



### Virtualization Technologies in Support to Scientific Applications

### **Bruno Schulze**

### Third Brazil-France workshop 02 – 05 Sept 2013







# Computing on Clouds

- Clouds have emerged as a solution to provide resources on demand
- Scientific communities viewing or embracing Clouds as an on-demand-infrastructure for their needs
- Elasticity and almost "unlimited scalability" of Clouds
- Trade-off between Cost and Performance
- Performance dictated by Scientific Applications' behavior







### **Computing on Clouds**

But still some issues remain ...

- Variability of Cloud environments
- Security Concerns / Access Concerns
- Networking and Intra-connectivity
- SLA and the infrastructure served by Cloud Providers







## Exploring Example I

Helix Nebula - ATLAS use cases

- What are the financial costs of networking data transfers into and out of cloud resources, short and long-term data storage in the cloud, and CPU resources for running the various ATLAS use cases?
- What are the appropriate Service Level Agreements and how can they be defined for broader usage?
- What are the policy and legal constraints in moving scientific data across academic networks into commercial resources and back again?



4





# Exploring Example II

Uber-Cloud - HPC Experiment: Actual Case Studies Focused on Solving Real Computing Problems

- Benefiting from remote access to HPC
  - Challenges still remain ...
    - trusting in the resource provider
    - giving away some control over applications, data & resources
    - security
    - provider lock-in
    - software licensing
    - unfamiliar pay-per-use computing model, and
    - a general lack of clarity in distinguishing between hype and reality

http://www.hpcwire.com/hpcwire/2012-09-20/half-time\_in\_the\_uber-cloud.html







### Virtualization Technologies

- Hypervisor development
- Hardware-assisted virtualization development
- Scientific Application Layer X Hypervisor Layer
  X Hardware Layer



6





### **Clouds Infrastructure**

- Multitude of Cloud Environments
- High-Performance Parallel and Distributed
  Computing
- How to use clouds to benefit Scientific Applications



7





### **Cloud Approach**





Third Brazil-France workshop



Ō





### **Cloud Approach**









### **Cloud Approach**







b01 klosk

d

t

DEXL LAB

Access 1

Virtual Environments



### **Neblina**



**Private Infrastructure** 

#### 02 - 05 Sept 2013







### Neblina





SGI Cluster

94 work nodes, 1128 cores; Ethernet (InfiniBand Installation schedule);

12 GPGPU servers, each server with 2 Tesla M2040, with 448 GPU cores -10752 GPU cores total.

1 AMD server with 64 CPU cores, and

2 Intel server with Xeon Phi co-processor



Bull HPC Cluster

104 work nodes, 1328 cores; InfiniBand;

4 GPGPU servers, each server with 2 Tesla M2040, with 448 GPU cores - 3584 GPU cores total.













- Conducting research and development in computer science and its medical applications, especially the computer simulation and modeling of the physiological systems that integrate the human body
- Promoting the development of medical image processing, scientific visualization and virtual reality in the development of medical applications directed to computer-aided diagnosis, treatment, surgical planning, medical training and accreditation
- Training human resources and promoting technology transfer and innovation to the area of health assisted by scientific computing.













### Neblina











### **INCT-MACC/ComCiDis**



02 - 05 Sept 2013













#### Third Brazil-France workshop



16





### Conclusions

- Mixed Infrastructure providing useful resources to scientific research / applications
- Consolidation and usage of many environments
- INCT-MACC HemoLab / ComCiDis virtual appliances with remote access
- Usage in Testing, Validation and Knowledge Dissemination
- Resource Optimization and Collaboration







### Future Work

- Virtualization of many core / multicore new architectures (Nvidia, Xeon Phi, ...)
- Deployment of many core / mutlicore based appliances
- Porting of new applications / appliances to Neblina
- Consolidation of Hadoop Virtual Appliances
- Improvements in access control and security







# Thanks

# schulze@Incc.br







# **Cloud Computing**

- Clouds have emerged as a solution to provide resources on demand;
- Scientific communities viewing or embracing Clouds as an on-demand-infrastructure for their needs;
- Elasticity and almost "unlimited scalability" of Clouds;
- Trade-off between Cost and Performance;
- Performance dictated by Scientific Applications' behavior;







### **GPUs in Clouds PCI Passthrough**

- Passthrough PCI-E GPU device to DomU
- Use Nvidia Tesla CUDA programming model
- Intel VT-d or AMD IOMMU extensions
- Xen / VMware
- ComCiDis has 12x 24GB memory nodes each with 2x GPU's (Tesla C2050)

