
Efficient Multi-Core Programming
and In-Situ Result Analysis

Bruno Raffin
MOAIS Team, Grenoble, France

2 -
2

 Moais: INRIA research team located at Grenoble

‣ Focused on parallel programming, algorithms and scheduling

‣ Main software tools:
๏ KAAPI: runtime for efficient multi-core programming
๏ FlowVR: middleware for in-situ data processing and visualization

‣ Long term collaborations with Brazilian teams (started back in the 90’s):
๏ UFRGS
๏ USP

‣ Today’s talk:
๏ In-situ result analysis
๏ Task based multi-core programming

Overview

Grenoble

3 -
3

•  Multi/many core processors are reshaping the HPC architectures

• Today a compute node can hold:
‣ Several multi-core processors (4 sockets, 8 cores each)
‣ Multiple accelerators (2 GPUs or 2 Intel Xeon Phi)

• Tianhe-2 (#1@Top500 2013): 16,000 computer nodes with
๏ 2 Intel Ivy Bridge processors
๏ 3 Xeon Phi chips
๏ Total of 3,120,000 cores

à Massive parallelism at node level

à  Increasing gap between networking and computing capabilities
Challenges:
‣ How to efficiently take benefit of all these cores
‣  How to overcome the I/O bottleneck

Introduction

4 -
4

More processing power à Produce more data (to save)

Difficult to cope with this data deluge:

‣ I/O system too slow
‣ Storage capabilities limited
‣ Post-processing usually performed:
๏ at computer center on a small cluster
๏ at scientist office on a small machine

à Slow, need to reread the data from disks, transfer them, etc.

In-Situ Processing: Motivation

5 -
5

Process the data (as much as possible):
๏ when they are produced
๏ where they are produced

Main idea: embed part of the post-processing tasks in the simulation

Benefits:
๏  Reduce the amount of data to move
๏  Use the supercomputer booked for the simulation
๏  Enable live result analysis (stop simulation if diverge, finer steering also possible)

Success if:
-  Not intrusive on the simulation code
-  Limited impact on simulation performance (< 10%)
-  Reasonably easy to set-up

In-Situ Processing

6 -
6

Synchronous In-Situ

Simulation

Embedded post-
processing

Post-proc.

Simulation

Embedded post-
processing

Simulation

Embedded post-
processing

It++ It++

MPI

It++

MPI
In-Situ

In-Transit
(on staging nodes) Post-proc.

Visualization

Pros: Simplicity, shared data
structures
Cons: impact on the simulation
performance

Approach adopted by Paraview
coprocessing library

7 -
7

Asynchronous In-Situ

Post-proc.

MPI MPI

In-Transit
(on staging nodes) Post-proc.

Visualization

Pros: less intrusive, more
efficient
Cons: more complex software
tool, data copy.

Sim

Sim

Merge Post-proc.
Helper core

Node Sim

Sim

Merge Post-proc.
Helper core

Node Sim

Sim

Merge Post-proc.
Helper core

Node

Take benefit of the simulation
inefficiency (usually not able to use all
the cores of a node)

Approach adopted by FlexIO,
Damaris, FlowVR

8 -
8

FlowVR: Middleware for In-situ Processing

1.  Develop	
 components:	
 	

	

	
 	
 	
 	
 	
 	
 	
 	
 	

	

2.  Assemble	
 components:	
 Python	
 script	

3.  Instan;ate	
 parameters	
 and	
 execute	
 script	

	

	
 	

	

h?p://flowvr.sf.net	

	

	
 	

l VRwFo

While (wait(inputs))
 get()
 compute()
 put()

end

Simple API (limit code intrusion)

Input ports

Output ports

9 -
9

FlowVR: Middleware for In-situ Processing

4.  Launch	
 execu;on	

FlowVR	
 run;me	
 takes	
 care	
 of	
 data	
 exchanges:	

•  Intra-­‐node:	
 pointer	
 exchange	
 	
 through	
 shared	

memory	
 (limit	
 copies)	

•  Inter-­‐node:	
 	
 socket	
 	
 or	
 MPI	
 messages.	

	

	

	
 	
 	
 	
 	
 	
 	
 	

	
 	

	

	

	
 	

10 -
10

Use Case: Molecular Dynamics

0
10
20
30
40
50

0 100 200 300

Sp
ee

d
(fp

s)

nbCore

Performances for
various models GMX
_570

Visu @13 fps

0

5

10

15

20

25

30

35

40

45

50

0 50 100 150 200 250

Sp
ee

d
(fp

s)

nbCore

Performances for various models

GMX_570K
GMX_1M7
GMX_860K
GMX_1.1M

Visu @13 fps

Parallel simulator: Gromacs (MPI)

Asynchronous In-situ with FlowVR:

1.  Extract atom positions from Gromacs processes
2.  Water molecules filtered out asynchronously at each node
3.  Remaining atoms forwarded to visualization node

8 cores per node: 7 gromacs processes, 1 for FlowVR
Impact simulation performance by 5%

Published at ICCS 2013
1.7Matoms model

11

12 -

Programming Model: Task Based

12

Int fib (int n)
{
 int x, y;
 if (n<2) return n;
 x = fib (n-1);
 y = fib (n-2);
 return x+y;
}

cilk Int fib (int n)
{

 int x, y;
 if (n<2) return n;
 x = spawn fib (n-1);

 y = spawn fib (n-2);
 sync;
 return x+y;
}

Parallelizing
Fibonacci
with Cilk

Task creation

Wait the completion of all
previously (sequential order)
spawned tasks

Task declaration

Tasks model:
•  Without dependencies: cilk, TBB, OpenMP
•  With: XKAAPI, OmpSS, OpenMP >= 4

13 -

Runtime: Work Stealing

13

Work stealing based: Cilk, TBB, XKAAPI

T
T

T

T

T

T

Workers
generate

tasks

Idle cores
steal tasks Work stealing: dynamically balance task

executions amongst available cores.

Each core:

 Queue locally generated tasks
 If local tasks available
 Execute them
 Oterwise
 Steal tasks from other cores

14 -
14

Europlexus [CEA - IRC - EDF - ONERA]

Fast transcient dynamics simulator (solid/solid, fluid/solid impact simulations)

Our contribution: rely on work stealing (XKAAPI) to speed-up intra-node computations

Initial work: parallelization of 2 loops (80% of compute time) and Cholesky factorization

Grand Prix SFEN 2013.

15 - IFP 2012

#include <cblas.h> !
#include <clapack.h>!
!
void Cholesky(double* A, int N, size_t NB)!
{!
 for (size_t k=0; k < N; k += NB)!
 {!
#pragma kaapi task readwrite(&A[k*N+k]{ld=N; [NB][NB]})!
 clapack_dpotrf(CblasRowMajor, CblasLower, NB, &A[k*N+k], N);!
!
 for (size_t m=k+ NB; m < N; m += NB)!
 {!
#pragma kaapi task read(&A[k*N+k]{ld=N; [NB][NB]}) \!
 readwrite(&A[m*N+k]{ld=N; [NB][NB]})!
 cblas_dtrsm (CblasRowMajor, CblasLeft, CblasLower, CblasNoTrans, CblasUnit,!
 NB, NB, 1., &A[k*N+k], N, &A[m*N+k], N);!
 }!
!
 for (size_t m=k+ NB; m < N; m += NB)!
 {!
#pragma kaapi task read(&A[m*N+k]{ld=N; [NB][NB]}) \!
 readwrite(&A[m*N+m]{ld=N; [NB][NB]}) !
 cblas_dsyrk (CblasRowMajor, CblasLower, CblasNoTrans,!
 NB, NB, -1.0, &A[m*N+k], N, 1.0, &A[m*N+m], N);!
!
 for (size_t n=k+NB; n < m; n += NB)!
 {!
#pragma kaapi task read(&A[m*N+k]{ld=N; [NB][NB]}, &A[n*N+k]{ld=N; [NB][NB]})\!
 readwrite(&A[m*N+n]{ld=N; [NB][NB]}) !
 cblas_dgemm (CblasRowMajor, CblasNoTrans, CblasTrans,!
 NB, NB, NB, -1.0, &A[m*N+k], N, &A[n*N+k], N, 1.0, &A[m*N+n], N);!
 }!
 }!
 }!
}!

Tile Cholesky factorization

15

16 -
16

Europlexus: Performance Results

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 5 10 15 20 25 30 35 40 45

sp
ee

d
u

p
 (

T
p

/T
se

q
)

core count

OpenMP
XKaapi

ideal

1 f o r (k = 0 ; k < N; k += BS)
2 {
3 p o t r f (k , &s l i) ;
4 f o r (m = k + BS ; m < N; m += BS)
5 {
6 i f (i s _ e m p t y (m, k , &s l i)) c o n t i nu e ;
7 t r sm (k , m, &s l i) ;
8 }
9 f o r (m = k + BS ; m < N; m += BS)

10 {
11 i f (i s _ e m p t y (m, k , &s l i)) c o n t i nu e ;
12 s y r k (k , m, &s l i) ;
13 f o r (n = k + BS ; n < m; n += BS)
14 {
15 i f (i s _ e m p t y (n , k , &s l i)) c o n t i n u e ;
16 i f (i s _ e m p t y (m, n , &s l i)) c o n t i n u e ;
17 gemm(k , m, n , &s l i) ;
18 }
19 }
20 }

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 5 10 15 20 25 30 35 40 45

sp
ee

d
u

p
 (

T
p

/T
se

q
)

core count

OpenMP
XKaapi

ideal

Fig. 5. Sequential sparse Cholesky code. Speedups of X-KAAPI vs OpenMP.

The data flow task model is flat in StarSs/SMPSs, QUARK
and StarPU while X-KAAPI allows recursive task creation. The
fork-join parallel paradigm is only supported by X-KAAPI,
Intel TBB [13], Cilk [19] and Cilk+ (Intel version of Cilk). The
X-KAAPI performance for fine grain recursive applications is
equivalent, or even better, than Cilk+ and Intel TBB that only
allow independent task creations. In TBB, Cilk or X-KAAPI
task creation is several order of magnitude less costly than
in StartSs/SMPSs, QUARK or StarPU. QUARK and StarPU
cannot scale well due to their central list scheduling. SMPSs
seems to support a more distributed scheduling.

X-KAAPI has a unique model of adaptive task that allow
a runtime adaptation of task creation when resources are idle.
The OpenMP runtime of GCC 4.6.2, libGOMP, implements a
threshold heuristic that limits task creation when the number
of tasks is greater than 64 times the number of threads. It can
limit the parallelism of the application and thus performance
cannot be guaranteed like with a workstealing algorithm. TBB,
with autopartitionner heuristic, is able to limit the number of
tasks without, a priori, limit the parallelism of the application.

Intel TBB, Cilk+, OpenMP and X-KAAPI support parallel
loop which are not present in StarSs/SMPSs, QUARK or
StarPU. Our comparison with OpenMP/GCC 4.6.2 shows
that for benchmarked instances and applications, scheduling
strategy is not an important feature.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

This paper introduced the X-KAAPI multi paradigm par-
allel programming model. Experiments highlighted that for

0"

100"

200"

300"

400"

500"

seq" 1" 2" 4" 8" 16" 24" 32" 40" 48"

Ti
m
e%
(s
ec
on

d)
%

Number%of%cores%

MEPPEN% repera"

loopelm"

Cholesky"

other"

0"

200"

400"

600"

800"

1000"

1200"

1400"

1600"

1800"

seq" 1" 2" 4" 8" 16" 24" 32" 40" 48"

Ti
m
e%
(s
ec
on

d)
%

Numer%of%cores%

MAXPLANE% repera"

loopelm"

Cholesky"

other"

Fig. 6. Overall gains of EUROPLEXUS with X-KAAPI.

each paradigm specific benchmark, X-KAAPI reaches a similar
or better performance than the reference software for this
paradigm. We also compare OpenMP and X-KAAPI on the
industrial code EUROPLEXUS. If for the parallel loop par-
allelism, X-KAAPI and OpenMP show an equivalent perfor-
mance (with better scalability for X-KAAPI), for data flow
tasks the OpenMP parallel model imposes synchronizations
that limits the speedup. This overhead experienced with our
sparse Cholesky factorization, was already spotted in [4] on
dense linear algebra factorizations.

This X-KAAPI evaluation draws two interesting conclu-
sions: 1/ the OpenMP dynamic and static schedulers, which
comes from historical design choices, would benefit from being
unified. Intel TBB only proposes a dynamic scheduler; 2/ a
(macro) data flow task model supporting recursivity can be
efficiently implemented and be competitive with a simple fork-
join model.

Ongoing work focuses on our compiler infrastructure, and
to integrate our multi-CPUs multi-GPUs support [22] and
distributed memory architecture support [12].

ACKNOWLEDGMENT

This work has been supported by CEA and by the ANR
Project 09-COSI-011-05 Repdyn.

REFERENCES

[1] E. A. Lee, “The problem with threads,” Computer, vol. 39, pp. 33–42,
2006.

[2] R. D. Blumofe and C. E. Leiserson, “Space-efficient scheduling of
multithreaded computations,” SIAM J. Comput., vol. 27, pp. 202–229,
1998.

Cholesky factorization.
Matrice size: 59462, Block size: 88

Global speed-up with KAAPI

Future work: OpenMP 4 interface + Kaapi runtime

17 -
17

 Early Results with Intel Xeon Phi

 Intel Xeon Phi co-processor:
‣  60 X86 cores with wide vector processing engine (4 Hyperthreads per core)
‣ One global memory
‣ Cache coherent architecture
‣ Connect on the PCI bus

Supported programming environments:
‣  MPI, OpenMP, TBB, Cilk
‣ XKAAPI ported in a couple of days

18 -
18

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100 120 140 160 180 200 220 240

G
Fl

op
/s

Threads

Intel MKL
XKaapi (rec.)

XKaapi
CilkPlus

 OpenMP

 0

 50

 100

 150

 200

 250

 300

 350

 0 20 40 60 80

G
Fl

op
/s

Threads

XKaapi (rec.)
XKaapi

Cilkplus
 OpenMP

4x8 SandyBridge cores

Intel Mic

Cholesky Factorization
Matrix size 8192, block size: 256

 Early Results with Intel Xeon Phi

Main benefit compared to GPU: programming ease

19 -
19

Conclusion
In-Situ Processing:
‣ Reduce the network traffic and disk usage.
‣ Post-processing becomes co-processing
‣ Enable live analysis

 FlowVR: a tool for asynchronous in-situ processing

Multi-core progamming with KAAPI
‣ Task based (OpenMP 4 interface)
‣ Work stealing runtime
‣ Multicores, multi-CPU & multi-GPU architectures, intra GPU, intra Xeon Phi

XKAAPI: low overhead, high performance rutime engine.

