
3rd HOSCAR Meeting
Bordeaux, Sept. 2013

HaQoop: scientific workflows over
BigData

Fabio Porto, Douglas Ericson Oliveira
Matheus Bandini, Henrique Kloh
Reza Akbarinia, Patrick Valduriez

Outline

  Introduction
  Previous work in the collaboration
  HaQoop
  Initial experiments
  Final Comments

The Data eXtreme Lab (DEXL)
Mission

  To support in-silico science with data management techniques;
–  To develop interdisciplinary research with contributions on data

modelling, design and management;
–  To develop tools and systems in support to in-silico science;

  Currently
–  3 researchers
–  8 PhD students
–  10 engineers

  Projects
–  Astronomy
–  Medicine
–  Sports Science
–  Biology, Ecology
–  Biodiversity

Current projects

DEXL Data
Management

PELD Baia
Guanabara

Dark Energy
Survey SimulationData

Mngmt

Hypothesis
Database

Gene Regulatory
Networks

R. Lopes

V. Freire,
D Ericson,
Yania Souto R. Costa

B. Gonçalves

Olympic
Laboratory

SiBBR
(Brazilian
BioDiversity)

BigData for the 10s

  BigData Processing and Analyses
–  Concerns with Obtaining

  Volume, Variety, Velocity

–  Concerns with Usage
  Sparse, infrequent
  Exploratory, hypotheses driven

  Interested in processing scientific BigData

LSST – Large Synoptic Survey Telescope

EMC Summer School 2013

•  800 images p/ night
 during 10 years !!
•  3D Map of the Universe
•  30 TeraBytes per night
•  100 PetaBytes in 10 years

•  105 disks of 1 TB

6

Skyserver – Sloan Project

7

Dark Energy survey - pipelines

Data Processing Systems:
 an Evolution

80s 90s 00s 10s 20s

Relational
Databases

Distributed
& Parallel
Databases
UDFs

P2P
Data Integration
Systems

Workflow
MapReduce
NOSQL

Modern
Data
Systems

decades

Data

Data Processing Systems:
 an Evolution

80s 90s 00s 10s 20s

Relational
Databases

Distributed
& Parallel
Databases
UDFs

P2P
Data Integration
Systems

Workflow
MapReduce
NOSQL

Modern
Data
Systems

decades

Data

Data Processing Pillars
  Reduce the number of data retrieval

operations
  Efficient iterative processing over elements of

sets;
  Parallelism obtained by partitioning data;

–  Or pipelining data trough parallel execution of
operators

  Explore the semantics of data operations;
  Automatic decisions based on data statistics;
  Data consumed by humans
  Data of simple structure/semantics

General Model

R ---- f(x) R’
R1 ----- f(x) R1’
R2 ----- f(x) R2’

Rn ----- f(x) Rn’
…

Ui=1,nR’i----- g(y) ---R’’ WHAT CHANGES?

Processing BigData

  Reduced data is still Big: millions of elements;
–  Access patterns less predictable

  Data may be:
–  Incomplete
–  Uncertain
–  Ambiguous

  Operation semantics are unknown (black box modules)
–  User code implementation
–  Arbitrary f (a workflow)

  Some operations are blocking, with respect to the consumption
and production of data

–  Parallel MPI based programs
–  Prevent data-driven parallelism

  Consumption
–  Data analysis

Big Data Model

X---- <T1,M2,…, Vk> ---Z’
X1 ----- <T1,M2,…, Vk> ---X1’
X2 ----- <T1,M2,…, Vk> ---X2’

Xn ----- <T1,M2,…, Vk> ---Xn’
…

Ui=1,nX’i----- g(y) ---X’’

Workflow - Partial Ordering of T

T1 T2 T3

T5 T1 T4

T3

T2

Where each is an activity

T1 T2 T3 T1 T2 T3

Workflow DB – complete picture

T1 T2 T3

DB

Files

General Problem

  To Conceive an efficient and robust workflow
execution strategy that considers data
retrieved from databases and files produced
in intermediate steps

PREVIOUS WORK IN THE
COLLABORATION: LNCC,
COPPE-UFRJ, INRIA - ZENITH

Partitioning the DB into Blocks
Work with: Miguel Liroz-Gistau,
Esther, Patrick, Reza

R(a1,…,a9)

B2

B1

Bm

…

How to compute
a partitioning
strategy according
to a known workload

19

Workflow algebra and optimization
Eduardo Ogasawara,
Marta Mattoso, Patrick Valduriez

  Scientific workflow definition mapped to a
known data model
–  Input/output modelled as relations
–  workflow activities mapped to operators in a

generic algebra;
  Algebra operators describe input/output ratio

–  Enables automatic analysis of workflow definition
according to type of applied data transformation

–  Enables automatic workflow transformation

Objective

  Processing big data by scientific workflows
shall benefit from known data processing
techniques
–  Activities semantics
–  Process to data locality
–  Optimize data and files distribution
–  Use generic MapReduce parallelism paradigma

Approach

  Use MapReduce paradigm to run scientific
workflow

  Define a allocation strategy that considers:
–  The number of database partitions
–  The number of map tasks
–  The input/output semantics of workflow activities
–  The number of reduce tasks

Three scenarios evaluated

  Exploring experimentally variations on |P|,
|T|, |F| as the basis for the model:
a)  |P| = 1, |T| >> 1
b)  |P| = |T| >> 1 , D is a distributed database
c)  |P| ≤ |T| , |P|, |T| >> 1

  Which data processing parallel strategy
leads to best results in workflow execution?

Parallel workflow evaluation
on BigData

HaDooPDB

Dryad
LINQ
MS Research

Architectural Viewpoint

Data
distribution

Query
Distribution

Task
Parallelization

HadoopDB+Hive

Qserv+
Wkfw Engine

HQOOP

Hadoop, OOZIE,Giraph

Parallel workflow execution over
Dark Energy Survey Catalog

DBp1

DBp2

DBpn

…

SkyMap

SkyMap

SkyMap

SkyAdd

Partitioned catalogue stored on PostgreSQL

HaQoop
  Hadoop – Open Source apache project

–  A state of the art task parallelization framework for Big Data
processing

–  Split computation into two steps
  Map (remember f ?)
  Reduce (remember g ?)

  To reuse Hadoop scalability, fall tolerance
  To extend Hadoop with workflow expressions

–  Make f a general workflow engine (QEF)
  Restricted workflow expressions

QEF – Data Processing System

  Designed based on principles of modern
database query engines;

  Extendable for any user code
  Extendable for any data structure

  Can be downloaded: http://dexl.lncc.br/qef

Main technical characteristics

  Pipeline (iterator execution model)
  Iterations
  Algebraic/control operations

–  Allows both in-memory data exchange as file-based i/o
–  Run in both CPUs and GPUs
–  Push and pull data execution (using control operations)

  Dynamic optimization
–  Block-size computation

  Global and local state
–  Control tuples

  Catalog
–  Environment
–  Statistics
–  Metadata

  Synchronous and asynchronous execution

QEF as a Mappers & Reduce Job
on Hadoop

X1 ----- <T1,M2,…, Vk> ---X1’
X2 ----- <T1,M2,…, Vk> ---X2’

Xn ----- <T1,M2,…, Vk> ---Xn’
…

Ui=1,nX’i----- g(y) ---X’’

HaQoop architecture

QEF

Database DataNode

Node 1

QEF

Database DataNode

Node 2
QEF

Database DataNode

Node n

MapReduce
Framework

workflow Planner

Scientific workflow

Catalog

Database NFS - FS ….

Example: SkyMap Workflow
Select ra, dec
From Catalog
Where ra between 330 and 333 and
dec between -42 and -43

SkyMapAdd

SkyMapAdd

Catalog table
 - query returns 200 million sky
objects
 - uniformly distributed through
nodes
 - centralized mode
 each tuple is logically
partitioned

.pkl files

Example

a)

Select ra, dec
From Catalog
Where ra between 330 and 333 and
dec between -42 and -43

SkyMap

Map

Catalog Table uniformly partitioned

Reduce

SCAN

Map

QEF

SkyMapAdd

Initial Experiments
  Initial experiments

–  Skymap scenario;
  Cluster SGI

–  Configurations: 20, 40 and 80 nodes;
–  Each node:

  2 proc. Intel Zeon – X5650, 6 cores, 2.67 GHz
  24 GB RAM
  500 GB HD

  Data
–  DES Catalog DC6B

  Tasks
–  Python

  HAQOOP
  Centralized version

–  PostgreSQL 9.1
  Distributed

–  Pg_pool
  Partirioned

–  Multiple postgreSQL

Centralized – Elapsed-time (s)

0

200

400

600

800

1000

1200

20 40 80

Cent

task

query

Partitioned DB – Elapsed-time (s)

0

10

20

30

40

50

60

70

80

20 40 80

Partitioned

task

query

Final comments

  Collaboration with Zenith-Inria team
  Probable PhD student exchange in 2014

MERCI – OBRIGADO
fporto@lncc.br

Processing Scientific Workflows

  Analytical Workflows process a large part of Catalog data
–  Catalogs are supported by few indexes, thus most queries

scan tens-to-hundreds of millions of tuples
  Parallelization comes as a rescue to reduce analyses

elapsed-time, but
–  Compromise between:

  Data partitioning and degree of parallelization;
–  Current solutions consider:

  Centralized files to be distributed through nodes (MapReduce)
–  [Alagianins, SIGMOD, 2012] NoDB – reading raw files without data

ingestion;
  Distributed databases (Qserv) to serve Workflow engines

–  [Wang.D.L,2011], Qserv: A Distributed Shared-Nothing Database for the
LSST catalog;

  Centralized databases to serve Workflow Engine (Orchestration LineA)
  Partitioned database to serve distributed queries (HadoopDB)

HadoopDB - a step in between
[Abouzeid09]

  Offers parallelism and fault tolerance as Hadoop,
with SQL queries pushed-down to postgreSQL
DBMS;

  Pushed-down queries are implemented as Map-
reduce functions;

  Data are partitioned through nodes.
–  Partitioning information stored in the catalog
–  Distributed through the N nodes

HadoopDB architecture

Task Tracker

Database DataNode

Node 1

Task Tracker

Database DataNode

Node 2
Task Tracker

Database DataNode

Node n

MapReduce
Framework

SMS Planner

SQL query

Catalog

Example

a)

Select Year(SalesDate),
Sum(revenue)
From Sales
Group by year(salesDate)

FileSink Operator

Map

Table partitioned by year(SalesDate) b)

Select Year(SalesDate),
Sum(revenue)
From Sales
Group by year(salesDate)

Reduce Sink Operator

Map

no partitioning by year(SalesDate)

Group by Operator

Sum Operator

FileSink Operator

Reduce

Select year(SalesDate),sum(revenue)
From Sales
Group by year(salesDate)

Processing Astronomy data

Astronomy
catalogs

User access
 - Ad-hoc queries
 - downloads

Scientific workflows
 - Analysis

Traditional WF–Database
decoupled architecture

act1 act2 act3

DBp1

Data is consolidated as
input to the workflow engine

Database

Workflow engine

DBp2 DBp3

Problems

  Data locality
–  Workflow activities run in remote nodes wrt the

partitioned data;
  Load Balance

–  Local processes facing different processing time

Data locality

  Traditional distributed query processing pushes
operations through joins and unions so that can
be done close to the data partitions;

  Can we “localize” workflow activities?
–  Moving activities in workflows require operation

semantics to be exposed
–  Mapping of workflow activities to a known algebra
–  Equivalence of algebra expressions enabling pushing

down operations

Algebraic transformation

R S T
Map Filter

(i - workflow – relation perspective)

R S T

U

Q

(ii - decomposition)

*
*

T R S

U

Q

(iiii - anticipation)

*
*

(iv - procastination)

T R

S

Map

U

Q *

*

V *

Workflow optimization process

Generatation of
search space

Evaluation of search
strategy

Initial algebraic expressions

Transformation
rules

Cost model

Optimized algebraic expressions

Equivalent algebraic expressions

Searh
more?

yes

no

Pushing down workflow activities

  A first naïve attempt
–  Push down all operations before a Reduce;

  Use a MapReduce implementation where
–  Mappers execute the “pushed-down” operations

close to the data

Typical Implementation at LineA Portal

Spatial partitioning
Catalog DB

Parallel workflow over partitioned
data

DBp1

DBp2

DBpn

…

SkyMap

SkyMap

SkyMap

SkyAdd

Partitioned catalogue stored on PostgreSQL

HQOOP - Parallelizing
Pushed-down Scientific Workflows

  Partition of data across cluster nodes
–  Partitioning criteria

  Spatial (currently used and necessary for some applications)
  Random (possible in SkyMap)
  Based on query workload (Miguel Liroz-Gestau’s Work)

  Process the workflow close to data location
–  Reduce data transfer

  Use Apache/Hadoop Implementation to manage parallel
execution

  Widely used in Big Data processing;
  Implements Map-Reduce programming paradigm;
  Fault Tolerance of failed Map processes;

  Use QEF as workflow Engine
–  Implements Mapper interface
–  Run workflows in Hadoop seamlessly;

Integrated architecture

act1 act
2

act3 act1 act 2 act3 act1 act
2

act3

DB1
DB2 DB3

Final
Result

Workflow engine Workflow engine Workflow engine

Experiment Set-up

  Cluster SGI
–  Configurations: 1, 47 and 95 nodes;
–  Each node:

  2 proc. Intel Zeon – X5650, 6 cores, 2.67 GHz
  24 GB RAM
  500 GB HD

  Data
–  Catalog DC6B

  Hadoop
–  QEF workflow engine

Preliminary Results

  Preliminary results are encouraging:
–  Baseline Orchestration layer (234 nodes) –

approx. 46 min
–  1 node HQOOP – approx. 35 min
–  4 nodes HQOOP – approx. 12.3 min
–  95 nodes (94 workers) HQOOP – approx. 2.10

min
–  95 nodes (94 workers) Hadoop+Python – approx.

2.4 min

Resulting Image

Conclusions
  Big data users (scientists) are in Big Trouble;

–  Too much data, too fast, too complex;
  Different expertise required to cooperate towards

Big Data Management;
  Adapted software development methods based

on workflows;
  Complete support to scientific exploration life-

cycle
  Efficient workflow execution on Big Data

Collaborators

  LNCC Researchers
–  Ana Maria de C. Moura
–  Bruno R. Schulze
–  Antonio Tadeu Gomes

  PhD Students
–  Bernardo N. Gonçalves
–  Rocio Millagros
–  Douglas Ericson de Oliveira
–  Miguel Liroz-Gistau (INRIA)
–  Vinicius Pires (UFC)

Collaborators
  ON

–  Angelo Fausti
–  Luiz Nicolaci da Costa
–  Ricardo Ogando

  COPPE-UFRJ
–  Marta Mattoso
–  Jonas Dias (Phd Student)
–  Eduardo Ogasawara (CEFET-RJ)

  UFC
–  Vania Vidal
–  José Antonio F. de Macedo

  PUC-Rio
–  Marco Antonio Casanova

  INRIA-Montpellier
–  Patrick Valduriez group

  EPFL
–  Stefano Spaccapietra

Fabio Porto (fporto@lncc.br)
LNCC – MCTI
DEXL Lab (dexl.lncc.br)

EMC Summer School on
BIG DATA – NCE/UFRJ

Big Data in Astronomy

Overall performance

0
5

10
15
20
25
30
35
40
45
50

Baseline
(234

nodes)

1 node
HQOOP

4 nodes
HQOOP

94 nodes
HQOOP

94 nodes
Hadoop

elapsed-time (min)

linear scale-up

0

100

200

300

400

500

600

Baseline
(234

nodes)

1 node
HQOOP

4 nodes
HQOOP

94
nodes

HQOOP

94
nodes

Hadoop

elapsed-time (min)

linear scale-up

% Linear Scale-up

0

200000

400000

600000

800000

1000000

1200000

1400000

47 CENT
QEF

47 CENT
SEM QEF

94 CENT
QEF

94 CENT
SEM QEF

Tempo
Hadoop
Tempo
Reduce

0

20000

40000

60000

80000

100000

120000

140000

160000

47 DIST
QEF

47 DIST
SEM QEF

94 DIST
QEF

94 DIST
SEM QEF

Tempo
Hadoop
Tempo
Reduce

Execution with 4 nodes

Elapsed-time total: 11.27 min

Adaptive and Extensible Query Engine

  Extensible to data types
  Extensible to application algebra
  Extensible to execution model
  Extensible to heterogeneous data sources

Objective

•  Offer a query processing framework that
can be extended to adapt to data centric
application needs; 	

•  Offer transparency in using resources to
answer queries;

•  Query optimization transparently introduced

•  Standardize remote communication using web services even
when dealing with large amount of unstructured data

•  Run-time performance monitoring and decision

Control Operators
•  Add data-flow and transformation operators
•  Isolate application oriented operators from
execution model data-flow concerns

•  parallel grid based execution model:	

•  Split/Merge - controls the routing of tuples to parallel

nodes and the corresponding unification of multiple
routes to a single flow

•  Send/Receive - marshalling/ unmarshalling of tuples
and interface with communication mechanisms

•  B2I/I2B - blocks and unblocks tuples
•  Orbit - implements loop in a data-flow
•  Fold/Unfold - logical serialization of complex structues

(e.g. PointList to Points)

The Execution Model

Example of simple QEF Workflow	

Data sources
(Input)

Output
Operator

Possibly distributed over a
Grid environment

Integration unit (Tuple)
containing data source units

Iteration Model

A B C

DataSource

OPEN OPEN OPEN

A B C

DataSource

GETNEXT GETNEXT GETNEXT

A B C

DataSource

CLOSE CLOSE CLOSE

Results

Distribution and Parallelization
Operator distribution	

A Query Optimizer selects a set of operators in the QEP to
execute over a Grid environment.	

A B2 C

DataSource

B1

B3

General Parallel Execution
Model

Remote QEP	

In order to parallelize an execution, the initial QEP is
modified and sent to remote nodes to handle the
distributed execution.	

Control operator

Distributed operator

User’s operator

R : Receiver

S : Sender

Sp : Split

M : Merge

Initial
plan

Modified
plan

Modifying IQEP to adapt to
execution model

Particles

Geometry

Velocity

A (TCP)

SJ

TJ

Orbit

merge
Split

Send

Receive

B2I

Send

I2B

Receive

B2I
I2B

Query optimizer adds
control operators according
to execution model and
IQEP statistics

Local dataflow
Remote dataflow

Logical operator

Control operator

Control node

Remote nodei

!

t
1

+ t
2

= t
x
Bn() node on thiscost operator)(Bnt

1
t

2
t

Grid node allocation algorithm
(G2N)

Grid Greedy Node scheduling algorithm (G2N)	

•  Offers maximum usage of scheduled resources
during query evaluation.

•  Basic idea : “an optimal parallel allocation strategy
for an independent query operator … is the one in
which the computed elapsed-time of its execution is
as close as possible to the maximum sequential time
in each node evaluating an instance of the operator”.

A Bn

Introduction

Application

Architecture

Implem.

Conclusion

Principles

Implementation

•  Core development in Java 1.5.

•  Globus toolkit 4.

•  Derby DBMS (catalog).

•  Tomcat, AJAX and Google Web Toolkit for user
interface.

•  Runs on Windows, Unix and Linux.

•  source code, demo, user guide available at:

http://dexl.lncc.br

Summing-up

  HadoopDB extends Hadoop with expressive query
language, supported by DBMSs

  Keeps Hadoop MapReduce framework
  Queries are mapped to MapReduce tasks
  For scientific applications is a question to be

answered whether or not scientists will enjoy writing
SQL queries

  Algebraic like languages may seem more natural
(eg. Pig Latin)

Pig Latin - an high-level language
alternative to SQL

  The use of high-level languages such as
SQL may not please scientific community;

  Pig Latin tries to give an answer by providing
a procedural language where primitives are
Relational albegra operations;

  Pig Latin: A not-so-foreign language for data
processing, Christopher Olson, Benjamin
Reed et al., SIGMOD08;

Example
  Urls (url, category, pagerank)
  In SQL

–  Select category, avg (pagerank)
 from urls where pagerank > 0.2
 group by category
 having count(*) > 106
  In PIG

–  Groupurls = FILTER urls by Pagerank > 0.2;
–  Groups= Group good-urls by category;
–  Big-group=FILTER groups BY count(good_urls) > 106

–  Output = FOREACH big-groups GENERATE
 category, avg(good_urls_pagerank);

Pig Latin

  Program is a sequence of steps
–  Each step executes one data transformation

  Optimizations among steps can be
dynamically generated, example:
–  1) spam-urls= FILTER urls BY isSpam(url);
–  2) Highrankurl = FILTER spam-url BY pagerank >

0.8;
1 2
2 1

Data Model

  Types:
–  Atom - a single atomic value;
–  Tuple - a sequence of fields, eg.(‘DB’,’Science’,7)
–  Bag - a collection of tuples with possible

duplicates;
–  Map - a collection of data items where for each

data item a key is associated
‘fanOf’ ‘flamengo’

‘music’

‘age’ 20

Operations

  Per tuple processing: Foreach
–  Allows the specification of iterations over bags

  Ex:
–  Expanded-queries=FOREACH queries generate userId,

 expandedQuery (queryString);
–  Each tuple in a bag should be independent of all others, so

parallelization is possible;

–  Flatten
  Permits flattening of nested-tuples

alice, Ipod,nano
Ipod, shuffle

flatten alice, ipod, nano
alice, ipod, shuffle

Olympic Laboratory

