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 Moais: INRIA research team located at Grenoble  

‣ Focused on  parallel programming, algorithms and scheduling 
 
‣ Main software tools:  
๏ KAAPI:  runtime for efficient multi-core programming 
๏ FlowVR: middleware for in-situ data processing and visualization 

‣ Long term collaborations with Brazilian teams (started back in the 90’s):  
๏ UFRGS 
๏ USP 

 
‣ Today’s talk: 
๏ In-situ result analysis 
๏ Task based multi-core programming 

Overview 

Grenoble 
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•  Multi/many core processors are reshaping the HPC architectures 

• Today  a compute node can hold:  
‣ Several  multi-core processors (4 sockets, 8 cores each) 
‣ Multiple accelerators (2 GPUs or 2 Intel Xeon Phi)  

• Tianhe-2 (#1@Top500 2013): 16,000 computer nodes with  
๏ 2 Intel Ivy Bridge processors 
๏ 3 Xeon Phi chips  
๏ Total of  3,120,000 cores 

 
à Massive parallelism at node level  

à  Increasing  gap between networking and computing capabilities 
Challenges:  
‣ How to efficiently take benefit of all these cores 
‣   How to overcome the I/O bottleneck  

Introduction 
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More processing power à Produce more data (to save) 
 
 

Difficult to cope with this data deluge: 
 
‣ I/O system too slow 
‣ Storage capabilities limited 
‣ Post-processing usually performed: 
๏ at computer center on a small cluster 
๏ at scientist office on a small machine 

à Slow, need to reread the data from disks, transfer them, etc. 

In-Situ Processing: Motivation 
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Process the data (as much as possible): 
๏ when they are produced 
๏ where they are produced 
 
Main idea:  embed part of the post-processing tasks in the simulation 

 

Benefits:   
๏  Reduce the amount of data to move 
๏  Use the supercomputer booked for the simulation 
๏  Enable live result analysis (stop simulation if diverge, finer steering also possible)  

Success if: 
-  Not intrusive on the  simulation code 
-  Limited impact on simulation performance  (< 10%) 
-  Reasonably easy to set-up 

In-Situ Processing 
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Synchronous In-Situ 

Simulation 
 

Embedded post-
processing 

Post-proc. 

Simulation 
 

Embedded post-
processing 

Simulation 
 

Embedded post-
processing 

It++ It++ 

MPI 

It++ 

MPI 
In-Situ 

In-Transit 
(on staging nodes) Post-proc. 

Visualization 

 
Pros: Simplicity, shared data 
structures 
Cons: impact on the simulation 
performance 
 

Approach adopted by Paraview 
coprocessing library 
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Asynchronous In-Situ 

Post-proc. 

MPI MPI 

In-Transit 
(on staging nodes) Post-proc. 

Visualization 

 
Pros: less intrusive, more 
efficient 
Cons: more complex software 
tool, data copy. 
 
 

Sim 
 

Sim 
 

Merge Post-proc. 
Helper core 

Node Sim 
 

Sim 
 

Merge Post-proc. 
Helper core 

Node Sim 
 

Sim 
 

Merge Post-proc. 
Helper core 

Node 

Take benefit of the simulation 
inefficiency (usually not able to use all 
the cores of a node) 
 
Approach adopted by FlexIO, 
Damaris, FlowVR 
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FlowVR: Middleware for In-situ Processing 

1.  Develop	
  components:	
  	
  

	
  
	
   	
   	
   	
   	
   	
   	
   	
  	
  
	
  
2.  Assemble	
  components:	
  Python	
  script	
  
3.  Instan;ate	
  parameters	
  and	
  execute	
  script	
  
	
  
	
  	
  
	
  
h?p://flowvr.sf.net	
  
	
  

	
  	
  

l VRwFo

While ( wait(inputs) ) 
 get() 
 compute() 
 put() 

end 

Simple API (limit code intrusion)  

Input ports 

Output ports 



9 -  
9 

FlowVR: Middleware for In-situ Processing 

4.  Launch	
  execu;on	
  
FlowVR	
  run;me	
  takes	
  care	
  of	
  data	
  exchanges:	
  
•  Intra-­‐node:	
  pointer	
  exchange	
  	
  through	
  shared	
  

memory	
  (limit	
  copies)	
  
•  Inter-­‐node:	
  	
  socket	
  	
  or	
  MPI	
  messages.	
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Use Case:  Molecular Dynamics 
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Parallel simulator: Gromacs (MPI) 
 
Asynchronous In-situ with FlowVR: 

1.  Extract atom positions from Gromacs processes   
2.  Water molecules filtered out asynchronously at each node 
3.  Remaining atoms forwarded to visualization node 

8 cores per node: 7 gromacs processes, 1 for FlowVR  
Impact simulation performance by 5%  

 

Published at ICCS 2013 
1.7Matoms  model 



11 



12 -  

Programming Model: Task Based 
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Int fib (int n) 
{ 
  int x, y; 
  if (n<2) return n; 
  x = fib (n-1); 
        y = fib (n-2); 
        return x+y; 
} 

cilk Int fib (int n) 
{ 

  int x, y; 
  if (n<2) return n; 
  x = spawn fib (n-1); 

        y = spawn fib (n-2); 
        sync; 
        return x+y; 
} 

Parallelizing 
Fibonacci 
with Cilk 

Task creation 

Wait the completion of all 
previously (sequential order) 
spawned tasks 

Task declaration 

Tasks model:  
•  Without  dependencies: cilk, TBB, OpenMP 
•  With:  XKAAPI, OmpSS, OpenMP >= 4 
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Runtime: Work Stealing 
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Work stealing based:  Cilk, TBB, XKAAPI 

T 
T 

T 

T 

T 

T 

Workers 
generate 

tasks 

Idle cores 
steal tasks Work stealing: dynamically balance task 

executions amongst available cores.  
 
Each core:  

 Queue locally generated tasks 
 If local tasks available 
  Execute them 
 Oterwise 
  Steal tasks from other cores 
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Europlexus [CEA - IRC - EDF - ONERA]  

Fast transcient dynamics simulator (solid/solid,  fluid/solid impact simulations) 
 
Our contribution: rely on work stealing (XKAAPI) to speed-up intra-node computations 
 
Initial work: parallelization of 2 loops (80% of compute time) and Cholesky factorization 
 
Grand Prix SFEN 2013. 

  
     



15 -  IFP 2012 

#include <cblas.h> !
#include <clapack.h>!
!
void Cholesky( double* A, int N, size_t NB )!
{!
  for (size_t k=0; k < N; k += NB)!
  {!
#pragma kaapi task readwrite(&A[k*N+k]{ld=N; [NB][NB]})!
    clapack_dpotrf( CblasRowMajor, CblasLower, NB, &A[k*N+k], N );!
!
    for (size_t m=k+ NB; m < N; m += NB)!
    {!
#pragma kaapi task read(&A[k*N+k]{ld=N; [NB][NB]}) \!
                   readwrite(&A[m*N+k]{ld=N; [NB][NB]})!
      cblas_dtrsm ( CblasRowMajor, CblasLeft, CblasLower, CblasNoTrans, CblasUnit,!
        NB, NB, 1., &A[k*N+k], N, &A[m*N+k], N );!
    }!
!
    for (size_t m=k+ NB; m < N; m += NB)!
    {!
#pragma kaapi task read(&A[m*N+k]{ld=N; [NB][NB]}) \!
                   readwrite(&A[m*N+m]{ld=N; [NB][NB]}) !
     cblas_dsyrk ( CblasRowMajor, CblasLower, CblasNoTrans,!
        NB, NB, -1.0, &A[m*N+k], N, 1.0, &A[m*N+m], N );!
!
      for (size_t n=k+NB; n < m; n += NB)!
      {!
#pragma kaapi task read(&A[m*N+k]{ld=N; [NB][NB]}, &A[n*N+k]{ld=N; [NB][NB]})\!
                   readwrite(&A[m*N+n]{ld=N; [NB][NB]}) !
        cblas_dgemm ( CblasRowMajor, CblasNoTrans, CblasTrans,!
          NB, NB, NB, -1.0, &A[m*N+k], N, &A[n*N+k], N, 1.0, &A[m*N+n], N );!
      }!
    }!
  }!
}!

Tile Cholesky factorization 

15 
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Europlexus: Performance Results 
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1 f o r ( k = 0 ; k < N; k += BS )
2 {
3 p o t r f ( k , &s l i ) ;
4 f o r (m = k + BS ; m < N; m += BS )
5 {
6 i f ( i s _ e m p t y (m, k , &s l i ) ) c o n t i nu e ;
7 t r sm ( k , m, &s l i ) ;
8 }
9 f o r (m = k + BS ; m < N; m += BS)

10 {
11 i f ( i s _ e m p t y (m, k , &s l i ) ) c o n t i nu e ;
12 s y r k ( k , m, &s l i ) ;
13 f o r ( n = k + BS ; n < m; n += BS )
14 {
15 i f ( i s _ e m p t y ( n , k , &s l i ) ) c o n t i n u e ;
16 i f ( i s _ e m p t y (m, n , &s l i ) ) c o n t i n u e ;
17 gemm( k , m, n , &s l i ) ;
18 }
19 }
20 }
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Fig. 5. Sequential sparse Cholesky code. Speedups of X-KAAPI vs OpenMP.

The data flow task model is flat in StarSs/SMPSs, QUARK
and StarPU while X-KAAPI allows recursive task creation. The
fork-join parallel paradigm is only supported by X-KAAPI,
Intel TBB [13], Cilk [19] and Cilk+ (Intel version of Cilk). The
X-KAAPI performance for fine grain recursive applications is
equivalent, or even better, than Cilk+ and Intel TBB that only
allow independent task creations. In TBB, Cilk or X-KAAPI
task creation is several order of magnitude less costly than
in StartSs/SMPSs, QUARK or StarPU. QUARK and StarPU
cannot scale well due to their central list scheduling. SMPSs
seems to support a more distributed scheduling.

X-KAAPI has a unique model of adaptive task that allow
a runtime adaptation of task creation when resources are idle.
The OpenMP runtime of GCC 4.6.2, libGOMP, implements a
threshold heuristic that limits task creation when the number
of tasks is greater than 64 times the number of threads. It can
limit the parallelism of the application and thus performance
cannot be guaranteed like with a workstealing algorithm. TBB,
with autopartitionner heuristic, is able to limit the number of
tasks without, a priori, limit the parallelism of the application.

Intel TBB, Cilk+, OpenMP and X-KAAPI support parallel
loop which are not present in StarSs/SMPSs, QUARK or
StarPU. Our comparison with OpenMP/GCC 4.6.2 shows
that for benchmarked instances and applications, scheduling
strategy is not an important feature.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

This paper introduced the X-KAAPI multi paradigm par-
allel programming model. Experiments highlighted that for
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Fig. 6. Overall gains of EUROPLEXUS with X-KAAPI.

each paradigm specific benchmark, X-KAAPI reaches a similar
or better performance than the reference software for this
paradigm. We also compare OpenMP and X-KAAPI on the
industrial code EUROPLEXUS. If for the parallel loop par-
allelism, X-KAAPI and OpenMP show an equivalent perfor-
mance (with better scalability for X-KAAPI), for data flow
tasks the OpenMP parallel model imposes synchronizations
that limits the speedup. This overhead experienced with our
sparse Cholesky factorization, was already spotted in [4] on
dense linear algebra factorizations.

This X-KAAPI evaluation draws two interesting conclu-
sions: 1/ the OpenMP dynamic and static schedulers, which
comes from historical design choices, would benefit from being
unified. Intel TBB only proposes a dynamic scheduler; 2/ a
(macro) data flow task model supporting recursivity can be
efficiently implemented and be competitive with a simple fork-
join model.

Ongoing work focuses on our compiler infrastructure, and
to integrate our multi-CPUs multi-GPUs support [22] and
distributed memory architecture support [12].
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Cholesky factorization.  
Matrice size: 59462, Block size: 88 

Global speed-up with KAAPI 

Future work: OpenMP 4 interface + Kaapi runtime 
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 Early Results with Intel Xeon Phi 

 Intel Xeon Phi co-processor: 
‣  60 X86 cores with wide vector processing engine (4 Hyperthreads per core) 
‣ One global memory  
‣ Cache coherent architecture 
‣ Connect on the PCI bus 

 
 
Supported programming environments:     
‣   MPI, OpenMP, TBB, Cilk 
‣ XKAAPI ported in a couple of days 
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Cholesky Factorization 
Matrix size 8192, block size: 256  

 Early Results with Intel Xeon Phi 

Main benefit compared to GPU:  programming ease 
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Conclusion 
In-Situ Processing: 
‣ Reduce the network traffic and disk usage. 
‣ Post-processing becomes co-processing 
‣ Enable live analysis 
 

 FlowVR: a tool for  asynchronous in-situ processing 
  

 
Multi-core progamming with KAAPI 
‣ Task based (OpenMP 4 interface) 
‣ Work stealing runtime 
‣ Multicores, multi-CPU & multi-GPU architectures, intra GPU, intra Xeon Phi 

XKAAPI: low overhead, high performance rutime engine.  
 


