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NACHOS project-team

Scientific objectives

Design, analysis and validation of numerical methods and high performance resolution
algorithms for the computer simulation of wave propagation problems in complex domains

and heterogeneous media
v

Research directions

@ Systems of linear PDEs with variable coefficients

o Discretization
o Discontinuous finite element (DG) methods on unstructured meshes
@ High order polynomial interpolation
@ p-, h- and hp-adaptivity
@ Numerical treatment of complex propagation media models
o Resolution
@ Accurate and efficient time integration strategies
@ Domain decomposition (DD) methods
e High peformance computing
o Algorithmic aspects and parallel programming paradigms
o Implementation issues for large-scale 3D simulations
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NACHOS project-team

Computational electromagnetics

@ System of Maxwell equations
@ Dispersive propagation media

@ Applications involve the interaction of
electromagnetic waves with,
@ biological tissues (biocem),
@ geological media (georadar).

James Clerk Maxwell (1831-1879)

Computational geoseismics

@ System of elastodynamic equations
@ Viscoelastic propagation media

@ Applications deal with the propagation of seismic waves,
© generated by an explosive source (earthquake dynamics),
@ in the subsurface (resource prospection).
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Discontinuous Galerkin Time Domain
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DGTD method

Introducing a commercial FETD solver breaks
new ground in EM field simulation. Based on
the DGTD method, it allows unstructured
geometry-conforming meshes to be used for the
first time in transient EM field simulation.

DGTD is a competitive alternative to traditional
FDTD based methods to solving Maxwell's
equations in the time domain. The applications
presented here include the electromagnetic
pulse susceptibility of the differential lines in a
laptop computer, the radar signature of a
landmine under undulating ground, the TDR of
a bent flex circuit, and the return loss of a
connector. All of these examples involve
complicated, curved geometries where the
flexibility of the unstructured meshes used in
DGTD provides powerful advantages over
simulation by conventional brick-shaped FDTD
and FIT meshes.

IEEE Microwave Magazine - April 2010
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Outline

© Time Domain electromagnetics
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Time Domain electromagnetics

Boundary and intial value problem

Maxwell equations, x € Q, t > 0
eOtE—V xH=0

/LatH-i-VXE:O

E=E(x,t) and H = H(x,1t)

Boundary conditions: 90Q =T, Ul ,,

nxE=0onTl,
— L JH = L H :
nxE En><(H><n)_n><EInC Enx(H,ncxn)onra

Initial conditions

| N\

Eo = E(x,0) and Ho = H(x,0)
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Outline

© Overview of existing methods
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Time-domain electromagnetics

Overview of existing methods: FDTD method

@ FDTD: Finite Difference Time-Domain method

Seminal work of K.S. Yee
(IEEE Trans. Antennas Propag., Vol. AP-14, 1966)

Structured (cartesian) meshes

Second order accurate (space and time) on uniform meshes

Advantages
o Easy computer implementation
o Computationally efficient (very low algorithmic complexity)
o Mesh generation is straightforward
o Modelization of complex sources (antennas, thin wires, etc.) is well established
o Drawbacks
o Accuracy on non-uniform discretizations
o Memory requirements for high resolution models

o Approximate discretization of boundaries (stair case representation)
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Time-domain electromagnetics

Overview of existing methods: FDTD method

Yee's scheme

o Staggered grid
o Non-dissipative scheme (centered in space and time)

@ Second-order accurate in space and time (for a uniform grid)

Yearly FDTD-Related Publications
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Time-domain electromagnetics

Overview of existing methods: FETD method

o FETD: Finite Element Time-Domain method

o Often based on J.-C. Nédélec edge elements
(Numer. Math, Vol. 35, 1980 and Vol. 50, 1986)
o Unstructured meshes
o Advantages
@ Accurate representation of complex shapes
@ Well suited to high order interpolation methods
o Drawbacks
o Computer implementation is less trivial
@ Unstructured mesh generation is hardly automated
@ Global mass matrix
o Mass lumped FETD methods
@ S. Pernet, X. Ferrieres and G. Cohen
IEEE Trans. Antennas Propag., Vol. 53, No. 9, 2005
o Hexahedral meshes, high order Lagrange polynomials

o Leap-frog time integration scheme
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Time-domain electromagnetics

Overview of existing methods: FIT

o FIT

©

: Finite Integration Technique

FIT was proposed in 1977 by Thomas Weiland and has been enhanced
continually over the years

(Electronics and Communications AEUE, Vol. 31, No. 3, 1977 and
Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 9, 1996)

The FIT is a spatial discretization scheme fo time- and frequency-domain problems

The basic idea is to solve the Maxwell equations in integral form on a set
of staggered grids

It preserves basic topological properties of the continuous equations such as
conservation of charge and energy

It covers the full range of electromagnetics (from static up to high frequency)
and optic applications

It is implemented in the CST software suite
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Time-domain electromagnetics

Overview of existing methods: FVTD method

e FVTD: Finite Volume Time-Domain method
o Imported from the computational fluid dynamics (CFD) community

@ V. Shankar, W. Hall and A. Mohammadian
Electromag. Vol. 10, 1990

@ J.-P. Cioni, L. Fezoui and H. Steve
IMPACT Comput. Sci. Eng., Vol. 5, No. 3, 1993

o P. Bonnet, X. Ferrieres et al.
J. Electromag. Waves and Appl., Vol. 11, 1997

o S. Piperno and M. Remaki and L. Fezoui
SIAM J. Num. Anal., Vol. 39, No. 6, 2002.

Unstructured meshes

o Uknowns are cell averages of the field components
o Flux evaluation at cell interfaces

@ Upwind scheme — numerical dissipation

o Centered scheme — numerical dispersion (on non-uniform meshes)

o Extension to higher order accuracy: MUSCL technique
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Discontinuous Galerkin Time Domain method

Overview of existing methods: DGTD method

@ Initially introduced to solve neutron transport problems
(W. Reed and T. Hill, 1973)

@ Somewhere between a finite element and a finite volume method, gathering
many good features of both

o Extensively developed by the CFD community

@ Application to wave propagation problems naturally followed

@ Reference text book
J.S. Hesthaven and T. Warburton
Nodal discontinuous Galerkin methods: algorithms, analysis, and applications
Springer, 2008
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Discontinuous Galerkin Time Domain method

Overview of existing methods: DGTD method

F. Bourdel, P.A. Mazet and P. Helluy
Proc. 10th Inter. Conf. on Comp. Meth. in Appl. Sc. and Eng., 1992.

o Triangular meshes, first-order upwind DG method (i.e FV method)
e Time-domain and time-harmonic Maxwell equations

@ M. Remaki and L. Fezoui, INRIA RR-3501, 1998.

o Time-domain Maxwell equations
o Triangular meshes, P1 interpolation, Runke-Kutta time integration (RKDG)

@ J.S. Hesthaven and T. Warburton (J. Comput. Phys., Vol. 181, 2002)

o Tetrahedral meshes, high order Lagrange polynomials, upwind flux
o Runge-Kutta time integration

B. Cockburn, F. Li and C.-W. Shu (J. Comput. Phys., Vol. 194, 2004)
o Locally divergence-free discontinuous Galerkin formulation

@ G. Cohen, X. Ferrieres and S. Pernet (J. Comput. Phys., Vol. 217, 2006)

o Hexahedral meshes, high order Lagrange polynomials, penalized formulation
o Leap-frog time integration scheme

And a steadily increasing number of other works since 2005
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Discontinuous Galerkin Time Domain method

Some recent works

ElectroScience Lab The Ohio State University, USA

@ Jin-Fa Lee et al.

@ Interior penalty discontinuous Galerkin formulation

o Triangular (2D)/tetrahedral meshes, conformal PMLs

o Leap-frog time integration scheme, local time-stepping strategy
o S. Dosopoulos and J.F. Lee. IEEE Trans. Ant. Propag., Vol. 58, 2010
o S. Dosopoulos and J.F. Lee. J. Comput. Phys., Vol. 229, 2010

By courtesy of J.F. Lee
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Discontinuous Galerkin Time Domain method

Some recent works

Computational Electromagnetics Group
TU Darmstadt, Germany

@ S. Schnepp, T. Weiland et al.

Non-dissipative (centered flux)
discontinuous Galerkin formulation

Orthogonal quadrangular e e
(2D)/hexahedral (3D) meshes - 4
@ Adpative mesh refinement

Leap-frog time integration scheme

o S. Schnepp and T. Weiland. Radio
Science, Vol. 46, 2011

By courtesy of S. Schnepp
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Discontinuous Galerkin Time Domain method

Photonics group, Institute for theoretical physics, University of Karlsruhe, Germany

K. Busch, M. Konig and J. Niegemann

Developement of discontinuous Galerkin methods for the efficient numerical
treatment of nanophotonic systems

Diffusive (upwind flux) discontinuous Galerkin formulation
Triangular (2D)/tetrahedral meshes

Runge-Kutta time integration

Anisotropic materials

Stretched-coordinate PMLs

o K. Busch, M. Konig and J. Niegemann
Discontinuous Galerkin methods in nanophotonics
Laser and Photonics Reviews, Vol. 5, No. 6, 2011

o M. Konig, K. Busch and J. Niegemann
The discontinuous Galerkin time-domain method for Maxwell's equations with
anisotropic materials
Photonics and Nanostructures - Fundamentals and Applications, Vol. 8, 2010
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Outline

© A non-dissipative DGTD-P,, method
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DGTD-Pp, method for the Maxwell equations

U

U)

X, Xin x, Xin

Continuous P1 interpolation Discontinuous P1 interpolation

Naturally adapted to heterogeneous media and discontinuous solutions

Can easily deal with unstructured, possibly non-conforming meshes (h-adaptivity)
High order with compact stencils and non-conforming approximations (p-adaptivity)
Usually rely on polynomial interpolation but can also accomodate alternative functions
Yield block diagonal mass matrices when coupled to explicit time integration schemes

Amenable to efficient parallelization

But leads to larger problems compared to continuous finite element methods
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DGTD-Pp, method for the Maxwell equations

Discretization in space

o Disretization of Q: Q, =75 = U Ti
Ti€Th
o JFy: set of purely internal faces

o Fm and Fa: sets of faces on the boundaries ', and I,
o Approximation space: V, = {V), € L*(Q)? | Vi,Vp., = Vi € Py [11]*}
@ Variational formulation: V@ € P; = Span(gj; , 1 <j < di)

///gﬁ-siatEdw = —//@-(Hxﬁ)ds—i-//VXcﬁ-Hdw

oT;

///@M,atHdw = //@‘-(Exﬁ)ds—//anﬁ~Edw
T oTj Ti
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DGTD-Pp, method for the Maxwell equations

Discretization in space

@ Approximate fields: Vi, E,,, = E; and Hy, =H;

E,' E Hi H
o Integral over 97;: E|, = EitEe and H, = it
aj 2 aj 2
@ Assume I, = () (to simplify the presentation)
and on [: Ek\a,.k = _E"‘azk and Hklaik = H,-‘a[k

//(VX@ H; +V X H; - @)dw

— 72//50 (Hg x fiy)ds

KEV; 5

///Lﬁ'-,u;atH;dw = 75//(V><45-E;+V><E,'~</3)dw
+ 72// - (Ex X fijk)d

KEV; 5

[][#-coia
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DGTD-Pp, method for the Maxwell equations

Discretization in space

@ Local projections

E(x)= Y Ei@i(x) and Hi(x)= > H;@i(x)

1<j<d; 1<j<d;

e Jjj : Lagrange (nodal) polynomials
@ Vector representation of local fields

E; = {Ej}hi<j<q; and H; = {Hj}1<j<a,
o For1<j,I<d:

o (Mf)j=¢i ///Tfyﬁldw and  (M¥); = p; ///T@j@}./dw

1 - . R .
o (Ki)j = > ///(TWV X Gt + '@V X @) dw
i

@ For1<j<d and 1< /< dk

1 PN -
o (Siu)j= 5 // "3 (Bu x Fijj)ds
ajk
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DGTD-Pp, method for the Maxwell equations

Discretization in space

Local EDO systems

dE;
e = KH - Y SH
e A
V1 '
dH;
ML = _K(E; SiKE
i gt + Z ik

keV;

S. Lanteri (INRIA)

DGTD method
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DGTD-Pp, method for the Maxwell equations

Discretization in space

Local EDO systems

dE;

?dt KH; — > Syl
v keV;
Ti
dHi;
M= = —KE + ) Sufy
key;

Global EDO system (with d =", d;)

dE dH

Mei _ pEEE T

ar GH and M it GE
eG=K-A-B

@ M° are M* block diagonal symmetric definite positive matrices
@ Kis a d x d block diagonal symmetric matrix

@ Ais a d x d block sparse symmetric matrix (internal faces)

B is a d x d block sparse skew symmetric matrix (metallic faces)
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DGTD-Pp, method for the Maxwell equations

Leap-frog based explicit time integration

Formulation

@ L. Fezoui, S. Lanteri, S. Lohrengel and S. Piperno
ESAIM: M2AN, Vol. 39, No. 6, 2005

n+1 _ mn
Ve (7]E F E) = GH":
t
n+l n—1
W(H & ) -

v

Stability analysis

@ Discrete electromagnetic energy
8" — TEnMEEn + THnJr% M“Hni%
@ Condition for £" being a positive definite form

2
At< 2 with o =| (M=1)2 TG (M~9)2 ||
2

@ Extension to higher orfer leap-frog schemes
H. Fahs and S. Lanteri
J. Comput. Appl. Math., Vol. 234, 2010

A
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Outline

@ Some recent realizations or ongoing studies
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Some recent realizations or ongoing studies

Numerical treatment of grid-induced stiffness

The choice of the temporal integration is a crucial step for the global efficiency
of the overall method

We distinguish two major families

@ Explicit integration methods

o Result in less computational effort per time step
o Lead to step size restrictions caused by the smallest element

@ Implicit integration methods

o Lead in general to unconditional stability = time step can be chosen arbitrarily large
o Require the solution of large linear system = high computational effort
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Some recent realizations or ongoing studies

Numerical treatment of grid-induced stiffness

The choice of the temporal integration is a crucial step for the global efficiency
of the overall method

We distinguish two major families

@ Explicit integration methods

o Result in less computational effort per time step
o Lead to step size restrictions caused by the smallest element

@ Implicit integration methods

o Lead in general to unconditional stability = time step can be chosen arbitrarily large
o Require the solution of large linear system = high computational effort

A possible alternative is locally implicit time integration methods
@ The smallest grid elements are treated implicitly
@ The coarsest grid elements are treated explicitly

= If the ratio of # fine to # coarse elements is small, the most severe
step size restrictions are overcome
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Some recent realizations or ongoing studies

Numerical treatment of grid-induced stiffness

Maxwell equations with source terms

eOtE—V xH =0E —Je

u@tH—i—VXE:O

@ ¢, u and o are coefficients representing electric permittivity, magnetic permeability
and electric conductivity, respectively

@ Je is a given source current
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Some recent realizations or ongoing studies
Numerical treatment of grid-induced stiffness

Discretization in space by a DG methd

Mﬁd—]E = SH — D°E + M°FE
dt
dH
i — _ T pH
M =S SE + M“F

@ M? and M* are the mass matrices containing the values of the electric permittivity
and magnetic permeability coefficient

@ S emanates from the discretization of the curl operator
o D7 is associated with the dissipative conduction term

o FE and F" are associated with source terms (IFE represents the given
source current, but F€ and F* may also contain Dirichlet boundary data)
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Some recent realizations or ongoing studies

Numerical treatment of grid-induced stiffness

We can give an equivalent formulation of the semi-discrete Maxwell system
without mass matrices

It is obtained by a transformation based on the Cholesky decompositions of M® and M*
M.A. Botchev and J.G. Verwer SIAM J. Sci. Comput., Vol. 31, 2009

Discretization in space by a DG methd (without mass matrices)

dE

= = H — D°E + FE
= S +
M _ g + ¥

dt

with adapted definitions of E, H, S, D7, FE and F"

S. Lanteri (INRIA) DGTD method
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Some recent realizations or ongoing studies

Numerical treatment of grid-induced stiffness

A popular integration method is the second order leap-frog scheme (LF2) that we can
write in the three-stage form, emanating from Verlet's method

Hn+% _ Hn
T/Q 7TSIE"+]P‘H(tn)
]En+1 _ ]En n+l En + En+l IE"H(tn) + FH(tn+1)
~ar - SEm-D ( 2 ) + >
HT — Hots
At/z 2 — —TSEn+1 —|—FH(tn+1)

This method is second order accurate, explicit, and conditionally stable with a critical

time step size proportional to h;,, determined by the smallest grid element

S. Lanteri (INRIA) DGTD method CNPq-INRIA/HOSCAR project
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Some recent realizations or ongoing studies

Numerical treatment of grid-induced stiffness

An alternative is the second order, unconditionally stable Crank-Nicolson method (CN2)
that we write in the three-stage form

Hn+% _ Hn
T/Z = 7T5En +FH(tn)
]En+1 _ ]En i1 ]En + ]En+l ]FH(tn) + ]FH(thrl)
A = SEH-D < 5 ) + 5
H Hn+l
At/2 2 _ _TSEn+1 —|—FH(tn+1)

This method is second order accurate and unconditionally stable

The expense for the implicit computation is too large to consider CN2 as an attractive
alternative to LF2, especially in 3D
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Some recent realizations or ongoing studies

Numerical treatment of grid-induced stiffness

Hybrid explicit/implicit DGTD-IP, method

o S. Piperno, ESAIM: M2AN, Vol. 40, No. 5, 2006

o Explict scheme: Verlet method (i.e. three-step leap-frog method
with E and H computed at the same time stations)

@ Implicit scheme: Crank-Nicolson scheme

@ Partitioning of the mesh elements into two subsets
- S.: coarsest elements, treated explicitly
- &i: smallest elements, treated implicitly

E. .
=(3) -
Se Aei _
s_(Aie Si) » D=

0

D

E H
FE:(£E> , ]F”:<];;,>
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Some recent realizations or ongoing studies

Numerical treatment of grid-induced stiffness

Hybrid explicit/implicit DGTD-P, method

Inserting the splitting into the semi-discrete system we obtain the partitioned
system of ODEs
d]Ee S SeHe - AeiHi - DgEe a4 ]FeE
dt
E;
d = SH; — A, — DYE; + FF
dt
dH .
° S - ssEe TAieEi F:I
ot + +
djfi = —'S;E;+ A E.+F
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Some recent realizations or ongoing studies

Numerical treatment of grid-induced stiffness

Hybrid explicit/implicit DGT

H, ° —H?
At/2 = —TS.E7 + A E? + FH(t")
]E'H'2 ]En +l
e =  S.H. ? — A, H? — DZE? + FE(t")
+1 +1 Rl
& A_ . - <H7 2+ Hin) A'eHHZ e (Eiﬂ 2+ EIU)
t
o Ff(t") + FF(t"1)
2
A _ v (B E/*! LTALE™ 4 FH(t") + FH (")
At 1 2 el-e 2
1
]En+1 _ E"+§
e — o At/2e = S.HI'P _ A HT _ DIETH 4 FE(e+l)
1
Hn+1 _ H’H'E
e At/2 e — —TSeEg+1 o TAieIE,’-Hl + ]Fle-/(tn+1)
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Some recent realizations or ongoing studies

Numerical treatment of grid-induced stiffness

Hybrid explicit/implicit DGTD-P, method

@ V. Dolean, H. Fahs, L. Fezoui and S. Lanteri
J. Comput. Phys., Vol. 229, No. 2, 2010

@ Stability analysis

1 1
g = TEIMEED + HL 2MEH, 2
EN=EM+EM+EF with & = TEJMFE] + HMIH?
A
& = =S HIAG(ME)TIALH]
@ Condition for £" being a positive definite form

1 1
ae = [[(MZ)72Se(Me)72 |

2 . 1 1

At ———— th ;= )2 A (MH) ™2
T e+ max(ﬁe,-,'yei) Wi Be’ ” (Me) erI(M, ) 2 ”

1 1
Yei = [(M&)"2A(MF)™2 ||
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Numerical treatment of grid-induced stiffness

Hybrid explicit/implicit DGTD-P, method

Component splitting based hybrid explicit/implicit method
Collaboration with Jan Verwer, CWI

J. Verwer, BIT Numer. Math., Vol. 51, 2010
It is also a blend of LF2 and CN2 applied to the semi-discrete Maxwell system

Hn+% _ Hn .
—_— = —TSE" +FH(t"
At/2 + )
En+1 _En H" Hn+1 B En+1
AT = SeH™:z +S, %) -D (%)
FH(tn) +FH(tn+1)
+ —7 — 7
2
M _ Hn+% .
- _ SEn+1 ]FH tn+1
At/2 +HEE)

for a general splitting S = So + S
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Numerical treatment of grid-induced stiffness

Hybrid explicit/implicit DGTD-P, method

S; is defined as S; = SSy where Sy is a diagonal matrix of dimension
the length of H with,

(Sn) 0, component of H to be treated explicitly,
H =
Y 1, component of H to be treated implicitly.

The second stage of the method leads to the solution of the linear system of equations,

MEn+l — Bn+1
where,
At? At
M = T+ 2 —S5:'S; +70
BnJrl — E"-ﬁ-AtSoH’H% + 751 <Hn+Hn+% + %FH(thrl))
At At

— = DE"+ == (FE(t") + FE(t"))

= The matrix M is significantly sparser than without splitting
enabling to solve the linear system at a lower cost
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Numerical treatment of grid-induced stiffness

Hybrid explicit/implicit DGTD-P, method

Comparison of the two locally implicit methods

Convergence of J. Verwer's method

Let F7(t), FE(t) € C[0, T] and suppose a Lax-Richtmyer stable space-time grid
refinement At ~ h, h — 0. On the interval [0, T| the approximations H" and E"
then converge with temporal order two to Hj(t) and Ex(t)”.

°Hp(t) and E,(t) denote the true solutions of the underlying PDE problem restricted to the
space grid.

Proof in J. Verwer, BIT Numer. Math., Vol. 51, 2010
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Numerical treatment of grid-induced stiffness

Hybrid explicit/implicit DGTD-P, method

Comparison of the two locally implicit methods

Convergence of S. Piperno's method

Let F¥(t), FE(t) € C?[0, T] and suppose a Lax-Richtmyer stable space-time grid
refinement At ~ h, h — 0. On [0, T the approximations HZ, H7, EZ and E] then
converge to Hy o(t), Hp i(t), Ene(t) and Epi(t)

(1) at least at first order,

(if)  at least at second order, if in addition

A _ 1
AelSeHh,e(t) =0 (At for h — 0.

Proof in L. Moya and J. Verwer, INRIA RR-7533, 2011
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Numerical treatment of grid-induced stiffness

Hybrid explicit/implicit DGTD-P, method

2D TMz Maxwell equations

Propagation of an eigenmode in a unitary PEC cavity (no source terms)

Boundary condition: n x E=0on I,
DGTD-P, method, non-uniform triangular mesh (# elements 2742)

e Comparison of fully explicit versus hybrid explicit/implicit (J. Verwer's scheme)

1

1
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Numerical treatment of grid-induced stiffness

Hybrid explicit/implicit DGTD-P, method

P, # DOF At (m) # iter. CPU Max. L-error
(sec)
P, 41130 0.3906e-4 25559 14337 0.1809e-6
- 0.9869¢-3 1014 836 0.1262e-5
Ps 27420 0.5643e-4 17723 4670 0.7423e-5
- 0.1425e-2 702 271 0.7868e-5
P, 16452 0.868le-4 11520 1161 0.2886e-3
- 0.2193e-2 456 71 0.2886e-3
P, 8226 0.1302¢-3 7680 232 0.1306e-1
- 0.3290e-2 304 15 0.1306e-1
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Numerical treatment of grid-induced stiffness

Hybrid explicit/implicit DGTD-P, method

(Pc:IPs) # DOF At (m) # iter. CPU Max. L2-error
(sec)
(P4:IP3) 33120 0.5643e-4 17723 6786 0.1837e-6
- 0.9869e-3 1014 572 0.1261e-5
(P4:IP2) 26712 0.8681e-4 11520 3331 0.1217e-5
= 0.9869e-3 1014 433 0.1711e-5
(Ps:IP1) 21906 0.1302e-3 7680 1902 0.1257e-2
- 0.9869e-3 1014 365 0.1257e-2
(P3:IP2) 21012 0.8681e-4 11520 1911 0.7512e-5
= 0.1425e-2 702 175 0.7952e-5
(Ps:IP1) 16206 0.1302e-3 7680 953 0.1280e-2
- 0.1425e-2 702 130 0.1280e-2
(P,:IP1) 11646 0.1302e-3 7680 458 0.1236e-2
- 0.2193e-2 456 42 0.1236e-2
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Numerical treatment of grid-induced stiffness

Hybrid explicit/implicit DGTD-P, method

Scattering of a plane wave by an airfoil profile

Boundary conditions:

nxE=0onTl,

n><E—\/gx(Hxn):an,-nc—Mg><(H,-,,C><n)onFa

DGTD-P, method, non-uniform triangular mesh (# elements 5152)

Comparison of fully explicit versus hybrid explicit/implicit (J. Verwer's scheme)
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Numerical treatment of grid-induced stiffness

Hybrid explicit/implicit DGTD-P, method

P, # DOF At (m) # iter. CPU (sec)
Ps 77280 0.4061e-3 12320 25287
- 0.2148e-2 2330 7110
P3 51520 0.5866e-3 8530 8000
- 0.3103e-2 1620 2295
P, 30912 0.9025e-3 5560 1999
- 0.4774e-2 1050 585
Py 15456 0.1353e-2 3700 392
- 0.7161e-2 700 120
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Numerical treatment of grid-induced stiffness

Hybrid explicit/implicit DGTD-P, method

(Pc:Ps) # DOF At (m) # iter. CPU (sec)
(P4:P3) 62955 0.5866e-3 8530 12865
- 0.2148e-2 2330 5175
(Py:Py) 51495 0.9025¢-3 5550 6800
- 0.2148e-2 2330 4135
(P4:P1) 42900 0.1353e-2 3700 4053
- 0.2148e-2 2330 3654
(P5:IP2) 40060 0.9025e-3 5550 3651
- 0.3103e-2 1620 1582
(P3:P1) 31465 0.1353e-2 3700 1968
- 0.3103e-2 1620 1259
(P2:IP,) 22317 0.1353e-2 3700 875
- 0.4774e-2 1050 376
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Numerical treatment of grid-induced stiffness
Hybrid explicit/implicit DGTD-P, method

Numerical results

@ V. Dolean, H. Fahs, L. Fezoui and S. Lanteri
J. Comput. Phys., Vol. 229, No. 2, 2010

Scattering of plane wave (F=200 MHz, A = 1.5 m) by an aircraft
# vertices=360,495 and # elements=2,024,924
Edges length: L;»=9.166 1073 m (=~ A\/163 m) and Ly;=6.831 10~! m (= \/2.2 m)

Comparison of fully explicit versus hybrid explicit/implicit (S. Piperno’s scheme)

Lanteri (INRIA) DGTD method CNPg-INRIA/HOSCAR project

48 /17



Some recent realizations or ongoing studies

Numerical treatment of grid-induced stiffness

Hybrid explicit/implicit
@ Scattering of a plane wave (F=200 MHz, A = 1.5 m) by an aircraft

L . ViV;
@ Geometric criterion: C(7;) = 4 min
jevi \l PiP;
o V; , Pj: volume and perimeter of 7;
1 o
o
/J/ //
oot
oo
0.001 0.001
o 250005 o ED 0% 0 2

500000 16406 15€+06 2406

Distribution of the geometric criterion C
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Some recent realizations or ongoing studies

Numerical treatment of grid-induced stiffness

it/implicit DGTD-P, method
@ Scattering of a plane wave (F=200 MHz, A = 1.5 m) by an aircraft

[ Cmax | [Sel \ [Sil |
0.0125 | 2,024,320 604 (0.03 %)
2,022,464 | 2,460 (0.12 %)

0.0175 | 2,022,
0.02 | 2,018,543 | 6,381 (0.31 %)

Definition of the subsets of explicit and implicit elements

[ Cmax [ RAM (LU) | Time (LU) | Time (total) |
0.0125 m 12 MB 0.3 sec 6 h 39 mn
0.0175 m 48 MB 1.5 sec 4 h 44 mn

0.02 m 117 MB 4.2 sec 4 h 08 mn

Hybrid explicit-implicit DGTD-P; method (Intel Xeon/2.33 GHz workstation)
Fully explicit DGTD-P; method: 25 h 3 mn

CNPg-INRIA/HOSCAR project 50 / 77
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Some recent realizations or ongoing studies
DGTD-P,Q« method on hybrid structured-unstructured meshes

Patch antenna problem

o DGTD method on locally-refined non-conforming cartesian grids
@ In collaboration with France Telecom R&D, La Turbie research center

o N. Canouet, L. Fezoui and S. Piperno
COMPEL, Vol. 24, No. 4, 2005

Fente: A/ 500
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DGTD-P,Qx method on hybrid structured-unstructured meshes

Motivations

o Improve the overall efficiency of DGTD-based simulations

@ Simplify the mesh generation process of complex propagation scenes
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DGTD-P,Qx method on hybrid structured-unstructured meshes

o Improve the overall efficiency of DGTD-based simulations

@ Simplify the mesh generation process of complex propagation scenes

Approach

@ Domain partitioning

@ Quadrangular (2D)/hexahedral (3D) orthogonal mesh for regions involving
regularly shaped objects or vacuum zones

o Triangular (2D)/tetrahedral (3D) mesh for regions involving irregularly
shaped objects

e Conforming versus non-conforming (i.e. with hanging nodes) discretization
at the interface bewteen structured and unstructured mesh
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DGTD-P,Qx method on hybrid structured-unstructured meshes

@ Improve the overall efficiency of DGTD-based simulations

@ Simplify the mesh generation process of complex propagation scenes

|

Approach

@ Domain partitioning

@ Quadrangular (2D)/hexahedral (3D) orthogonal mesh for regions involving
regularly shaped objects or vacuum zones

o Triangular (2D)/tetrahedral (3D) mesh for regions involving irregularly
shaped objects

e Conforming versus non-conforming (i.e. with hanging nodes) discretization
at the interface bewteen structured and unstructured mesh

| \

Current achievements
@ Formulation in 3D

o Stability and a priori convergence analysis

o Implementation in 2D (conforming and non-conforming meshes)

A\
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Some recent realizations or ongoing studies

DGTD-P,Q« method on hybrid structured-unstructured meshes

N
o Q is discretized by %» = Uc,- = ‘%’U‘Qh' where ¢; are tetrahedra (€ 7)) or
i=1
hexahedra (€ 2;) in 3D (triangles or quadrangles in 2D).

o P,[ci] the space of polynomial functions with degree at most p on ¢; €
(P1 function in 2D: & + &1xq + &2x2)
Qx[ci] the space of polynomial functions with degree at most k with respect to each
variable separately on ¢; € 25 (Q1 function in 2D: vy + y1x1 + Y2x2 + Y3x1%2)

e ¢i = (vi1, pi2, - - ., pia) local basis of Pp[ci]
9,’ = (19,'1, 19,'2, . ,19,'1,,.) local basis of Qk[c,-]

o Approximation space V¢ for W),

Vi = {vh € L*(Q)

Ve € Ty, Vil € Ppla]
Vei € 2n, V| € Qilci
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Some recent realizations or ongoing studies

DGTD-P,Q« method on hybrid structured-unstructured meshes

o Local degrees of freedom denoted by W; € R®

@ Wi, defines the restriction of the approximate solution to the cell ¢; (Wy|,)

di
e c eI =W,c ]PP[C,']Z W,'(X) = ZW,’/QD,‘/(X) (S Rﬁ

=1

b;
G € 2 = W, € Q«lc]: Wi(x) = ZWi/ﬁi/(X) €R®
=1

@ The local representation of W does not provide any form of continuity from one
element to another. We use a centered numerical flux on aj = ¢;N ¢

_ Wi‘aﬁ +Wj‘aij
Wilay = — 5
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Some recent realizations or ongoing studies

DGTD-P,Q« method on hybrid structured-unstructured meshes

Case A: ¢ is a tetrahedron. aj face of ¢;, is either on boundary, or common to another
tetrahedron, or to a hexahedron (hybrid)
6d; semi-discretized equations system

+ZX“H + > XH+ > XeHi+ Y AH; =0

a,]€9 a; €T}, aueﬁf
L _ _ .
Wi ~ 2 A= D B+ Y XnEi- ) AjE =0
k=1 €T a; €T} aj€ )

with:
o E; =(Ei,Ep, -+ ,Ejg) and H; = {(Hi1,Hp, - -+ ,Hig,) € R
o Ej=(Ej,Ep, -+ ,Epy) and H; = {(Hj1, Hp, - Hjp) € R

e X, and X, ; are mass matrices, X;* gradient matrix, Xj surface matrix
= All have a 3d; x 3d; size, except Aj;, whose size is 3d; x 3b;

S. Lanteri (INRIA) DGTD method
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Some recent realizations or ongoing studies

DGTD-P,Q« method on hybrid structured-unstructured meshes

Case B: ¢; is an hexahedron. aj; face of ¢;, is on boundary, or common to another
hexahedron, or to a tetrahedron (hybrid)
6b; semi-discretized equations system

+ZW*kH + > WiHi+ > WaHi+ > BjH; =0

a,JEQ’ a; €20, aueﬁf
2W, ZW“E - > WiEi+ D WmEi- > BiE =0
aj€ 21 a;€ 2], 2 € )

o E;=*(En,Epn, - ,En) and H; = {(Hi1,Hp, - - ,Hp,) € R

o Ej = t(Ejl, Ejz, s ,Ejdj) and ﬁj = t(Hjl, sz, cee ’dej) € R3dj

@ W, ; and W, ; are mass matrices, W;* gradient matrix, W surface matrix
= All have a 3b; x 3b; size, except Bj;, whose size is 3b; x 3d;
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Some recent realizations or ongoing studies

« method on hybrid structured-unstructured meshes

Second order leap-frog scheme

A= A S A
o Case A:

G R T

1 -1
o Case B: .

g = gy S e

S. Lanteri (INRIA)

DGTD method
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Some recent realizations or ongoing studies

DGTD-P,Q« method on hybrid structured-unstructured meshes

Sability analysis
@ We consider only metallic boundaries

o We define a discrete energy ¢" and we check that it is exactly conserved, i.e.
A¢=¢"—¢"=0

o We make hypotheses for fields in (IP,[c;])* and in (Q«[c]])? to prove that "
is a positive definite quadratic form under a CFL condition

o For the DGTD-P, method, the sufficient condition on At is,

4|ci|\/Eipi
Vi,VjeVi: tr [204,—7 + B max (\/5,‘/5j, \/u;/uj)] < %
o A similar condition on At can be proved for DGTD-Qx method (with o] and )

Finally, noting At the global time step for the hybrid method, we have shown that a
sufficient stability condition is defined by,

At = min(At,, Atg)

Under this condition and hypothesis, &" is a positive definite quadratic form

S. Lanteri (INRIA) DGTD method CNPg-INRIA/HOSCAR project 58 /
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Some recent realizations or ongoing studies

DGTD-P,Q« method on hybrid structured-unstructured meshes

A priori convergence analysis

o Let W, € C([0, t¢]; VP) and let W € C°([0, t¢]; (PH*™(Q))®) for s < 0
with tr the final time and,

PH Q) = {v | ¥j,v|q € H ()}

Let h, = hs), hg = hq;) and,
o Le max (hr;), hg = max (hg) an

Ny = max {hTin{s,p}’ h;nin{s,k}}

o We found that the error of the semi-discretized problem is of order O(tfns)

@ The fully discretized scheme may be seen as the discretization in time of a system
of ODEs. Since the leap-frog scheme is second-order accurate, we found that the
consistency error is of order O(At?)

o Finally, together with the stability result we thus get an error of order
(if the exact solution is regular enough),

O(AtQ) + O(tf’f]h)
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Some recent realizations or ongoing studies

DGTD-P,Q« method on hybrid structured-unstructured meshes

o 2D TMz Maxwell equations

@ Eigenmode in a unitary PEC square cavity

| Type of mesh [ Interpolation order || CPU time | # DOF | Final [*-error |

DGTD-P, 45 sec 11334 2.33x 1072

Triangular DGTD-P, 206 sec 22668 1.68 x 10:‘;
DGTD-P; 530 sec 37780 | 7.09 x 10

DGTD-P, 1511 s 56670 | 2.94 x 1075

DGTD-P1Q,4 11 sec 3488 4.03x10°°

Hybrid DGTD-P,Qs 38 sec 5888 3.39 x 1074

DGTD-P3Q4 122 sec 9760 9.96 x 107°

DGTD-P,Q4 318 sec 14240 | 5.07 x 107°
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@ 2D TMz Maxwell equations

@ Eigenmode in a unitary PEC square cavity

@ Numerical convergence study
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Some recent realizations or ongoing studies

DGTD-P,Qx method on hybrid structured-unstructured meshes

@ 2D TMz Maxwell equations
@ Eigenmode in a unitary PEC square cavity

@ Numerical convergence study

10
-=-DGTD-P1Q4; slope = 1.74
~-DGTD-P2Q3; slope = 2.60
. ~+DGTD-P3Q4; slope = 2.62
o 10 \ ~-DGTD-P4Q4; slope = 2.56
H
£
5 10°F E
]
5}
2 4 E
s
£
2
o107 E
-
10° :
10" 10° 10°
(# dof) 2
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Some recent realizations or ongoing studies
DGTD-P,Q« method on hybrid structured-unstructured meshes

DGTD-P,Qx method on hybrid structured-unstructured meshes

@ Scattering of a plane wave (F=600 MHz) by a PEC cylinder
o Triangular mesh: # triangles=3276
o Hybrid quadrangular-triangular mesh: # quadrangles=192 and # triangles=2656
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Some recent realizations or ongoing studies

DGTD-P,Q« method on hybrid structured-unstructured meshes

DGTD-P,Qx method on hybrid structured-unstructured meshes
@ Scattering of a plane wave (F=600 MHz) by a PEC cylinder

@ DGTD-P3 method: 19.7 sec
o DGTD-P,Q4 method: 8.2 sec

DGTD-Ps; method DGTD-P.Q4 method
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Some recent realizations or ongoing studies

A biomedical application

Context

@ One year old collaboration with Centre for Communications Research, Department
of Electrical and Electric Engineering University of Bristol (Maciej Klemm)
o Biomedical application: microwave radar-based medical imaging
@ Specific objectives
© Propagation of electromagnetic waves in biological tissues

@ Numerical treatment of complex antenna arrays
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Some recent realizations or ongoing studies

A biomedical application

Context

@ One year old collaboration with Centre for Communications Research, Department
of Electrical and Electric Engineering University of Bristol (Maciej Klemm)
@ Biomedical application: microwave radar-based medical imaging
@ Specific objectives
© Propagation of electromagnetic waves in biological tissues

@ Numerical treatment of complex antenna arrays

Current status

| \

@ Development of a DGTD method for Debye type dispersive model

ADE (Auxiliary Differential Equation) approach

@ Direct extension of the method devised for non-dispersive media

Stability and convergence analysis

@ Preliminary numerical investigation on simple model problems

N
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Some recent realizations or ongoing studies

A biomedical application

amic microwave neuro-functional brain imaging

@ Brain activation leads to an increase in the metabolism of its neuronal cells, accompanied
via neurovascular coupling by an increase in the cerebral blood flow (CBF), cerebral blood
volume (CBV) and oxygen consumption

@ fEIT? studies have shown conductivity changes of 2% to 4%

@ Semenov al.® have shown that a microwave system is capable of detecting (in vivo) changes
in blood flow as small as 1%
= DMI radar should detect it!

functional Electrical Impedance Tomography
bPhys. Med. Biol., Vol. 52, 2007).
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Some recent realizations or ongoing ies

Ongoing effort: realistic numerical models of head tissues
+ DGDT method for dispersive media

Geometric models

@ Built from segmented medical images

@ Extraction of surfacic (triangular) meshes of the tissue interfaces
using specific tools
o Marching cubes + adaptive isotropic surface remeshing
o Delaunay refinement

@ Generation of tetrahedral meshes using a Delaunay/Voronoi tool

S. Lanteri (INRIA) DGTD method CNPq-INRIA/HOSCAR project 68 /



Some recent realizations or ongoing studies

A biomedical application
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Some recent realizations or ongoing studies
A biomedical application

Governing equations for a Debye model

OH
ME‘FVXE—O
OE 1
EOEOOE_VXH__;[EO(ES_EOO)E_P]_UE
oP 1
E:?[50(55—EW)E—P]

where:

Eco IS the relative electric permittivity of the medium at infinite frequency,
€s is the static, low frequency permittivity,

7, is the characteristic relaxation time of the medium.

| \

DGTD method for dispersive media

@ Centered flux discontinuous Galerkin scheme
@ Leap-frog based explicit time-stepping
@ C. Scheid and S. Lanteri, INRIA preprint RR-7634

N
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Some recent realizations or ongoing studies

High performance computing

dE;
?dt, KiH;  — ) SiHy
kev;
VT; oL
ME— = —KE + Y SuEx
dt
keV;

GPU accelerated DGTD method

@ DG method bulding blocks: matrix-vector products with dense (or almost dense) matrices
@ Dense linear algebra particularly well suited to SIMD architecture of a GPU

@ Local nature and mixed sparse-dense structure of a DG method calls for hybrid
MIMD-SIMD computing
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Some recent realizations or ongoing studies
High performance computing

Implementation

Each DGTD time iteration can be decomposed into 3 steps applied at the element level
Development of CUDA-enabled kernels

ol kotE
© Compute step: X; = K;H, 2

L1
@ Compute step: X? = g S,—kH: 2
kEV;

© Update step: EfT! = EP + At(M$) (X} — X2)

Parallelization strategy for clusters of CPUs

Domain partitioning + message passing programming (MPI)
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GPU-enabled high performance computing
Weak scalability

Model test problem and configurations

Hardware: cluster with 1024 Intel CPU nodes (2 quad-core Intel Xeon X5570 Nehalem
processors - 2.93 GHz) and 48 Teslas S1070 GPU systems with four GT200 GPUs

Propagation of a standing wave in a perfectly conducting unitary cubic cavity

Regular uniform tetrahedral meshes respectively containing 3,072,000 elements for the
DGTD-P; and DGTD-P, methods, 1,296,000 elements for the DGTD-P3; method

and 750,000 elements for the DGTD-P; method

Boxwise domain decompositions with optimal computational load balance
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| A\

Computational performances

[#GPU | DGTD-P, | DGID-P. | DGID-P; | DGID-P, |

1 63 GFlops 92 GFlops 106 GFlops 94 GFlops
128 8072 GFlops | 11844 GFlops | 13676 GFlops | 12009 GFlops

A
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GPU-enabled high performance computing

@ Mesh: # elements = 5,536,852

o Total # DOF is 132,884,448 (DGTD-P; method) and
332,211,120 (DGTD-P, method)

o Time on 64 CPU cores for the DGTD-P; method: 7 h 10 mn

# GPU DGTD-P, DGTD-P,
Time | GFlops | Speedup | Time | GFlops | Speedup
64 12 mn 2762 - 59 mn 4525 -
128 7 mn 4643 1.7 30 mn 8865 1.95
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Outline

© Closure
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Closure: ongoing and future works

@ Numerical treatment of grid-induced stiffness

o Extension to 3D of hybrid explicit/implicit time scheme
o High order accurate hybrid explicit/implicit time scheme
o High order explicit local time step strategies

@ Non-confirming multi-element DGTD formulation

o Extention to 3D and parallelization aspects
o hp-adpativity strategy
o DGDT method for complex propagation media

o Extension to Drude and Drude-Lorentz models

o Validation and assessment through collaborations with physicists
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Closure

Thank you for your attention!

@ Particular thanks to:

o Tristan Cabel (Temasek Laboratories, National University of Singapore, formerly
INRIA, NACHOS project-team)

Stéphane Descombes (University of Nice-Sophia Antipolis and INRIA, NACHOS
project-team)

o Clément Durochat (PhD student, INRIA, NACHOS project-team)
o Loula Fezoui (INRIA, NACHOS project-team)

Maciej Klemm (Centre for Communications Research, Department of Electrical
and Electric Engineering University of Bristol)

o Ludovic Moya (PhD student, INRIA, NACHOS project-team)

©

Claire Scheid (University of Nice-Sophia Antipolis and INRIA, NACHOS project-team)
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