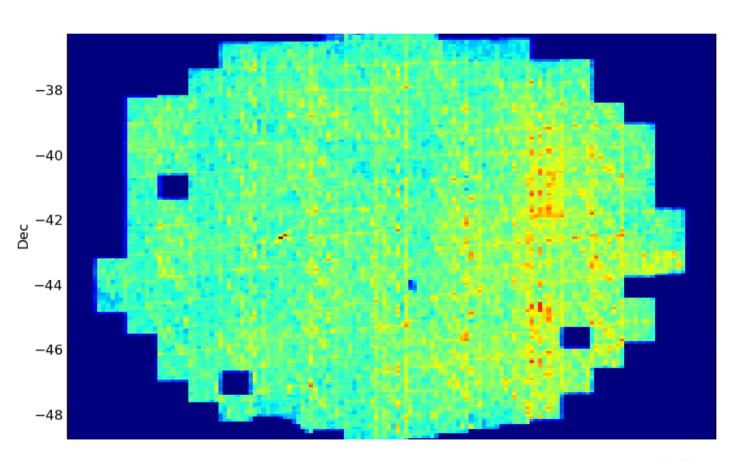
Experiment Set-up

- Cluster SGI
 - Configurations: 1, 47 and 95 nodes;
 - Each node:
 - 2 proc. Intel Zeon X5650, 6 cores, 2.67 GHz
 - 24 GB RAM
 - 500 GB HD
- Data
 - Catalog DC6B
- Hadoop
 - QEF workflow engine

Preliminary Results

- Preliminary results are encouraging:
 - Baseline Orchestration layer (234 nodes) approx. 46 min
 - 1 node HQOOP approx. 35 min
 - 4 nodes HQOOP approx. 12.3 min
 - 95 nodes (94 workers) HQOOP approx. 2.10
 min
 - 95 nodes (94 workers) Hadoop+Python approx.
 2.4 min

Resulting Image



Conclusions

- Big data users (scientists) are in Big Trouble;
 - Too much data, too fast, too complex;
- Different expertise required to cooperate towards Big Data Management;
- Adapted software development methods based on workflows;
- Complete support to scientific exploration lifecycle
- Efficient workflow execution on Big Data

Collaborators

- LNCC Researchers
 - Ana Maria de C. Moura
 - Bruno R. Schulze
 - Antonio Tadeu Gomes
- PhD Students
 - Bernardo N. Gonçalves
 - Rocio Millagros
 - Douglas Ericson de Oliveira
 - Miguel Liroz-Gistau (INRIA)
 - Vinicius Pires (UFC)

Collaborators

- ON
 - Angelo Fausti
 - Luiz Nicolaci da Costa
 - Ricardo Ogando
- COPPE-UFRJ
 - Marta Mattoso
 - Jonas Dias (Phd Student)
 - Eduardo Ogasawara (CEFET-RJ)
- UFC
 - Vania Vidal
 - José Antonio F. de Macedo
- PUC-Rio
 - Marco Antonio Casanova
- INRIA-Montpellier
 - Patrick Valduriez group
- EPFL
 - Stefano Spaccapietra

EMC Summer School on BIG DATA – NCE/UFRJ

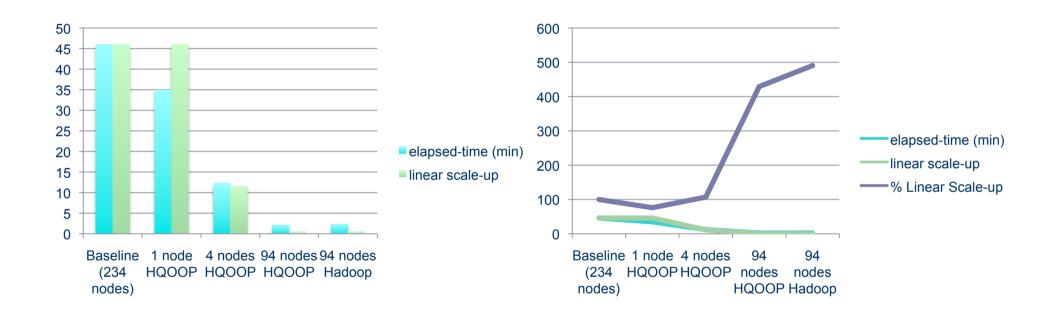
Big Data in Astronomy

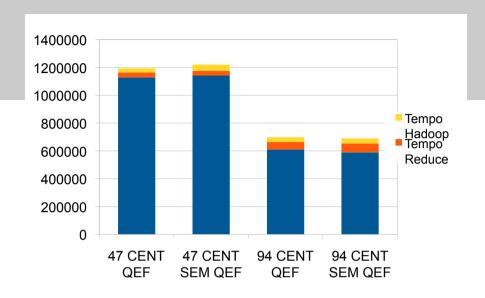
Fabio Porto (fporto@Incc.br)

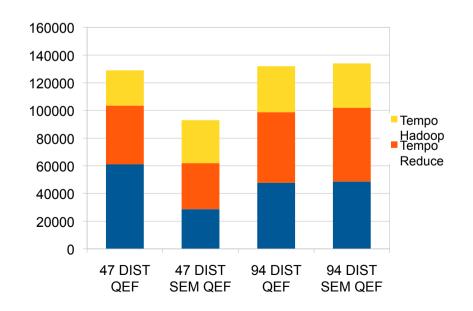
LNCC - MCTI

DEXL Lab (dexl.lncc.br)

Overall performance

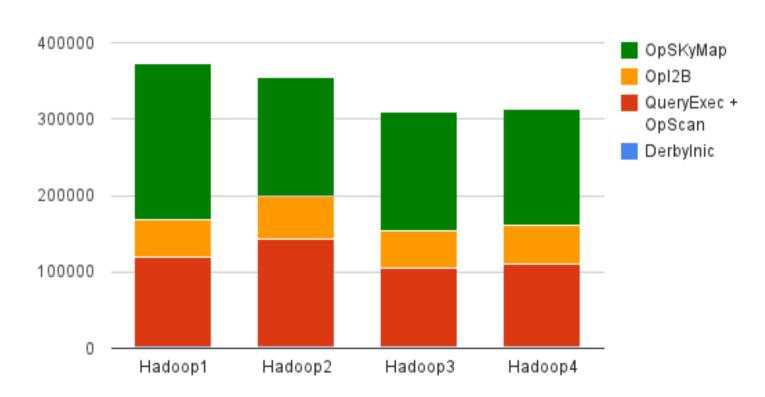






Execution with 4 nodes

Elapsed-time total: 11.27 min



Adaptive and Extensible Query Engine

- Extensible to data types
- Extensible to application algebra
- Extensible to execution model
- Extensible to heterogeneous data sources

Objective

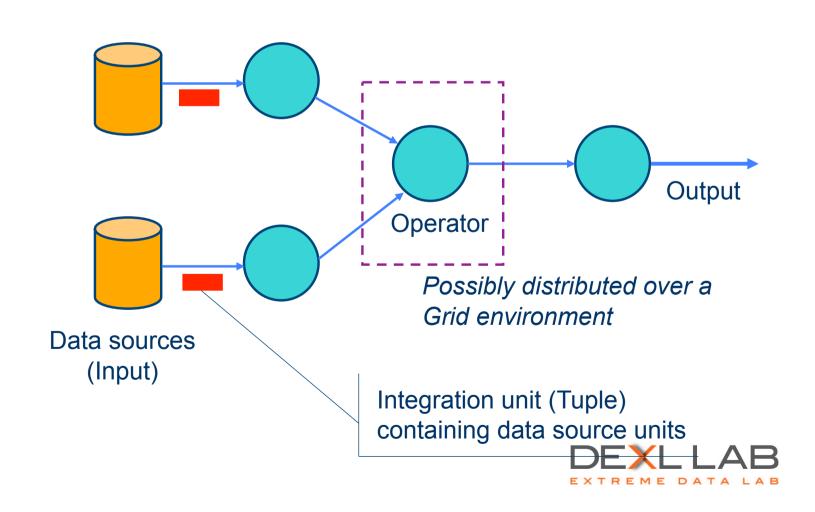
- Offer a query processing framework that can be extended to adapt to data centric application needs;
- Offer transparency in using resources to answer queries;
 - Query optimization transparently introduced
 - Standardize remote communication using web services even when dealing with large amount of unstructured data
 - Run-time performance monitoring and decision

Control Operators

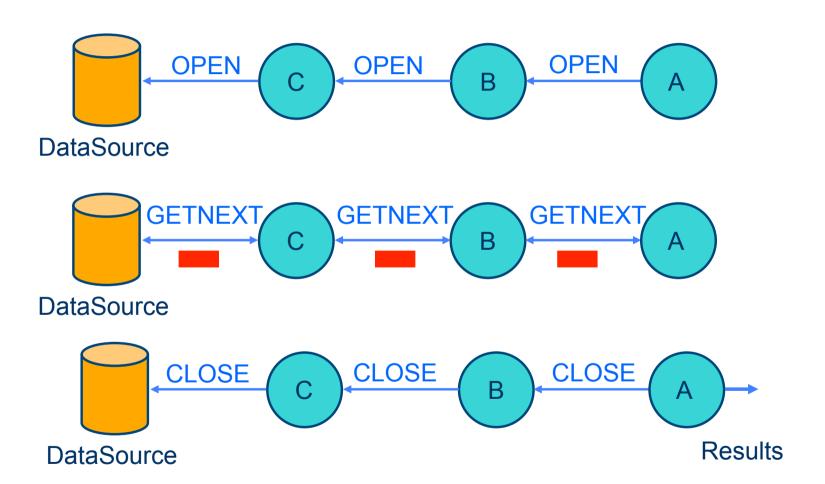
- Add data-flow and transformation operators
- Isolate application oriented operators from execution model data-flow concerns
- parallel grid based execution model:
 - Split/Merge controls the routing of tuples to parallel nodes and the corresponding unification of multiple routes to a single flow
 - Send/Receive marshalling/ unmarshalling of tuples and interface with communication mechanisms
 - B2I/I2B blocks and unblocks tuples
 - Orbit implements loop in a data-flow
 - Fold/Unfold logical serialization of complex structues
 (e.g. PointList to Points)

The Execution Model

Example of simple QEF Workflow



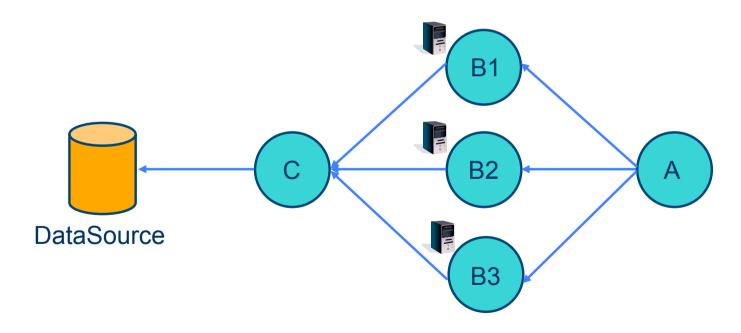
Iteration Model



Distribution and Parallelization

Operator distribution

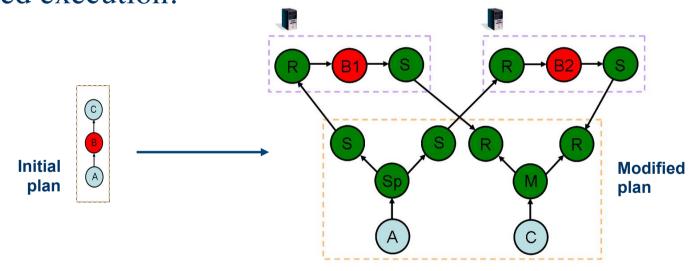
A Query Optimizer selects a set of operators in the QEP to execute over a Grid environment.



General Parallel Execution Model

Remote QEP

In order to parallelize an execution, the initial QEP is modified and sent to remote nodes to handle the distributed execution.

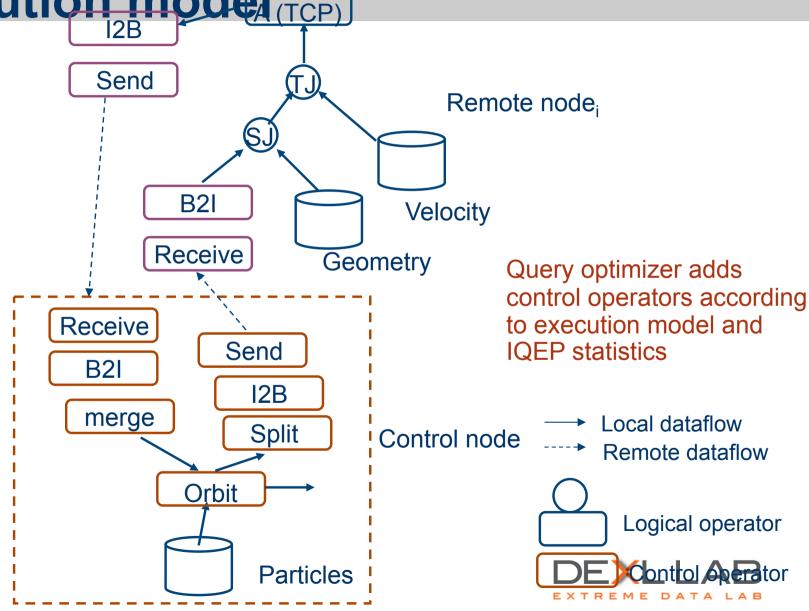


R : Receiver S : Sender

Sp : Split

M : Merge

Modifying IQEP to adapt to execution model (TCP)



Grid node allocation algorithm (G2N)

Introduction

Grid Greedy Node scheduling algorithm (G2N)

Principles

• Offers maximum usage of scheduled resources during query evaluation.

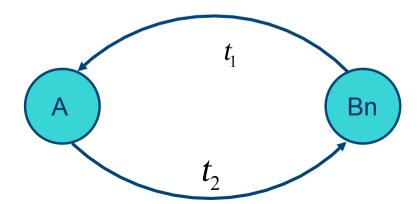
Application

• Basic idea: "an optimal parallel allocation strategy for an independent query operator cosis three one in which the computed elapsed-time of its execution is as close as possible to the maximum sequential time in each node evaluating an instance of the operator".

Architecture

Implem.

Conclusion



Implementation

- Core development in Java 1.5.
- Globus toolkit 4.
- Derby DBMS (catalog).
- Tomcat, AJAX and Google Web Toolkit for user interface.
- Runs on Windows, Unix and Linux.
- source code, demo, user guide available at:

http://dexl.lncc.br

Summing-up

- HadoopDB extends Hadoop with expressive query language, supported by DBMSs
- Keeps Hadoop MapReduce framework
- Queries are mapped to MapReduce tasks
- For scientific applications is a question to be answered whether or not scientists will enjoy writing SQL queries
- Algebraic like languages may seem more natural (eg. Pig Latin)

Pig Latin - an high-level language alternative to SQL

- The use of high-level languages such as SQL may not please scientific community;
- Pig Latin tries to give an answer by providing a procedural language where primitives are Relational albegra operations;
- Pig Latin: A not-so-foreign language for data processing, Christopher Olson, Benjamin Reed et al., SIGMOD08;

Example

- Urls (url, category, pagerank)
- In SQL
 - Select category, avg (pagerank)
 from urls where pagerank > 0.2
 group by category
 having count(*) > 10⁶
- In PIG
 - Groupurls = FILTER urls by Pagerank > 0.2;
 - Groups= Group good-urls by category;
 - Big-group=FILTER groups BY count(good_urls) > 10⁶
 - Output = FOREACH big-groups GENERATE category, avg(good_urls_pagerank);

Pig Latin

- Program is a sequence of steps
 - Each step executes one data transformation
- Optimizations among steps can be dynamically generated, example:
 - 1) spam-urls= FILTER urls BY isSpam(url);
 - 2) Highrankurl = FILTER spam-url BY pagerank > 0.8;

Data Model

Types:

- Atom a single atomic value;
- Tuple a sequence of fields, eg.('DB','Science',7)
- Bag a collection of tuples with possible duplicates;
- Map a collection of data items where for each data item a key is associated

- Per tuple processing: Foreach
 - Allows the specification of iterations over bags
 - Ex:
 - Expanded-queries=FOREACH queries generate userId, expandedQuery (queryString);
 - Each tuple in a bag should be independent of all others, so parallelization is possible;
 - Flatten
 - Permits flattening of nested-tuples

Olympic Laboratory

