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Nachos project-team

Scientific objectives

Design, analysis and validation of numerical methods and high performance resolution
algorithms for the computer simulation of wave propagation problems in complex domains
and heterogeneous media

Research directions

Systems of linear PDEs with variable coefficients

Discretization
Discontinuous finite element (DG) methods on unstructured meshes
High order polynomial interpolation
p-, h- and hp-adaptivity
Numerical treatment of complex propagation media models

Resolution
Accurate and efficient time integration strategies
Domain decomposition (DD) methods

High peformance computing
Algorithmic aspects and parallel programming paradigms
Implementation issues for large-scale 3D simulations
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Nachos project-team

Computational electromagnetics

System of Maxwell equations

Dispersive propagation media

Applications involve the interaction of
electromagnetic waves with,

1 biological tissues (biocem),
2 geological media (georadar).

James Clerk Maxwell (1831-1879)

Computational geoseismics

System of elastodynamic equations

Viscoelastic propagation media

Applications deal with the propagation of seismic waves,
1 generated by an explosive source (earthquake dynamics),
2 in the subsurface (resource prospection).
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UMR CNRS 6621, University of Nice-Sophia Antipolis (UNSA)

Permanent staff

INRIA

Loula Fezoui [DR2]
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Discontinuous Galerkin Time Domain method

Introducing a commercial FETD solver breaks
new ground in EM field simulation. Based on
the DGTD method, it allows unstructured
geometry-conforming meshes to be used for the
first time in transient EM field simulation.

DGTD is a competitive alternative to traditional
FDTD based methods to solving Maxwell’s
equations in the time domain. The applications
presented here include the electromagnetic
pulse susceptibility of the differential lines in a
laptop computer, the radar signature of a
landmine under undulating ground, the TDR of
a bent flex circuit, and the return loss of a
connector. All of these examples involve
complicated, curved geometries where the
flexibility of the unstructured meshes used in
DGTD provides powerful advantages over
simulation by conventional brick-shaped FDTD
and FIT meshes.

IEEE Microwave Magazine - April 2010
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Time Domain electromagnetics
Boundary and intial value problem

Maxwell equations, x ∈ Ω, t > 0
ε∂tE−∇×H = 0

µ∂tH +∇× E = 0

E = E(x, t) and H = H(x, t)

Boundary conditions: ∂Ω = Γa ∪ Γm
n× E = 0 on Γm

n× E−
√
µ

ε
n× (H× n) = n× Einc −

√
µ

ε
n× (Hinc × n) on Γa

Initial conditions

E0 = E(x, 0) and H0 = H(x, 0)
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Time-domain electromagnetics
Overview of existing methods: FDTD method

FDTD: Finite Difference Time-Domain method

Seminal work of K.S. Yee
(IEEE Trans. Antennas Propag., Vol. AP-14, 1966)

Structured (cartesian) meshes

Second order accurate (space and time) on uniform meshes

Advantages
Easy computer implementation

Computationally efficient (very low algorithmic complexity)

Mesh generation is straightforward

Modelization of complex sources (antennas, thin wires, etc.) is well established

Drawbacks
Accuracy on non-uniform discretizations

Memory requirements for high resolution models

Approximate discretization of boundaries (stair case representation)
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Time-domain electromagnetics
Overview of existing methods: FDTD method

Yee’s scheme

Staggered grid

Non-dissipative scheme (centered in space and time)

Second-order accurate in space and time (for a uniform grid)
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Time-domain electromagnetics
Overview of existing methods: FETD method

FETD: Finite Element Time-Domain method

Often based on J.-C. Nédélec edge elements

(Numer. Math, Vol. 35, 1980 and Vol. 50, 1986)
Unstructured meshes

Advantages
Accurate representation of complex shapes

Well suited to high order interpolation methods

Drawbacks
Computer implementation is less trivial

Unstructured mesh generation is hardly automated

Global mass matrix

Mass lumped FETD methods

S. Pernet, X. Ferrieres and G. Cohen
IEEE Trans. Antennas Propag., Vol. 53, No. 9, 2005

Hexahedral meshes, high order Lagrange polynomials

Leap-frog time integration scheme
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Time-domain electromagnetics
Overview of existing methods: FIT

FIT : Finite Integration Technique

FIT was proposed in 1977 by Thomas Weiland and has been enhanced
continually over the years
(Electronics and Communications AEUE, Vol. 31, No. 3, 1977 and
Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 9, 1996)

The FIT is a spatial discretization scheme fo time- and frequency-domain problems

The basic idea is to solve the Maxwell equations in integral form on a set
of staggered grids

It preserves basic topological properties of the continuous equations such as
conservation of charge and energy

It covers the full range of electromagnetics (from static up to high frequency)
and optic applications

It is implemented in the CST software suite
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Time-domain electromagnetics
Overview of existing methods: FVTD method

FVTD: Finite Volume Time-Domain method

Imported from the computational fluid dynamics (CFD) community

V. Shankar, W. Hall and A. Mohammadian
Electromag. Vol. 10, 1990

J.-P. Cioni, L. Fezoui and H. Steve
IMPACT Comput. Sci. Eng., Vol. 5, No. 3, 1993

P. Bonnet, X. Ferrieres et al.
J. Electromag. Waves and Appl., Vol. 11, 1997

S. Piperno and M. Remaki and L. Fezoui
SIAM J. Num. Anal., Vol. 39, No. 6, 2002.

Unstructured meshes

Uknowns are cell averages of the field components

Flux evaluation at cell interfaces

Upwind scheme → numerical dissipation

Centered scheme → numerical dispersion (on non-uniform meshes)

Extension to higher order accuracy: MUSCL technique
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Discontinuous Galerkin Time Domain method
Overview of existing methods: DGTD method

Initially introduced to solve neutron transport problems
(W. Reed and T. Hill, 1973)

Somewhere between a finite element and a finite volume method, gathering
many good features of both

Extensively developed by the CFD community

Application to wave propagation problems naturally followed

Reference text book
J.S. Hesthaven and T. Warburton
Nodal discontinuous Galerkin methods: algorithms, analysis, and applications
Springer, 2008
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Discontinuous Galerkin Time Domain method
Overview of existing methods: DGTD method

F. Bourdel, P.A. Mazet and P. Helluy
Proc. 10th Inter. Conf. on Comp. Meth. in Appl. Sc. and Eng., 1992.

Triangular meshes, first-order upwind DG method (i.e FV method)
Time-domain and time-harmonic Maxwell equations

M. Remaki and L. Fezoui, INRIA RR-3501, 1998.

Time-domain Maxwell equations
Triangular meshes, P1 interpolation, Runke-Kutta time integration (RKDG)

J.S. Hesthaven and T. Warburton (J. Comput. Phys., Vol. 181, 2002)

Tetrahedral meshes, high order Lagrange polynomials, upwind flux
Runge-Kutta time integration

B. Cockburn, F. Li and C.-W. Shu (J. Comput. Phys., Vol. 194, 2004)

Locally divergence-free discontinuous Galerkin formulation

G. Cohen, X. Ferrieres and S. Pernet (J. Comput. Phys., Vol. 217, 2006)

Hexahedral meshes, high order Lagrange polynomials, penalized formulation
Leap-frog time integration scheme

And a steadily increasing number of other works since 2005
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Discontinuous Galerkin Time Domain method
Some recent works

ElectroScience Laboratory, The Ohio State University, USA

Jin-Fa Lee et al.

Interior penalty discontinuous Galerkin formulation

Triangular (2D)/tetrahedral meshes, conformal PMLs

Leap-frog time integration scheme, local time-stepping strategy

S. Dosopoulos and J.F. Lee. IEEE Trans. Ant. Propag., Vol. 58, 2010

S. Dosopoulos and J.F. Lee. J. Comput. Phys., Vol. 229, 2010

By courtesy of J.F. Lee
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Discontinuous Galerkin Time Domain method
Some recent works

Computational Electromagnetics Group
TU Darmstadt, Germany

S. Schnepp, T. Weiland et al.

Non-dissipative (centered flux)
discontinuous Galerkin formulation

Orthogonal quadrangular
(2D)/hexahedral (3D) meshes

Adpative mesh refinement

Leap-frog time integration scheme

S. Schnepp and T. Weiland. Radio
Science, Vol. 46, 2011

By courtesy of S. Schnepp
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Discontinuous Galerkin Time Domain method

Photonics group, Institute for theoretical physics, University of Karlsruhe, Germany

K. Busch, M. König and J. Niegemann

Developement of discontinuous Galerkin methods for the efficient numerical
treatment of nanophotonic systems

Diffusive (upwind flux) discontinuous Galerkin formulation

Triangular (2D)/tetrahedral meshes

Runge-Kutta time integration

Anisotropic materials

Stretched-coordinate PMLs

K. Busch, M. König and J. Niegemann
Discontinuous Galerkin methods in nanophotonics
Laser and Photonics Reviews, Vol. 5, No. 6, 2011

M. König, K. Busch and J. Niegemann
The discontinuous Galerkin time-domain method for Maxwell’s equations with
anisotropic materials
Photonics and Nanostructures - Fundamentals and Applications, Vol. 8, 2010
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DGTD-Ppi method for the Maxwell equations

Continuous P1 interpolation Discontinuous P1 interpolation

Motivations

Naturally adapted to heterogeneous media and discontinuous solutions

Can easily deal with unstructured, possibly non-conforming meshes (h-adaptivity)

High order with compact stencils and non-conforming approximations (p-adaptivity)

Usually rely on polynomial interpolation but can also accomodate alternative functions

Yield block diagonal mass matrices when coupled to explicit time integration schemes

Amenable to efficient parallelization

But leads to larger problems compared to continuous finite element methods
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DGTD-Ppi method for the Maxwell equations
Discretization in space

Disretization of Ω: Ωh ≡ Th =
⋃
τi∈Th

τ i

F0: set of purely internal faces

Fm and Fa: sets of faces on the boundaries Γm and Γa

Approximation space: Vh = {Vh ∈ L2(Ω)3 | ∀i ,Vh|τi ≡ Vi ∈ Ppi [τi ]
3}

Variational formulation: ∀~ϕ ∈ Pi = Span(~ϕij , 1 ≤ j ≤ di )



∫∫∫
τi

~ϕ · εi∂tEdω = −
∫∫
∂τi

~ϕ · (H× ~n)ds +

∫∫∫
τi

∇× ~ϕ ·Hdω

∫∫∫
τi

~ϕ · µi∂tHdω =

∫∫
∂τi

~ϕ · (E× ~n)ds −
∫∫∫
τi

∇× ~ϕ · Edω

S. Lanteri (INRIA) DGTD method CNPq-INRIA/HOSCAR project 22 / 77



DGTD-Ppi method for the Maxwell equations
Discretization in space

Approximate fields: ∀i , Eh|τi ≡ Ei and Hh|τi ≡ Hi

Integral over ∂τi : E|aik =
Ei + Ek

2
and H|aik =

Hi + Hk

2

Assume Γa = ∅ (to simplify the presentation)
and on Γm: Ek|aik

= −Ei|aik
and Hk|aik

= Hi|aik

∫∫∫
τi

~ϕ · εi∂tEidω =
1

2

∫∫∫
τi

(∇× ~ϕ ·Hi +∇×Hi · ~ϕ)dω

−
1

2

∑
k∈Vi

∫∫
aik

~ϕ · (Hk × ~nik )ds

∫∫∫
τi

~ϕ · µi∂tHidω = −
1

2

∫∫∫
τi

(∇× ~ϕ · Ei +∇× Ei · ~ϕ)dω

+
1

2

∑
k∈Vi

∫∫
aik

~ϕ · (Ek × ~nik )ds
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DGTD-Ppi method for the Maxwell equations
Discretization in space

Local projections

Ei (x) =
∑

1≤j≤di

Eij ~ϕij(x) and Hi (x) =
∑

1≤j≤di

Hij ~ϕij(x)

~ϕij : Lagrange (nodal) polynomials

Vector representation of local fields

Ei = {Eij}1≤j≤di and Hi = {Hij}1≤j≤di

For 1 ≤ j , l ≤ di :

(Mε
i )jl = εi

∫∫∫
τi

T~ϕij ~ϕjldω and (Mµ
i )jl = µi

∫∫∫
τi

T~ϕij ~ϕjldω

(Ki )jl =
1

2

∫∫∫
τi

(T~ϕij∇× ~ϕil + T~ϕil∇× ~ϕij )dω

For 1 ≤ j ≤ di and 1 ≤ l ≤ dk

(Sik )jl =
1

2

∫∫
aik

T~ϕij (~ϕkl × ~nij )ds
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DGTD-Ppi method for the Maxwell equations
Discretization in space

Local EDO systems

∀τi :


Mε

i

dEi

dt
= KiHi −

∑
k∈Vi

SikHk

Mµ
i

dHi

dt
= −KiEi +

∑
k∈Vi

SikEk

Global EDO system (with d =
∑

i di )

Mε dE
dt

= GH and Mµ dH
dt

= −TGE

G = K− A− B

Mε are Mµ block diagonal symmetric definite positive matrices

K is a d × d block diagonal symmetric matrix

A is a d × d block sparse symmetric matrix (internal faces)

B is a d × d block sparse skew symmetric matrix (metallic faces)
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DGTD-Ppi method for the Maxwell equations
Leap-frog based explicit time integration

Formulation

L. Fezoui, S. Lanteri, S. Lohrengel and S. Piperno
ESAIM: M2AN, Vol. 39, No. 6, 2005

Mε

(
En+1 − En

∆t

)
= GHn+ 1

2

Mµ

(
Hn+ 1

2 − Hn− 1
2

∆t

)
= −TGEn+1

Stability analysis

Discrete electromagnetic energy

En = TEnMεEn + THn+ 1
2 MµHn− 1

2

Condition for En being a positive definite form

∆t ≤
2

d2
, with d2 =‖ (M−µ)

1
2 TG (M−ε)

1
2 ‖

Extension to higher orfer leap-frog schemes
H. Fahs and S. Lanteri
J. Comput. Appl. Math., Vol. 234, 2010
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Some recent realizations or ongoing studies
Numerical treatment of grid-induced stiffness

The choice of the temporal integration is a crucial step for the global efficiency
of the overall method

We distinguish two major families

1 Explicit integration methods
Result in less computational effort per time step
Lead to step size restrictions caused by the smallest element

2 Implicit integration methods
Lead in general to unconditional stability ⇒ time step can be chosen arbitrarily large
Require the solution of large linear system ⇒ high computational effort

A possible alternative is locally implicit time integration methods

The smallest grid elements are treated implicitly

The coarsest grid elements are treated explicitly

⇒ If the ratio of # fine to # coarse elements is small, the most severe
step size restrictions are overcome
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Some recent realizations or ongoing studies
Numerical treatment of grid-induced stiffness

Maxwell equations with source terms
ε∂tE−∇×H = σE− JE

µ∂tH +∇× E = 0

ε, µ and σ are coefficients representing electric permittivity, magnetic permeability
and electric conductivity, respectively

JE is a given source current

S. Lanteri (INRIA) DGTD method CNPq-INRIA/HOSCAR project 29 / 77



Some recent realizations or ongoing studies
Numerical treatment of grid-induced stiffness

Discretization in space by a DG methd
Mε dE

dt
= SH−DσE + MεFE

Mµ dH
dt

= −TSE + MµFH

Mε and Mµ are the mass matrices containing the values of the electric permittivity
and magnetic permeability coefficient

S emanates from the discretization of the curl operator

Dσ is associated with the dissipative conduction term

FE and FH are associated with source terms (FE represents the given
source current, but FE and FH may also contain Dirichlet boundary data)
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Some recent realizations or ongoing studies
Numerical treatment of grid-induced stiffness

We can give an equivalent formulation of the semi-discrete Maxwell system
without mass matrices

It is obtained by a transformation based on the Cholesky decompositions of Mε and Mµ

M.A. Botchev and J.G. Verwer SIAM J. Sci. Comput., Vol. 31, 2009

Discretization in space by a DG methd (without mass matrices)
dE
dt

= SH−DσE + FE

dH
dt

= −TSE + FH

with adapted definitions of E, H, S, Dσ, FE and FH
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Some recent realizations or ongoing studies
Numerical treatment of grid-induced stiffness

A popular integration method is the second order leap-frog scheme (LF2) that we can
write in the three-stage form, emanating from Verlet’s method

Hn+ 1
2 −Hn

∆t/2
= −TSEn + FH(tn)

En+1 − En

∆t
= SHn+ 1

2 −D

(
En + En+1

2

)
+

FH(tn) + FH(tn+1)

2

Hn+1 −Hn+ 1
2

∆t/2
= −TSEn+1 + FH(tn+1)

This method is second order accurate, explicit, and conditionally stable with a critical
time step size proportional to hmin determined by the smallest grid element
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Some recent realizations or ongoing studies
Numerical treatment of grid-induced stiffness

An alternative is the second order, unconditionally stable Crank-Nicolson method (CN2)
that we write in the three-stage form

Hn+ 1
2 −Hn

∆t/2
= −TSEn + FH(tn)

En+1 − En

∆t
= SHn+1 −D

(
En + En+1

2

)
+

FH(tn) + FH(tn+1)

2

Hn+1 −Hn+ 1
2

∆t/2
= −TSEn+1 + FH(tn+1)

This method is second order accurate and unconditionally stable

The expense for the implicit computation is too large to consider CN2 as an attractive
alternative to LF2, especially in 3D
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Some recent realizations or ongoing studies
Numerical treatment of grid-induced stiffness

Hybrid explicit/implicit DGTD-Pp method

S. Piperno, ESAIM: M2AN, Vol. 40, No. 5, 2006

Explict scheme: Verlet method (i.e. three-step leap-frog method
with E and H computed at the same time stations)

Implicit scheme: Crank-Nicolson scheme

Partitioning of the mesh elements into two subsets
- Se : coarsest elements, treated explicitly
- Si : smallest elements, treated implicitly

E =

(
Ee

Ei

)
, H =

(
He

Hi

)

S =

(
Se Aei

Aie Si

)
, D =

(
Dσe O
O Dσi

)

FE =

(
FE
e

FE
i

)
, FH =

(
FH
e

FH
i

)
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Some recent realizations or ongoing studies
Numerical treatment of grid-induced stiffness

Hybrid explicit/implicit DGTD-Pp method

Inserting the splitting into the semi-discrete system we obtain the partitioned
system of ODEs 

dEe

dt
= SeHe − AeiHi −Dσe Ee + FE

e

dEi

dt
= SiHi − AieHe −Dσi Ei + FE

i

dHe

dt
= −TSeEe + TAieEi + FH

e

dHi

dt
= −TSiEi + TAeiEe + FH

i
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Some recent realizations or ongoing studies
Numerical treatment of grid-induced stiffness

Hybrid explicit/implicit DGTD-Pp method
Hn+ 1

2
e − Hn

e

∆t/2
= −TSeEn

e + TAieEn
i + FH

e (tn)

En+ 1
2

e − En
e

∆t/2
= SeH

n+ 1
2

e − AeiHn
i −Dσe En

e + FE
e (tn)

En+1
i − En

i

∆t
= Si

(
Hn+1

i + Hn
i

2

)
− AieH

n+ 1
2

e −Dσi

(
En+1
i + En

i

2

)

+
FE
i (tn) + FE

i (tn+1)

2

Hn
i − Hn+1

i

∆t
= −TSi

(
En
i + En+1

i

2

)
+ TAeiE

n+ 1
2

e +
FH
i (tn) + FH

i (tn+1)

2
En+1
e − En+ 1

2
e

∆t/2
= SeH

n+ 1
2

e − AeiHn+1
i −Dσe En+1

e + FE
e (tn+1)

Hn+1
e − Hn+ 1

2
e

∆t/2
= −TSeEn+1

e + TAieEn+1
i + FH

e (tn+1)
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Some recent realizations or ongoing studies
Numerical treatment of grid-induced stiffness

Hybrid explicit/implicit DGTD-Pp method

V. Dolean, H. Fahs, L. Fezoui and S. Lanteri
J. Comput. Phys., Vol. 229, No. 2, 2010

Stability analysis

En = Ene + Eni + Enh with


Ene = TEn

eM
ε
eEn

e + THn+ 1
2

e Mµ
e H

n− 1
2

e

Eni = TEn
i M

ε
i E

n
i + THn

i M
µ
i H

n
i

Enh = −
∆t2

4
THn

i
TAei (M

ε
e )−1AeiHn

i

Condition for En being a positive definite form

∆t ≤
2

αe + max(βei , γei )
with


αe = ‖ (Mε

e )−
1
2 Se(Mµ

e )−
1
2 ‖

βei = ‖ (Mε
e )−

1
2 Aei (M

µ
i )−

1
2 ‖

γei = ‖ (Mµ
e )−

1
2 Aei (M

ε
i )−

1
2 ‖
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Numerical treatment of grid-induced stiffness
Hybrid explicit/implicit DGTD-Pp method

Component splitting based hybrid explicit/implicit method
Collaboration with Jan Verwer, CWI

J. Verwer, BIT Numer. Math., Vol. 51, 2010

It is also a blend of LF2 and CN2 applied to the semi-discrete Maxwell system

Hn+ 1
2 −Hn

∆t/2
= −TSEn + FH(tn)

En+1 − En

∆t
= S0Hn+ 1

2 + S1

(
Hn + Hn+1

2

)
−D

(
En + En+1

2

)
+

FH(tn) + FH(tn+1)

2

Hn+1 −Hn+ 1
2

∆t/2
= −TSEn+1 + FH(tn+1)

for a general splitting S = S0 + S1
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Numerical treatment of grid-induced stiffness
Hybrid explicit/implicit DGTD-Pp method

S1 is defined as S1 = SSH where SH is a diagonal matrix of dimension
the length of H with,

(SH)jj =

{
0, component of H to be treated explicitly,

1, component of H to be treated implicitly.

The second stage of the method leads to the solution of the linear system of equations,

MEn+1 = Bn+1

where,

M = I +
∆t2

4
S1

TS1 +
∆t

2
D,

Bn+1 = En + ∆tS0Hn+ 1
2 +

∆t

2
S1

(
Hn + Hn+ 1

2 +
∆t

2
FH(tn+1)

)
−∆t

2
DEn +

∆t

2

(
FE (tn) + FE (tn+1)

)
⇒ The matrix M is significantly sparser than without splitting
enabling to solve the linear system at a lower cost
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Numerical treatment of grid-induced stiffness
Hybrid explicit/implicit DGTD-Pp method

Comparison of the two locally implicit methods

Convergence of J. Verwer’s method

Let FH(t), FE (t) ∈ C 2[0,T ] and suppose a Lax-Richtmyer stable space-time grid
refinement ∆t ∼ h, h→ 0. On the interval [0,T ] the approximations Hn and En

then converge with temporal order two to Hh(t) and Eh(t)a.

aHh(t) and Eh(t) denote the true solutions of the underlying PDE problem restricted to the
space grid.

Proof in J. Verwer, BIT Numer. Math., Vol. 51, 2010
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Numerical treatment of grid-induced stiffness
Hybrid explicit/implicit DGTD-Pp method

Comparison of the two locally implicit methods

Convergence of S. Piperno’s method

Let FH(t), FE (t) ∈ C 2[0,T ] and suppose a Lax-Richtmyer stable space-time grid
refinement ∆t ∼ h, h→ 0. On [0,T ] the approximations Hn

e , Hn
i , En

e and En
i then

converge to Hh,e(t), Hh,i (t), Eh,e(t) and Eh,i (t)

(i) at least at first order ,

(ii) at least at second order , if in addition

TAeiSeHh,e(t) = O
(

1

∆t

)
for h→ 0.

Proof in L. Moya and J. Verwer, INRIA RR-7533, 2011
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Numerical treatment of grid-induced stiffness
Hybrid explicit/implicit DGTD-Pp method

2D TMz Maxwell equations

Propagation of an eigenmode in a unitary PEC cavity (no source terms)

Boundary condition: n× E = 0 on Γm

DGTD-Pp method, non-uniform triangular mesh (# elements 2742)

Comparison of fully explicit versus hybrid explicit/implicit (J. Verwer’s scheme)
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Numerical treatment of grid-induced stiffness
Hybrid explicit/implicit DGTD-Pp method

Pp # DOF ∆tc (m) # iter. CPU
(sec)

Max. L2-error

P4 41130 0.3906e-4 25559 14337 0.1809e-6

- 0.9869e-3 1014 836 0.1262e-5

P3 27420 0.5643e-4 17723 4670 0.7423e-5

- 0.1425e-2 702 271 0.7868e-5

P2 16452 0.8681e-4 11520 1161 0.2886e-3

- 0.2193e-2 456 71 0.2886e-3

P1 8226 0.1302e-3 7680 232 0.1306e-1

- 0.3290e-2 304 15 0.1306e-1
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Numerical treatment of grid-induced stiffness
Hybrid explicit/implicit DGTD-Pp method

(Pc :Ps) # DOF ∆tc (m) # iter. CPU
(sec)

Max. L2-error

(P4:P3) 33120 0.5643e-4 17723 6786 0.1837e-6

- 0.9869e-3 1014 572 0.1261e-5

(P4:P2) 26712 0.8681e-4 11520 3331 0.1217e-5

- 0.9869e-3 1014 433 0.1711e-5

(P4:P1) 21906 0.1302e-3 7680 1902 0.1257e-2

- 0.9869e-3 1014 365 0.1257e-2

(P3:P2) 21012 0.8681e-4 11520 1911 0.7512e-5

- 0.1425e-2 702 175 0.7952e-5

(P3:P1) 16206 0.1302e-3 7680 953 0.1280e-2

- 0.1425e-2 702 130 0.1280e-2

(P2:P1) 11646 0.1302e-3 7680 458 0.1236e-2

- 0.2193e-2 456 42 0.1236e-2
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Numerical treatment of grid-induced stiffness
Hybrid explicit/implicit DGTD-Pp method

Scattering of a plane wave by an airfoil profile

Boundary conditions:
n× E = 0 on Γm

n× E−
√
µ

ε
× (H× n) = n× Einc −

√
µ

ε
× (Hinc × n) on Γa

DGTD-Pp method, non-uniform triangular mesh (# elements 5152)

Comparison of fully explicit versus hybrid explicit/implicit (J. Verwer’s scheme)
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Numerical treatment of grid-induced stiffness
Hybrid explicit/implicit DGTD-Pp method

Pp # DOF ∆tc (m) # iter. CPU (sec)

P4 77280 0.4061e-3 12320 25287

- 0.2148e-2 2330 7110

P3 51520 0.5866e-3 8530 8000

- 0.3103e-2 1620 2295

P2 30912 0.9025e-3 5560 1999

- 0.4774e-2 1050 585

P1 15456 0.1353e-2 3700 392

- 0.7161e-2 700 120
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Numerical treatment of grid-induced stiffness
Hybrid explicit/implicit DGTD-Pp method

(Pc :Ps) # DOF ∆tc (m) # iter. CPU (sec)

(P4:P3) 62955 0.5866e-3 8530 12865

- 0.2148e-2 2330 5175

(P4:P2) 51495 0.9025e-3 5550 6800

- 0.2148e-2 2330 4135

(P4:P1) 42900 0.1353e-2 3700 4053

- 0.2148e-2 2330 3654

(P3:P2) 40060 0.9025e-3 5550 3651

- 0.3103e-2 1620 1582

(P3:P1) 31465 0.1353e-2 3700 1968

- 0.3103e-2 1620 1259

(P2:P1) 22317 0.1353e-2 3700 875

- 0.4774e-2 1050 376
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Numerical treatment of grid-induced stiffness
Hybrid explicit/implicit DGTD-Pp method

Numerical results

V. Dolean, H. Fahs, L. Fezoui and S. Lanteri
J. Comput. Phys., Vol. 229, No. 2, 2010

Scattering of plane wave (F=200 MHz, λ = 1.5 m) by an aircraft

# vertices=360,495 and # elements=2,024,924

Edges length: Lm=9.166 10−3 m (≈ λ/163 m) and LM=6.831 10−1 m (≈ λ/2.2 m)

Comparison of fully explicit versus hybrid explicit/implicit (S. Piperno’s scheme)
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Some recent realizations or ongoing studies
Numerical treatment of grid-induced stiffness

Hybrid explicit/implicit DGTD-Pp method

Scattering of a plane wave (F=200 MHz, λ = 1.5 m) by an aircraft

Geometric criterion: C(τi ) = 4 min
j∈Vi

√
ViVj

PiPj

Vi , Pi : volume and perimeter of τi
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Some recent realizations or ongoing studies
Numerical treatment of grid-induced stiffness

Hybrid explicit/implicit DGTD-Pp method

Scattering of a plane wave (F=200 MHz, λ = 1.5 m) by an aircraft

Cmax |Se | |Si |
0.0125 2,024,320 604 (0.03 %)
0.0175 2,022,464 2,460 (0.12 %)

0.02 2,018,543 6,381 (0.31 %)

Definition of the subsets of explicit and implicit elements

Cmax RAM (LU) Time (LU) Time (total)

0.0125 m 12 MB 0.3 sec 6 h 39 mn
0.0175 m 48 MB 1.5 sec 4 h 44 mn

0.02 m 117 MB 4.2 sec 4 h 08 mn

Hybrid explicit-implicit DGTD-P1 method (Intel Xeon/2.33 GHz workstation)

Fully explicit DGTD-P1 method: 25 h 3 mn
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Some recent realizations or ongoing studies
DGTD-PpQk method on hybrid structured-unstructured meshes

Patch antenna problem

DGTD method on locally-refined non-conforming cartesian grids

In collaboration with France Telecom R&D, La Turbie research center

N. Canouet, L. Fezoui and S. Piperno
COMPEL, Vol. 24, No. 4, 2005
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DGTD-PpQk method on hybrid structured-unstructured meshes

Motivations

Improve the overall efficiency of DGTD-based simulations

Simplify the mesh generation process of complex propagation scenes

Approach

Domain partitioning

Quadrangular (2D)/hexahedral (3D) orthogonal mesh for regions involving
regularly shaped objects or vacuum zones

Triangular (2D)/tetrahedral (3D) mesh for regions involving irregularly
shaped objects

Conforming versus non-conforming (i.e. with hanging nodes) discretization
at the interface bewteen structured and unstructured mesh

Current achievements

Formulation in 3D

Stability and a priori convergence analysis

Implementation in 2D (conforming and non-conforming meshes)

S. Lanteri (INRIA) DGTD method CNPq-INRIA/HOSCAR project 52 / 77



DGTD-PpQk method on hybrid structured-unstructured meshes

Motivations

Improve the overall efficiency of DGTD-based simulations

Simplify the mesh generation process of complex propagation scenes

Approach

Domain partitioning

Quadrangular (2D)/hexahedral (3D) orthogonal mesh for regions involving
regularly shaped objects or vacuum zones

Triangular (2D)/tetrahedral (3D) mesh for regions involving irregularly
shaped objects

Conforming versus non-conforming (i.e. with hanging nodes) discretization
at the interface bewteen structured and unstructured mesh

Current achievements

Formulation in 3D

Stability and a priori convergence analysis

Implementation in 2D (conforming and non-conforming meshes)

S. Lanteri (INRIA) DGTD method CNPq-INRIA/HOSCAR project 52 / 77



DGTD-PpQk method on hybrid structured-unstructured meshes

Motivations

Improve the overall efficiency of DGTD-based simulations

Simplify the mesh generation process of complex propagation scenes

Approach

Domain partitioning

Quadrangular (2D)/hexahedral (3D) orthogonal mesh for regions involving
regularly shaped objects or vacuum zones

Triangular (2D)/tetrahedral (3D) mesh for regions involving irregularly
shaped objects

Conforming versus non-conforming (i.e. with hanging nodes) discretization
at the interface bewteen structured and unstructured mesh

Current achievements

Formulation in 3D

Stability and a priori convergence analysis

Implementation in 2D (conforming and non-conforming meshes)

S. Lanteri (INRIA) DGTD method CNPq-INRIA/HOSCAR project 52 / 77



Some recent realizations or ongoing studies
DGTD-PpQk method on hybrid structured-unstructured meshes

Ω is discretized by Ch =
N⋃
i=1

ci = Th

⋃
Qh, where ci are tetrahedra (∈ Th) or

hexahedra (∈ Qh) in 3D (triangles or quadrangles in 2D).

Pp[ci ] the space of polynomial functions with degree at most p on ci ∈ Th

(P1 function in 2D: ξ0 + ξ1x1 + ξ2x2)
Qk [ci ] the space of polynomial functions with degree at most k with respect to each
variable separately on ci ∈ Qh (Q1 function in 2D: γ0 + γ1x1 + γ2x2 + γ3x1x2)

φi = (ϕi1, ϕi2, . . . , ϕidi ) local basis of Pp[ci ]
θi = (ϑi1, ϑi2, . . . , ϑibi ) local basis of Qk [ci ]

Approximation space V 6
h for Wh

Vh =

{
Vh ∈ L2(Ω)

∣∣∣∣∣ ∀ci ∈ Th, Vh ci ∈ Pp[ci ]

∀ci ∈ Qh, Vh ci ∈ Qk [ci ]

}
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Some recent realizations or ongoing studies
DGTD-PpQk method on hybrid structured-unstructured meshes

Local degrees of freedom denoted by Wil ∈ R6

Wi defines the restriction of the approximate solution to the cell ci (Wh ci )

ci ∈ Th =⇒Wi ∈ Pp[ci ]: Wi (x) =

di∑
l=1

Wilϕil(x) ∈ R6

ci ∈ Qh =⇒Wi ∈ Qk [ci ]: Wi (x) =

bi∑
l=1

Wilϑil(x) ∈ R6

The local representation of W does not provide any form of continuity from one
element to another. We use a centered numerical flux on aij = ci ∩ cj

Wh aij =
Wi aij + Wj aij

2
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Some recent realizations or ongoing studies
DGTD-PpQk method on hybrid structured-unstructured meshes

Case A: ci is a tetrahedron. aij face of ci , is either on boundary, or common to another
tetrahedron, or to a hexahedron (hybrid)
6di semi-discretized equations system


2Xε,i

dEi

dt
+

3∑
k=1

X xk
i Hi +

∑
aij∈T i

d

XijHj +
∑

aij∈T i
m

XimHi +
∑

aij∈H i
d

AijH̃j = 0

2Xµ,i
dHi

dt
−

3∑
k=1

X xk
i Ei −

∑
aij∈T i

d

XijEj +
∑

aij∈T i
m

XimEi −
∑

aij∈H i
d

Aij Ẽj = 0

with:

Ei = t(Ei1,Ei2, · · · ,Eidi ) and Hi = t(Hi1,Hi2, · · · ,Hidi ) ∈ R
3di

Ẽj = t(Ej1,Ej2, · · · ,Ejbj ) and H̃j = t(Hj1,Hj2, · · · ,Hjbj ) ∈ R
3bj

Xε,i and Xµ,i are mass matrices, X xk
i gradient matrix, Xij surface matrix

=⇒ All have a 3di × 3di size, except Aij , whose size is 3di × 3bj
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Some recent realizations or ongoing studies
DGTD-PpQk method on hybrid structured-unstructured meshes

Case B: ci is an hexahedron. aij face of ci , is on boundary, or common to another
hexahedron, or to a tetrahedron (hybrid)
6bi semi-discretized equations system


2Wε,i

dẼi

dt
+

3∑
k=1

Wxk
i H̃i +

∑
aij∈Qi

d

WijH̃j +
∑

aij∈Qi
m

WimH̃i +
∑

aij∈H i
d

BijHj = 0

2Wµ,i
dH̃i

dt
−

3∑
k=1

Wxk
i Ẽi −

∑
aij∈Qi

d

Wij Ẽj +
∑

aij∈Qi
m

WimẼi −
∑

aij∈H i
d

BijEj = 0

with:

Ẽi = t(Ei1,Ei2, · · · ,Eibi ) and H̃i = t(Hi1,Hi2, · · · ,Hibi ) ∈ R
3bi

Ej = t(Ej1,Ej2, · · · ,Ejdj ) and Hj = t(Hj1,Hj2, · · · ,Hjdj ) ∈ R
3dj

Wε,i and Wµ,i are mass matrices, Wxk
i gradient matrix, Wij surface matrix

=⇒ All have a 3bi × 3bi size, except Bij , whose size is 3bi × 3dj
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Some recent realizations or ongoing studies
DGTD-PpQk method on hybrid structured-unstructured meshes

Second order leap-frog scheme

Case A:


H

n+ 1
2

i = H
n− 1

2
i +

∆t

2
[Xµ,i ]−1 An

E,i

E
n+1
i = E

n
i +

∆t

2
[Xε,i ]−1 A

n+ 1
2

H,i

Case B:


H̃

n+ 1
2

i = H̃
n− 1

2
i +

∆t

2
[Wµ,i ]

−1 Bn
E,i

Ẽn+1
i = Ẽn

i +
∆t

2
[Wε,i ]

−1 B
n+ 1

2
H,i
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Some recent realizations or ongoing studies
DGTD-PpQk method on hybrid structured-unstructured meshes

Sability analysis

We consider only metallic boundaries

We define a discrete energy En and we check that it is exactly conserved, i.e.
∆E = En+1 − En = 0

We make hypotheses for fields in (Pp[ci ])
3 and in (Qk [ci ])

3 to prove that En

is a positive definite quadratic form under a CFL condition

For the DGTD-Pp method, the sufficient condition on ∆tτ is,

∀i , ∀j ∈ Vi : tτ
[
2ατi + βτij max

(√
εi/εj ,

√
µi/µj

)]
<

4|ci |
√
εiµi

pi

A similar condition on ∆tq can be proved for DGTD-Qk method (with αq
i and βq

ij )

Finally, noting ∆t the global time step for the hybrid method, we have shown that a
sufficient stability condition is defined by,

∆t = min(∆tτ ,∆tq)

Under this condition and hypothesis, En is a positive definite quadratic form
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Some recent realizations or ongoing studies
DGTD-PpQk method on hybrid structured-unstructured meshes

A priori convergence analysis

Let Wh ∈ C1([0, tf ]; V 6
h ) and let W ∈ C0([0, tf ]; (PHs+1(Ω))6) for s ≤ 0

with tf the final time and,

PHs+1(Ω) = {v | ∀j , v cj ∈ Hs+1(cj)}

Let hτ = max
τi∈Th

(hτi ), hq = max
qi∈Qh

(hqi ) and,

ηh = max
{

hmin{s,p}
τ , hmin{s,k}

q

}
We found that the error of the semi-discretized problem is of order O(tf ηh)

The fully discretized scheme may be seen as the discretization in time of a system
of ODEs. Since the leap-frog scheme is second-order accurate, we found that the
consistency error is of order O(∆t2)

Finally, together with the stability result we thus get an error of order
(if the exact solution is regular enough),

O(∆t2) +O(tf ηh)
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Some recent realizations or ongoing studies
DGTD-PpQk method on hybrid structured-unstructured meshes

2D TMz Maxwell equations

Eigenmode in a unitary PEC square cavity
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Some recent realizations or ongoing studies
DGTD-PpQk method on hybrid structured-unstructured meshes

2D TMz Maxwell equations

Eigenmode in a unitary PEC square cavity

Type of mesh Interpolation order CPU time # DOF Final L2-error

DGTD-P1 45 sec 11334 2.33× 10−2

DGTD-P2 206 sec 22668 1.68× 10−4

DGTD-P3 530 sec 37780 7.09× 10−5Triangular

DGTD-P4 1511 s 56670 2.94× 10−5

DGTD-P1Q4 11 sec 3488 4.03× 10−3

DGTD-P2Q3 38 sec 5888 3.39× 10−4

DGTD-P3Q4 122 sec 9760 9.96× 10−5Hybrid

DGTD-P4Q4 318 sec 14240 5.07× 10−5
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Some recent realizations or ongoing studies
DGTD-PpQk method on hybrid structured-unstructured meshes

2D TMz Maxwell equations

Eigenmode in a unitary PEC square cavity

Numerical convergence study
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Some recent realizations or ongoing studies
DGTD-PpQk method on hybrid structured-unstructured meshes

2D TMz Maxwell equations

Eigenmode in a unitary PEC square cavity

Numerical convergence study
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Some recent realizations or ongoing studies
DGTD-PpQk method on hybrid structured-unstructured meshes

DGTD-PpQk method on hybrid structured-unstructured meshes

Scattering of a plane wave (F=600 MHz) by a PEC cylinder

Triangular mesh: # triangles=3276

Hybrid quadrangular-triangular mesh: # quadrangles=192 and # triangles=2656
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Some recent realizations or ongoing studies
DGTD-PpQk method on hybrid structured-unstructured meshes

DGTD-PpQk method on hybrid structured-unstructured meshes

Scattering of a plane wave (F=600 MHz) by a PEC cylinder

DGTD-P3 method: 19.7 sec

DGTD-P2Q4 method: 8.2 sec

DGTD-P3 method DGTD-P2Q4 method
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Some recent realizations or ongoing studies
A biomedical application

Context

One year old collaboration with Centre for Communications Research, Department
of Electrical and Electric Engineering University of Bristol (Maciej Klemm)

Biomedical application: microwave radar-based medical imaging

Specific objectives

1 Propagation of electromagnetic waves in biological tissues

2 Numerical treatment of complex antenna arrays

Current status

Development of a DGTD method for Debye type dispersive model

ADE (Auxiliary Differential Equation) approach

Direct extension of the method devised for non-dispersive media

Stability and convergence analysis

Preliminary numerical investigation on simple model problems
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Some recent realizations or ongoing studies
A biomedical application

Dynamic microwave neuro-functional brain imaging

Brain activation leads to an increase in the metabolism of its neuronal cells, accompanied
via neurovascular coupling by an increase in the cerebral blood flow (CBF), cerebral blood
volume (CBV) and oxygen consumption

fEITa studies have shown conductivity changes of 2% to 4%

Semenov al.b have shown that a microwave system is capable of detecting (in vivo) changes
in blood flow as small as 1%

⇒ DMI radar should detect it!

afunctional Electrical Impedance Tomography
bPhys. Med. Biol., Vol. 52, 2007).
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Some recent realizations or ongoing studies

Ongoing effort: realistic numerical models of head tissues
+ DGDT method for dispersive media

Geometric models

Built from segmented medical images

Extraction of surfacic (triangular) meshes of the tissue interfaces
using specific tools

Marching cubes + adaptive isotropic surface remeshing
Delaunay refinement

Generation of tetrahedral meshes using a Delaunay/Voronoi tool
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Some recent realizations or ongoing studies
A biomedical application
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Some recent realizations or ongoing studies
A biomedical application

Governing equations for a Debye model

µ
∂H

∂t
+∇× E = 0

ε0ε∞
∂E

∂t
−∇×H = − 1

τr
[ε0 (εs − ε∞)E− P]− σE

∂P

∂t
=

1

τr
[ε0 (εs − ε∞)E− P]

where:
ε∞ is the relative electric permittivity of the medium at infinite frequency,
εs is the static, low frequency permittivity,
τr is the characteristic relaxation time of the medium.

DGTD method for dispersive media

Centered flux discontinuous Galerkin scheme

Leap-frog based explicit time-stepping

C. Scheid and S. Lanteri, INRIA preprint RR-7634
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Some recent realizations or ongoing studies
High performance computing

∀τi :


Mε

i

dEi

dt
= KiHi −

∑
k∈Vi

SikHk

Mµ
i

dHi

dt
= −KiEi +

∑
k∈Vi

SikEk

GPU accelerated DGTD method

DG method bulding blocks: matrix-vector products with dense (or almost dense) matrices

Dense linear algebra particularly well suited to SIMD architecture of a GPU

Local nature and mixed sparse-dense structure of a DG method calls for hybrid
MIMD-SIMD computing
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Some recent realizations or ongoing studies
High performance computing

Implementation

Each DGTD time iteration can be decomposed into 3 steps applied at the element level

Development of CUDA-enabled kernels

1 Compute step: X1
i = KiH

n+ 1
2

i

2 Compute step: X2
i =

∑
k∈Vi

SikH
n+ 1

2
k

3 Update step: En+1
i = En

i + ∆t(Mε
i )−1(X1

i − X2
i )

Parallelization strategy for clusters of CPUs

Domain partitioning + message passing programming (MPI)
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GPU-enabled high performance computing
Weak scalability

Model test problem and configurations

Hardware: cluster with 1024 Intel CPU nodes (2 quad-core Intel Xeon X5570 Nehalem
processors - 2.93 GHz) and 48 Teslas S1070 GPU systems with four GT200 GPUs

Propagation of a standing wave in a perfectly conducting unitary cubic cavity

Regular uniform tetrahedral meshes respectively containing 3,072,000 elements for the
DGTD-P1 and DGTD-P2 methods, 1,296,000 elements for the DGTD-P3 method
and 750,000 elements for the DGTD-P4 method

Boxwise domain decompositions with optimal computational load balance

Computational performances

# GPU DGTD-P1 DGTD-P2 DGTD-P3 DGTD-P4

1 63 GFlops 92 GFlops 106 GFlops 94 GFlops
128 8072 GFlops 11844 GFlops 13676 GFlops 12009 GFlops
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GPU-enabled high performance computing

Mesh: # elements = 5,536,852
Total # DOF is 132,884,448 (DGTD-P1 method) and
332,211,120 (DGTD-P2 method)
Time on 64 CPU cores for the DGTD-P1 method: 7 h 10 mn

# GPU DGTD-P1 DGTD-P2

Time GFlops Speedup Time GFlops Speedup

64 12 mn 2762 - 59 mn 4525 -
128 7 mn 4643 1.7 30 mn 8865 1.95
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Outline
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Closure: ongoing and future works

Numerical treatment of grid-induced stiffness

Extension to 3D of hybrid explicit/implicit time scheme

High order accurate hybrid explicit/implicit time scheme

High order explicit local time step strategies

Non-confirming multi-element DGTD formulation

Extention to 3D and parallelization aspects

hp-adpativity strategy

DGDT method for complex propagation media

Extension to Drude and Drude-Lorentz models

Validation and assessment through collaborations with physicists
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Closure

Thank you for your attention!

Particular thanks to:

Tristan Cabel (Temasek Laboratories, National University of Singapore, formerly
INRIA, Nachos project-team)

Stéphane Descombes (University of Nice-Sophia Antipolis and INRIA, Nachos
project-team)

Clément Durochat (PhD student, INRIA, Nachos project-team)

Loula Fezoui (INRIA, Nachos project-team)

Maciej Klemm (Centre for Communications Research, Department of Electrical
and Electric Engineering University of Bristol)

Ludovic Moya (PhD student, INRIA, Nachos project-team)

Claire Scheid (University of Nice-Sophia Antipolis and INRIA, Nachos project-team)
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