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Dissecting a Scientific Workflow

ID=1;
X CaseStudy='U-125’;
l FileX, FileY

v |
Filez I
ActivityA | T T ==~o__ s> |
call A(x, FileX, FileY) O
y I FileX, FileZ == ——— >
| | Filew
\ I Shared
|| disk

Activity B

call B(y, FileX, FileZ) \—/
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Data-centric experiments

 Scientists have to explore the behavior of their model
under different inputs.
o This occurs in many areas such as computational fluid dynamics,
bioinformatics, uncertainty quantification, dark energy analysis
* In data-centric experiments we have multiple inputs for the
workflow. from Re=100_

to  Re=100

» These data-centric workflows becomes also
computationally intensive and they may run for hours/days
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Current Approaches for

Data Centric Workflows
e Parallel SWfMS

o Swift: allows scientists to specify parallel workflows
using a scripting language
* SWFMS Integration with Hadoop

o VisTrails+Hadoop: allows activities of a particular type to
be parallelized

 SWfMS Integration with specialized middleware

o Kepler+Nimrod: allows activities of a particular type to
be parallelized

Data-centric workflows are natural
candidates for parallel processing
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Common approaches for
supporting data parallelism

Adaptation to include
for each in all activities

Activity A
For each x in X Set
call A(x, FileX,, FileY,)

leet :
\"4

Activity B
For each y in Y Set
call B(y, FileX, FileZ)

Adaptation to include a
for each invoking a group of activities

lX set

Parameter Sweep (PS)
For each x in X Set

)
piplntaled N
| Shared
n disk

\ 4
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Problems

e Lack of uniform data model

o Demands the adoption of an uniform data model to represent
workflows that are agnostic to execution environment

e Execution models for data centric workflows

o Demands the optimization of the parallel workflow executing
considering this agnostic model

o Without optimization, scientists should code their workflows
using low level primitives

* How, when and in what granularity we should store
provenance



Objectives

* Propose an uniform data model and an agnostic
workflow representation

* Evaluate opportunities for workflow optimization
that consider the entire workflow

o Propose an optimization process for workflow execution

* Consider the execution of workflows in the same
way as query execution plans in databases



Solution: An Algebraic Approach

* Data-Centric algebra for scientific workflows

o Relations as data model for consumption and
production

o Algebraic operators that provide semantics to
activities

o Algebraic expressions provide an agnostic
workflow representation

o Workflow execution model for this algebra based
on activity activation



Relations as Data Model
for Consumption and Production

* Relations are defined as sets of tuples of primitive
types (integer, float, string, date etc) or complex
data types (e.g. references to files)

e Example: R(R)

RID CaseStudy sdat ddat
1 U-125 U-125S.DAT U-125D.DAT
1 U-127 U-127S.DAT U-127D.DAT
2 U-129 U-129S.DAT U-129D.DAT

R =(RID: Integer, CaseStudy: String; SDat: FileRef, DDat: FileRef)




Algebraic Operators for
Data-Centric Activities

* Program invocation
* Map (1:1)
e SplitMap (1:n)
* Reduce (n:1)
* Filter (1:0-1)
* Relational Algebra Expressions
* SRQuery
* MRQuery
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Split Map Activity (SplitMap)
T & SplitMap(Y, a, R)

R RID RdZip
1 Projectl.zip
2 Project2.zip

T < SlipMap(extractRD, ‘RdZip’, R)

T | RID Study sdat ddat
— 1 U-125 U-125S.DAT U-125D.DAT
— 1 U-127 U-127S.DAT U-127D.DAT

2 U-129 U-129S.DAT U-129D.DAT
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Reduce Activity (Reduce)
T < Reduce(Y, g,, R)

RID Study SsSai DdSai MEnv
1 U-125 U-125Ss.SAl | U-125Dd.SAl U-125.ENV
1 U-127 U-127Ss.SAI | U-127Dd.SAl U-127.ENV
2 U-129 U-129Ss.SAI | U-129Dd.SAl U-129.ENV

T < Reduce(CompressRD, {‘RID’}, R)

T RID RdResultZip
> 1 ProjectResultl.zip
2 ProjectResult2.zip




Single Relation Query Activity (SRQuery)
T &< SRQuery(qry, R)

R | RID Study SsSai Curvature
1 U-125 U-125Ss.5Al 1.5
1 U-126 U-126Ss.SAl 0.9
— 1 U-127 U-127Ss.SAl 1.2

T< SRQuery(anD, Study, SsSai, Curvature(GCurvature>1(R)) ’ R)

T RID Study SsSai Curvature
> 1 U-125 U-125Ss.SAl 1.5
> 1 U-127 U-127Ss.SAl 1.2
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(2)

(3)

(4)

(5)

Workflow specification
expressed as algebraic expressions

Workflow

(1) | ExtractRD

PSRiser

SRiser

PDRiser

(7)

Canalysis

DRiser

Tanalysis

(6)

Merge

(9)

CompressRD

Algebraic expressions

T, < SplitMap(ExtractRD, R,)

T, < Map(PSRiser, T,)

T; < Map(SRiser, T,)

T, < Map(PDRiser, T,)

T, <— Map(DRiser, T,)

T, < Filter(Tanalysis, T;)

T, < Filter(Canalysis, T;)

Tg < MRQuery(T; X T, {T;, T,})
T, < Reduce(CompressRD, T,)



Workflow Execution Model

* Activity Activation
 Strategies for execution
e Dataflow Strategy

* Dispatching Strategy
* Algebraic optimization



Activity Activation

 Activity activation is a self-
contained object that holds all
information needed (i.e.
which program to invoke and
which data to access) to
execute an activity at any core

e Activations contain the finest
unit of data needed by an
activity to execute

input tuples {r} CR

!

Instrumentation for Y

|

Invocation of Y

{

Extraction of Y results

|

output tuples {t} CT




Dataflow Strategies

First Tuple First (FTF) partitions a set of activations in a
fragment into a complete list of dependent activations;
First Activity First (FAF) partitions a set of activations in a
fragment into a complete list of independent activations

ordered by activity dependence.

FTF:
{<xq, X4>, <Xy, X>, <X3, Xc>}

FAF:
{<x;>,<x,>,<x5>,
<Xy>,<Xs>,<X>}




Dispatching Strategy

In static dispatching strategy, activations are pre-allocated to

each core before execution.
In dynamic dispatching strategy activations are allocated to

cores as a response to a request for activations.

FFFFEFFFFFEFEEF

| Scheduler

FEEFNFFFEFRFEEEF

(static)

FFFFFFFFFFFF

Scheduler

1 1 1

Core

(dynamic)



Algebraic transformation

(i - workflow — relation perspective)

° Map ° Filter

(iiii - anticipation)




Workflow optimization process

Initial algebraic expressions

l

| Generatation of search |_ ﬁansformahD
space “—__ rules

l Equivalent algebraic expressions

Evaluation of search —
6
strategy \COSt modD

Optimized algebraic expressions



Chiron

* Chiron is a data-centric scientific workflow engine
* Implemented in Java using MPJ
* Provenance is stored in Relation Database

Provenance in

HPC Relational Database

Shared disk
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Evaluation of RFA Workflow
with 358 Case Studies

« S-FAF D-FAF ~S-FTF +D-FTF

8 16 32 64 128

1438 activations, 16765 files
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Performance difference of 226% between D-FTF versus S-FAF for 128 cores
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avg. time =4', input =512 avg. time =4', input =1024  avg. time = 16', input = 512
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Algebraic optimization in RFA workflow

| ExtractRD | | ExtractRD |

PSRiser ( PS}Iser
SRiser ) SRiser

| .

PDRiser : CAnalysis
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DRiser | | PDRiser

l TAnalgsis l CAnalysis ‘[/DRiser
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Exploratory Nature in Experiments

* The execution of the same experiment repeatedly

* Exploring parameters or input datasets
o Parameter Sweeps
o Fine-tuning
o Iterative Methods
* Time consuming workflows
o Analysis of Partial Results
* Provenance Data

o Real time analysis
o Reproducibility of the experiment



Dynamic Workflows

* The experiment life cycle is intrinsically dynamic

o Workflows also need to be dynamic
* Distributed and collaborative workflow design

* Workflow adaptation based on external events
— Human intervention and dynamic steering

 Efficient query system in support to provenance data

— Support provenance information browsing and traversing
* Forms to explore slices of the parameter space and compare
the results of different configurations
o Provenance is the key for dynamic analysis

* Access and query meta-data and some results from ongoing
experiments



Interactive Workflows

Dynamic Steering

Efficient query system

Explore slices of the parameter space
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Steering the workflow

* Purpose
o Visualize and analyze provenance data to steer the Wf

o Make adjustments during the execution
* Parameter refinements

* Filtering options
 Number of iterations of a loop
* How to be in control
o Runtime Provenance

e Real time analysis

o “Adjustable knobs”
e Adjust Parameters
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Evaluation

* Adjusting a runtime parameter

* Lanczos algorithm

o Reduced Order Model scenario

o Simplest Krylov sub-space method

e Construct iteratively an orthonormal basis in the Krylov sub-
space

o Computes approximate eigenvalues (Ritz values)

 The number of eigenvalues is associated with the number of
iterations

o Not efficient to compute all eigenvalues

* The iteration is usually truncated
— After obtaining a given number of eigenvalues



Evaluation

¢ A 30 © o 00000 mssses o0 ses smes s ese .
oo FEHREMISLTLAE
c L L ] L L L L ] L ] L L L LN J L ]
o) e o o0 e o o o ° e o o o e o °
B T3 5 o e e e iy
C % I R A P D I D ¥ B
—10 E ..o.. ° ..o. . : * ..o ..:. E -
: o. . . . . . . : : .he KleOV SUb_
5 ... L ] . - L ] . L ] - . ...

€ 0 /alues)

6E+09 1,1E+10 1,6E+10 2,1E+10 h b f
Ritz Values the number o

o Not efficient to comput( _.reigenvalues

* The iteration is usually truncated
— After obtaining a given number of eigenvalues
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Lanczos Workflow

* Dynamic parameter sweep Matix Files

o Consumes m matrices of size N

o Can produce all the n eigenvalues after N
iterations

o S, can truncate the iteration based on the
error

e Modeled on Chiron

o Parallel workflow engine
o Distributed provenance
o Real time provenance analysis

o Modules to add the iterative support and
the new controls

Approximated Eigenvalues
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Case Study

e 128 ROMs with random 12

10.29
material properties 10
o Problem size: N=1024 8
o Arbitrary truncation § 6
.-

e After 180 iterations A
o Dynamic truncation ,

* S, trunFates the iteration %
dynamically 0

N=1024
Matrix Size

B Traditional PS 7 Dynamic PS



Current Goals

* Evaluation Loops
o Support iterative experiments

o Modify the behavior of the execution according to a
given evaluation

o Use provenance data extracted from results
e Can analyze specific parameters
* Or can analyze a behavior over experiment data

* Exploring slices of parameter space
o Good for uncoupled analysis

o Save computation after partial results
e Discarding input data



Large Scale Visualization

* Dense meshes simulations
o Can easily reach Terabytes of data

* Processor speed increased, but disk I/0
and storage did not followed the same
growth

* New Co-Processing Paraview Library

o Co-Processing module developed in the
simulator

o Runtime visualization ;
o Simulation data is not stored (only the video)

o If you need to change something, you need
to re-run the simulation

The ParaView Coprocessing Library: A Scalable, General Purpose In Situ
Visualization Library



Evaluation Loops

Provenance
EdgeCFD
Solver EdgeCFD
l' v
es 1 S I
< Evaluation | no olver
= Co-Processor (b > x) ‘l'
1
: ‘l' Co-Processor 1~
l
I Store Files
i
1
1
1

---------------------- > Paraview [§==sssssssssssssssssssnd

Storage === Tiled-Wall display
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Co-processing Workflow

Provenance

EdgeCFD

Solver

! yes

Co-Processor

l, ssor [~

Store Files

---------------------- > Paraview [§==sssssssssssssssssssnd

Storage === Tiled-Wall display
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Co-processing Workflow

“Expensive” Cycle

Provenance
Edg
EdgeCFD
uation | no Solver
>
r-h  Co-Proces (p > x) \l,
1
| l, Co-Processor A~
i
! Store Files
|
1
1
1

---------------------- > Paraview [§==sssssssssssssssssssnd

% --- Tiled-Wall display

>torage I — —
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Conclusions

* Data centric experiments
o Example: Large simulations with dense meshes
o Parameter explorations

* Algebraic approach for scientific workflows
o Algebraic and declarative workflow language
o Allows for workflow optimizations
o Runtime provenance analysis

* Interactive workflows
o Fine-tuning adjustments during Wf execution
* Real time provenance
o Evaluation Loops
* |terative support

o Exploring slices of parameter space
* More dynamic analysis
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