Efficient Multi-Core Programming
and In-Situ Result Analysis

Bruno Raffin
MOAIS Team, Grenoble, France

Overview

Moais: INRIA research team located at Grenoble

» Focused on parallel programming, algorithms and scheduling

» Main software tools:
® KAAPI: runtime for efficient multi-core programming
® FlowVR: middleware for in-situ data processing and visualization

» Long term collaborations with Brazilian teams (started back in the 90’s):
® UFRGS
® USP

» Today’s talk:
@ In-situ result analysis
® Task based multi-core programming

I&zub,—

Introduction

* Multi/many core processors are reshaping the HPC architectures

* Today a compute node can hold:
» Several multi-core processors (4 sockets, 8 cores each)
» Multiple accelerators (2 GPUs or 2 Intel Xeon Phi)

* Tianhe-2 (#1@Top500 2013): 16,000 computer nodes with
® 2 Intel Ivy Bridge processors
® 3 Xeon Phi chips
® Total of 3,120,000 cores

—~>Massive parallelism at node level
- Increasing gap between networking and computing capabilities

Challenges:
» How to efficiently take benefit of all these cores
» How to overcome the I/O bottleneck

I&zub,-

In-Situ Processing: Motivation

More processing power - Produce more data (to save)

Difficult to cope with this data deluge:

/O system too slow

»Storage capabilities limited

» Post-processing usually performed:
@at computer center on a small cluster

@at scientist office on a small machine
—->Slow, need to reread the data from disks, transfer them, etc.

Iéw—

In-Situ Processing

Process the data (as much as possible):
® when they are produced
® where they are produced

Main idea: embed part of the post-processing tasks in the simulation

Benefits:

® Reduce the amount of data to move

® Use the supercomputer booked for the simulation

® Enable live result analysis (stop simulation if diverge, finer steering also possible)

Success if:
- Not intrusive on the simulation code
- Limited impact on simulation performance (< 10%)
- Reasonably easy to set-up

I&zub,—

Synchronous In-Situ

It++

Embedded post- Embedded post-

processing processing

It++

[J

Pros: Simplicity, shared data
structures
Cons: impact on the simulation

performance _ —
Visualization

In-Situ

Embedded post-

processing

In-Transit
(on staging nodes)

Approach adopted by Paraview
coprocessing library

oo o

Asynchronous In-Situ

u

__——

In-Transit
{ J (on staging nodes)

Take benefit of the simulation
Pros: less intrusive, more inefficiency (usually not able to use all
efficient the cores of a node)

Cons: more complex software _ —
tool, data copy. Approach adopted by FlexIO,

Damaris, FlowVR
J & —

FlowVR: Middleware for In-situ Processing

1. Develop components:
d NN While (wait(inputs))

get() Simple API (limit code intrusion)
compute()

put()

end

O!pu!orts

2. Assemble components: Python script
3. Instantiate parameters and execute sc

Fioy

. t
wur Graph Visualizar: /home/meleraTlowvi-dev/ lowvr-graph/dot/gen-demo-saf.nsLxml
i

VR

http://flowvr.sf.net

I&'z

zla—

I&'z

FlowVR: Middleware for In-situ Processing

4. Launch execution
FlowVR runtime takes care of data exchanges:

* Intra-node: pointer exchange through shared
memory (limit copies)

* Inter-node: socket or MPI messages.

Daemon I Shared
Memory
%/"‘" gl
L
'l
L

Use Case: Molecular Dynamics

Parallel simulator: Gromacs (MPI)

Asynchronous In-situ with FlowVR:
1. Extract atom positions from Gromacs processes
2. Water molecules filtered out asynchronously at each node
3. Remaining atoms forwarded to visualization node

8 cores per node: 7 gromacs processes, 1 for FlowVR

lmpaCt simulation performance by 5% Performance of Gromacs inside FvNano

///'4 Visu @41 it/s

50
Visu @25 it/s
// /I

Visu @21 it/s

Visu @13 it/s

—+—0.5Matoms

“ -#-0.8Matoms

—+—1.1Matoms

Gromacs speed (Iteration/sec)

—=1.7Matoms

Cores

Published at ICCS 2013

11

Programming Model: Task Based

Task declaration

Int fib (int n) cilk Int fib (int n)

{ {
!nt X, Y, int x, v; Task creation
if (n<2) return n; if (n<2) retufn n:

X =1ib (n-1) » x = spawn fib (n-1);

y = fib (n'z.); Parallelizing vy = spawn fib (n-2);
return X+y; Fibonacci :
} with Cilk syne,

returq x+y;
} Wait the completion of all
previously (sequential order)

spawned tasks

Tasks model:
» Without dependencies: cilk, TBB, OpenMP

* With: XKAAPI, OmpSS, OpenMP >= 4

I“W—

Runtime: Work Stealing

Work stealing: dynamically balance task
executions amongst available cores.

Idle cores
Each core:

‘ steal tasks
Queue locally generated tasks

If local tasks available @ @
Execute them @
Oterwise @

Steal tasks from other cores

Workers

generate
Work stealing based: Cilk, TBB, XKAAPI tasks

Europlexus [CEA - IRC - EDF - ONERA]

EUROPLEXUS

Meppen tests simulation - Impact force calculation
Johnson-Cook material [law

Parameters : A=235 MPg B=
n=0.642
ReferenceLst ain rate: 1.E-4/s

Impact velocity : 247

Time: 0.0 ms

Fast transcient dynamics simulator (solid/solid, fluid/solid impact simulations)
Our contribution: rely on work stealing (XKAAPI) to speed-up intra-node computations
Initial work: parallelization of 2 loops (80% of compute time) and Cholesky factorization

Grand Prix SFEN 2013.

I&W—

Tile Cholesky factorization

#include <cblas.h>
#include <clapack.h>

void Cholesky(ouble* A, int N, size_t NB)

for (siz k=0; k < N; k += NB)

#pragma pi task readwrite(&A[k*N+k]{1ld=N; [NB][NB]})
iclapack_dpotrf(lCblasRowMajor, CblasLower, NB, &A[k*N+k], N);
i

for (size_t m=k+ ﬁB; m < N; m += NB)
{
#pragma kaapi task read(&A[k*N+k]{1d=N; [NB][NB]}) \
readwrite (&A[m*N+k] {1d=N; [NB][NB]})
cblas_dtrsm (CblasRowMajor, CblasLeft, CblasLower, CblasNoTrans, CblasUnit,
NB, NB, 1., &A[k*N+k], N, &A[m*N+k], N);

}

for (size_t m=k+ NB; m < N; m += NB)
{
#pragma kaapi task read(&A[m*N+k]{1d=N; [NB][NB]}) \
readwrite (&A[m*N+m] {1d=N; [NB][NB]})
cblas_dsyrk (CblasRowMajor, CblasLower, CblasNoTrans,
NB, NB, -1.0, &A[m*N+k], N, 1.0, &A[m*N+m], N);

for (size_t n=k+NB; n < m; n += NB)

{ |

#pragma kaapi task read(&A[m*N+k]{ld=N; [NB][NB]}, &A[n*N+k]{ld=N; [NB][NB]})\ =

readwrite (&A[m*N+n] {1d=N; [NB][NB]}) |

cblas_dgemm (CblasRowMajor, CblasNoTrans, CblasTrans, :
NB, NB, NB, -1.0, &A[m*N+k], N, &A[n*N+k], N, 1.0, &A[m*N+n], N);

Europlexus: Performance Results

45 - OpenMP ——
XKaapi ——
40 1 ideal

35

30 =

20 1800 MAXPLANE

M repera
.
N ’./)(//" TS 1600 - H loopelm
10 1400 - B Cholesky
3 é 1200 - other
0
0 5 10 15 20 25 30 35 40 45 7
core count | I
Cholesky factorization. 1 l N = = — —

Matrice size: 59462, Block size: 88 i

speedup (Tp/Tseq)
[\
(9]

=
o
o
o

(o]
o
o

Time (second)

D
o
o

400 -

200 — —

seq 1 2 4 8 16 24 32 40 48
Numer of cores

Global speed-up with KAAPI

Future work: OpenMP 4 interface + Kaapi runtime

I&zub,—

I[}L

Early Results with Intel Xeon Phi ¥

Intel Xeon Phi co-processor:

» 60 X86 cores with wide vector processing engine (4 Hyperthreads per core)

» One global memory
» Cache coherent architecture
» Connect on the PCI bus

Supported programming environments:

Yeon' P Coprocessot

» MPI, OpenMP, TBB, Cilk
» XKAAPI ported in a couple of days

Coherent
L2 cache

Coherent
L2 cache

Coherent
L2 cache

Coherent
L2 cache

Coherent
L2 cache

Coherent

L2 cache

I.I cache

Coherent
L2 cache

In-Order | In-Order
CPU core | CPU core

zla—

SW

u ' el 51“ ?
Early Results with Intel Xeon Phi \\gg E)
®

Main benefit compared to GPU: programming ease

350

300 - 250 —
250 L Intel MKL =——+—
2 XKaapi (rec.) == =
200 200 XKaapi ===-t-==- e
? CilkPlus —-em o =®777H T Moy
150 - »n
E
100 - XKaapi (rec.) =—+— o3 150 -
XKaapi === &)
50 - Cilkplus eees
OpenMP —-m-—
0 | | | | 100 [
0 20 40 60 80
Threads
50 -
4x8 SandyBridge cores
0 ! ! ! ! ! ! ! ! ! ! ! |
0 20 40 60 80 100 120 140 160 180 200 220 240
Threads
Intel Mic

Cholesky Factorization
Matrix size 8192, block size: 256

I&zub,—

I&'z

Conclusion

In-Situ Processing:
» Reduce the network traffic and disk usage.
» Post-processing becomes co-processing
» Enable live analysis

FlowVR: a tool for asynchronous in-situ processing

Multi-core progamming with KAAPI
» Task based (OpenMP 4 interface)
» Work stealing runtime
» Multicores, multi-CPU & multi-GPU architectures, intra GPU, intra Xeon Phi

XKAAPI: low overhead, high performance rutime engine.

zla—

