
Provenance Management in Many-Task

Computing

Luiz Gadelha
CENAPAD-RJ – LNCC
lgadelha@lncc.br

First Brazil-France Workshop on High Performance Computing and Scientific
Data Management Driven by Highly Demanding Applications

September 12, 2012

L a b o r a t ó r i o
N acion a l de
Co mpu tação
C i e n t í f i c a

Agenda

Introduction
Scientific Workflows
Provenance

MTCProv: Provenance Management Tool for Many-Task Computing
Motivation: Provenance Challenge 3
Query Patterns
Data Modeling
Gathering and Storage
Query Interface
Security

Case studies: OOPS and Parallel BLAST

Related Work

Concluding Remarks

2 / 47

Computational Scientific Experiments

◮ Scientific research increasingly rely on computational
experiments.

◮ Properties of these experiments:
◮ large number of computational tasks – many-task computing

(MTC);
◮ large amounts of data;
◮ data stored in diverse formats;
◮ use of parallel and distributed computing.

R. Kouzes et al. The Changing Paradigm of Data-Intensive Computing. IEEE Computer, 42(1):26-34,
2009.

3 / 47

Life Cycle of Computational Experiments

M. Mattoso et al. Towards supporting the life cycle of large scale scientific experiments. International

Journal of Business Process Integration and Management 5(1):79–92, 2010.

4 / 47

Scientific Workflows

◮ A scientific workflow consists of the specification of a
number of computational tasks along with their data
dependencies.

◮ It follows the computational experiment life-cycle:
◮ Composition, specification, data modeling.
◮ Mapping and execution.
◮ Provenance and metadata gathering.

◮ A scientific workflow management system (SWMS) allows
for the management of workflow life-cycle.

E. Deelman et al. Workflows and e-Science: An overview of workflow system features and capabilities.
Future Generation Computer Systems 25(1):528-540, 2009.

5 / 47

Scientific Workflows

◮ Scientific workflows support the automation of computation
scientific experiments:

◮ task execution orchestration based on data dependencies;
◮ data flow between tasks;
◮ parallel execution of independent tasks;
◮ task execution scheduling on HPC environemnts;
◮ provenance management (gathering, storing, querying).

6 / 47

Example: Bioinformatics Laboratory, LNCC

Roche 454 FLX sequencer generates 12GB
to 15GB per sequencing round.
Resulting data processed by various applica-
tions:

◮ quality filtering,

◮ data formatting,

◮ sequence alignment.

7 / 47

Example: Bioinformatics Laboratory, LNCC

8 / 47

Provenance

◮ Provenance information describe the conception and
execution history of a computational experiment.

◮ Prospective provenance captures specification and its
evolution.

◮ Retrospective provenance describes dataset derivation
history:

◮ processes involved in the derivation;
◮ other datasets used by these processes;
◮ agents that controlled these processes.

S. B. Davidson and J. Freire, Provenance and scientific workflows: challenges and opportunities. Proc. of

the International Conference on Management of Data (SIGMOD 2008), pp. 1345–1350. ACM, 2008.

9 / 47

Open Provenance Model

L. Moreau et al. The Open Provenance Model core specification (v1.1). Future Generation Computer

Systems, 27(6):743–756, 2011.

10 / 47

Provenance Applications

◮ Applications of provenance:
◮ intelligent re-execution of experiments;
◮ authorship protection;

L. Gadelha, M. Mattoso. Kairos: An Architecture for Securing Authorship and Temporal
Information of Provenance Data in Grid-Enabled Workflow Management Systems. IEEE

Fourth International Conference on e-Science (e-Science 2008), pp. 597-602. 2008.

◮ data quality evaluation;
◮ reproducibility.

11 / 47

Large Scale Computational Scientific Experiments

◮ Execution should be scalable, i.e. resilient to increased
number of tasks and amount of data.

◮ Usually require the use of parallel and distributed computing:
◮ Parallel computing. Concurrent use of multiple processors to

reduce execution time.
I. Foster. Designing and Building Parallel Programs: Concepts and Tools for Parallel
Software Engineering. Addison-Wesley, 1994.

◮ Grid computing. Sharing heterogeneous and distributed
computational resources.

I. Foster e C. Kesselman, Eds. The Grid 2: Blueprint for a New Computing Infrastructure.
Morgan Kaufmann, 2003.

◮ Cloud Computing. Computational resources delivered as a
service.

D. Oliveira, F. Baião e M. Mattoso. Towards a Taxonomy for Cloud Computing from an
e-Science Perspective. Cloud Computing, pp. 47–62. Springer, 2010.

12 / 47

Scalability

◮ The total execution time of a computational task is usually
given by:

t = tcomputing + tcommunicating + twaiting

◮ There are many performance analysis tools for standalone
applications.

◮ A challenge is to provide the same kind of tools for many-task
computations.

◮ Scalability depends on adequate orchestration of
computational tasks and efficient data management.

13 / 47

Analysis of Computational Scientific Experiments

◮ Provenance information can support the analysis phase.

◮ In the context of many-task computing, the mechanisms used
for gathering and storing provenance can have a negative
impact on scalability.

◮ However, the level of detail should be enough for proper
analysis.

14 / 47

Analysis of Computational Scientific Experiments

◮ Provenance can support debugging and optimization of
workflow execution and data management strategies, if
enriched with adequate information.

◮ This is relevant in large-scale experiments, which are executed
on HPC service providers where many users compete for
processing time.

◮ Query interfaces for accessing this information are also
important to enable experiment analysis.

15 / 47

Analysis of Computational Scientific Experiments

◮ Issues in managing provenance of many-task computations:
◮ Modeling. Capturing experiment specification and execution

history, taking into account issues important to scalability,
such as resource consumption and fault tolerance.

◮ Usefulness. Applications of provenance information, such as
experiment analysis from the scientific standpoint and from
the performance standpoint.

◮ Usability. Allow for queries to be expressed in a relatively easy
manner.

H. V. Jagadish, A. Chapman, A. Elkiss, M. Jayapandian, Y. Li, A. Nandi, and C. Yu.
Making database systems usable. Proc. SIGMOD 2007, pp. 13–24.

◮ Security. Determine adequate security controls for protecting
provenance information.

16 / 47

Swift

◮ Swift allows for the specification, execution, and analysis of
many-task computations in parallel and distributed
environments.

◮ Used in our experimentation since it scales to hundreds of
thousands of CPUs.

◮ Components:
◮ A high-level language for specifying scientific workflows as

scripts.
◮ Execution engine with native support for:

◮ local execution,
◮ parallel execution (e.g. PBS, SGE),
◮ distributed execution (e.g. Condor, Globus).

◮ Integrated provenance management system (MTCProv).

M. Wilde, I. Foster, K. Iskra, P. Beckman, Z. Zhang, A. Espinosa, M. Hategan, B. Clifford I. Raicu,
Parallel Scripting for Applications at the Petascale and Beyond. IEEE Computer, 42(11):50-60, 2009.

M. Wilde, M. Hategan, J. Wozniak, B. Clifford, D. Katz, and I. Foster. Swift: A language for distributed
parallel scripting. Parallel Computing, 37(9):634-652, 2011.

17 / 47

Swift: Execution Environment

18 / 47

Swift

◮ Development:

◮ Collaboration started during D.Sc. at COPPE/UFRJ with a
graduate internship at Ian Foster’s research group at the
University of Chicago (March 2010 - February 2011).

◮ Scientific applications: OOPS (UChicago), SciColSim
(UChicago), MODIS (UChicago), Bioinformatics Laboratory
(LNCC).

19 / 47

MTCProv: Motivation

◮ During the Third Provenance Challenge we presented a
retrospective provenance model for MTC and its respective
implementation in Swift.

◮ Problems detected:
◮ Lack of domain specific information turned provenance

information interpretation difficult.
◮ Hard to write queries with generic query languages (SQL,

XPath/XQuery, SPARQL).

L. Gadelha, B. Clifford, M. Mattoso, M. Wilde, and I. Foster. Provenance Management in Swift. Future

Generation Computer Systems, 27(6):775-780, 2011.

20 / 47

MTCProv: Motivation

◮ MTCProv is a provenance management tool for parallel and
distributed scientific workflows integrated to Swift.

◮ Development methodology:

1. Survey of provenance query patterns.
2. Data modeling.
3. Implementation of gathering/storage mechanisms.
4. Query interface implementation.

21 / 47

MTCProv: Query Patterns

◮ Patterns:
◮ Entity Attribute (EA).
◮ Direct Relationship (R).
◮ Transitive Relationship (R∗).
◮ Lineage Graph Matching (LGM).
◮ Execution Summary (RS).

◮ Performance (RRP).
◮ Scientific (RSP).

◮ Run Comparison (RCp).
◮ Run Correlation (RCr).

L. Gadelha, M. Mattoso, M. Wilde, I. Foster, Provenance Query Patterns for Many-Task Scientific
Computations. Proceedings of the 3rd USENIX Workshop on Theory and Applications of Provenance

(TaPP’11), 2011.

22 / 47

MTCProv: Patterns found in the Provenance Challenges

Pattern
PC1/PC2 PC3 PC3 (Optional Queries)

1 2 3 4 5 6 7 8 9 1 2 3 5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

EA ×××××××××××××××××××××× × × × × × ×
R ××× ××××××××× ×××××××× × × × × × ×
R∗ ××× ×× ×××× × × ×× × × × ×
LGM × ×

RS ××× ××××× ×× × × × × ×
RCp ××××× × ××××× ×
RCr ×

23 / 47

MTCProv: Data Modeling

◮ Objectives:

1. Gather consumption and production relationships between
datasets and processes.

2. Gather hierarchical relationships between datasets.
3. Allow for the users to enrich their provenance records with

annotations.
4. Gather versioning information about scientific workflows and

their component applications.
5. Gather runtime information about external applications

invoked from a Swift script.
6. Provide a usable and useful query interface for provenance

data.

24 / 47

MTCProv: Data Modeling

L. Gadelha, M. Wilde, M. Mattoso, and I. Foster. MTCProv: a practical provenance query framework for
many-task scientific computing. Distributed and Parallel Databases 30(5-6):351-370. Springer, 2012.

25 / 47

MTCProv: Gathering and Storage

◮ Provenance information extracted on a per run basis from log
files generated by Swift.

◮ Data stored in a relational database.
◮ Annotations improve flexibility.
◮ Transitive closure computed with recursive common table

expressions defined SQL:1999.

◮ Graph-based data models require extensive traversals for
computing aggregates.

26 / 47

MTCProv: Gathering and Storage

27 / 47

MTCProv: Gathering and Storage

◮ Annotations can be generated by:
◮ Ad-hoc scripts per application,
◮ Wrapper scripts that trigger remote execution.

◮ Examples of annotations:
◮ Scientific parameters usually opaque to Swift.
◮ Digital signatures for protecting authorship.

28 / 47

MTCProv: Gathering and Storage Impact

0 200 400 600 800 1000

0
10

00
30

00
50

00

Iterations

Lo
g

fil
e

si
ze

 in
 K

B

provenance on
provenance off

1 5 10 50 100 500

0
10

20
30

40
50

Iterations

P
er

ce
nt

 in
cr

ea
se

 in
 lo

g
si

ze

0 200 400 600 800 1000

80
00

90
00

10
00

0
11

00
0

Iterations

D
at

ab
as

e
si

ze
 in

 K
B

1 5 10 50 100 500

2
5

10
20

Iterations

S
cr

ip
t t

ot
al

 r
un

ni
ng

 ti
m

e
(s

) provenance on
provenance off

29 / 47

MTCProv: Annotation Gathering and Storage

L. Gadelha, M. Wilde, M. Mattoso, and I. Foster. Exploring provenance in high performance scientific
computing. Proc. Workshop on High Performance Computing Meets Databases (HPCDB’11), pp. 17–20,
2011.

30 / 47

MTCProv: Query Interface

◮ Abstraction of query patterns with functions and stored
procedures in SQL.

◮ The R∗ is implemented with native recursion in SQL in the
ancestors procedure.

◮ The RCp and RCr patterns are implemented by the function:
◮ compare run(〈 list of parameters or annotation keys〉) returns

a table with values for parameters and annotations per script.

◮ A query interface was implemented in Java/ANTLR that
automatically computes FROM clauses and join expressions.

31 / 47

MTCProv: Security

◮ Provenance records are analogous laboratory notebooks:
◮ experiment plan;
◮ initial parameters;
◮ result description.

32 / 47

MTCProv: Security

◮ Recommendations for intellectual property protection in
laboratory notebooks:

◮ “The laboratory notebook is one of the most important
elements in the patenting process.”

◮ “... one can see the importance of keeping a laboratory
notebook to certify, and prove in a court if necessary, that your
work that lead to an invention was performed before others.”

◮ “... the notes should be dated and signed by a third party.”
◮ “... after signature, no modification should be performed.”

Guidelines for Maintaining a Lab Notebook, Los Alamos National Laboratory, 2012.

33 / 47

MTCProv: Security

L. Gadelha, M. Mattoso. Kairos: An Architecture for Securing Authorship and Temporal Information of
Provenance Data in Grid-Enabled Workflow Management Systems. IEEE Fourth International Conference

on e-Science (e-Science 2008), pp. 597-602. 2008.

34 / 47

Case study: Open Protein Simulator

◮ Open Protein Simulator (OOPS) is a protein structure
prediction application.

◮ Information visible to Swift:
◮ Script-level scientific parameters (e.g. protein identifier).
◮ Runtime execution statistics (e.g. duração de execuções).

◮ Ad-hoc scripts can collect:
◮ File-level scientific parameters.
◮ SVN versions of the script source code and application

components.

A. Adhikari, J. Peng, M. Wilde, J. Xu, K. Freed, and T. Sosnick, Modeling large regions in proteins:
Applications to loops, termini, and folding. Protein Science 21(1):107–121, 2012.

35 / 47

Case study: Open Protein Simulator

36 / 47

Case study: Open Protein Simulator

List executions between two dates:

select script_run

where script_run.start_time between ’2010-04-04’ and ’2010-08-08’ and

script_run.filename=’psim.loops.swift’;

id | start_time | ...

-----------------------------------+----------------------------+--------

psim.loops-20100619-0339-b95ull7d | 2010-06-19 03:39:15.18-05 | ...

psim.loops-20100618-0402-qhm9ugg4 | 2010-06-18 04:02:21.234-05 | ...

... | ... | ...

37 / 47

Case study: Open Protein Simulator

Correlate number of iterations and RMSD (scientific performance):

SELECT run_id, r.value as nSim, t.value as rmsd

FROM compare_run_by_param(’proteinId’) as r

INNER JOIN

compare_run_by_param(’nSim’) as s USING (run_id)

INNER JOIN

compare_run_by_annot(’rmsd’) as t USING (run_id)

WHERE r.value=’TR567’ and run.id LIKE ’psim.loops%’;

run_id | nSim | rmsd

-----------------------------------+------+---------

psim.loops-20100604-2215-cdifsnb3 | 256 | 3.33123

psim.loops-20100613-0125-keyyyc35 | 512 | 0.76274

psim.loops-20100616-1512-h6q4g4ja | 1024 | 0.68426

...

38 / 47

Case study: Open Protein Simulator

100 200 300 400

0
20

00
0

40
00

0
60

00
0

FASTA sequence length

A
vg

. L
oo

pM
od

el
 d

ur
at

io
n

(s
)

0 100 200 300 400 500 600

20
40

60
80

10
0

Timestamp (s)

C
P

U
 U

sa
ge

 (
%

)

0 100 200 300 400 500 600

10
00

00
14

00
00

18
00

00

Timestamp (s)

M
em

or
y

U
sa

ge
 (

by
te

s)

shared
real

0 5000 10000 15000 20000

0
10

0
30

0
50

0
70

0

Timestamp (s)

Jo
bs

executing
waiting

39 / 47

Case study: Parallel BLAST

Scientific worklow for parallelizing BLAST through input database
partitioning:

40 / 47

Case study: Parallel BLAST

Analysis of waiting time in BLAST execution.

SELECT app_exec_id, timestamp, wait

FROM runtime_info;

app_exec_id | timestamp | wait

----------------------+------------+-------

blastall-3i191nsk | 1339467548 | 100.0

blastall-3i191nsk | 1339467550 | 81.7

blastall-3i191nsk | 1339467552 | 50.8

blastall-3i191nsk | 1339467554 | 45.9

blastall-3i191nsk | 1339467555 | 38.4

blastall-3i191nsk | 1339467556 | 31.8

blastall-3i191nsk | 1339467558 | 30.0

blastall-3i191nsk | 1339467560 | 34.7

blastall-3i191nsk | 1339467561 | 33.1

⇒ I/O bottleneck.

41 / 47

Case study: Parallel BLAST

42 / 47

Case study: Parallel BLAST

Analysis of waiting time in BLAST execution.

SELECT app_exec_id, timestamp, wait

FROM runtime_info;

app_exec_id | timestamp | wait

----------------------+------------+-------

blastall-leenrisk | 1339924431 | 1.8

blastall-leenrisk | 1339924437 | 2.2

blastall-leenrisk | 1339924444 | 1.6

blastall-leenrisk | 1339924453 | 1.2

blastall-leenrisk | 1339924462 | 0.9

blastall-leenrisk | 1339924472 | 0.7

blastall-leenrisk | 1339924483 | 0.5

blastall-leenrisk | 1339924495 | 0.4

blastall-leenrisk | 1339924508 | 0.3

43 / 47

Related Work

◮ ParaTrac gathers performance data from workflow execution,
however it does not gather information of the scientific
domain. I/O data collected from FUSE and hierarchical
process data from PROCFS.

K. Dun et al. ParaTrac: a fine-grained profiler for data-intensive workflows. HPDC 2010, pp.
37–48.

◮ QLP can be used for provenance graph traversal however it
does not express some query patterns easily.

M. Anand et al. Approaches for Exploring and Querying Scientific Workflow Provenance Graphs.
IPAW 2010, pp. 17–26.

◮ SPROV uses digital signatures for provenance record
protection, however it does not deal with temporal
information.

R. Hasan et al. Preventing history forgery with secure provenance. ACM Transactions on Storage
5(4):1–43, 2009.

44 / 47

Concluding Remarks

◮ With MTCProv, we contributed with:
◮ A provenance model that represents important information

about parallelism and distribution of scientific workflows.
◮ Gathering and storage of provenance with low impact on

scientific workflow scalability.
◮ Query interface that simplifies query expression through

abstracting frequent patterns and simplifying joins.
◮ Better support for computational experiment analysis allowing

for result interpretation from the scientific and performance
standpoints.

◮ Identification of essential security controls for protecting
provenance.

45 / 47

Concluding Remarks

◮ Future work:
◮ Continue to explore applications of provenance to parallel and

distributed workflow analysis.
◮ Scalability of MTCProv as a provenance repository.
◮ Survey of alternative query approaches, such as declarative

languages (e.g. Datalog).
◮ Exporing the use of different parallelization paradigms for

component execution.
◮ Integrate MTCProv to Swift’s execution engine for online

provenance use.

46 / 47

Conclusões

Merci! Thank you! Obrigado!

47 / 47

	Introduction
	Scientific Workflows
	Provenance

	MTCProv: Provenance Management Tool for Many-Task Computing
	Motivation: Provenance Challenge 3
	Query Patterns
	Data Modeling
	Gathering and Storage
	Query Interface
	Security

	Case studies: OOPS and Parallel BLAST
	Related Work
	Concluding Remarks

