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@ How to handle heterogenities while discretising on a coarse
mesh?

@ Arbogast et Al. 1998 (Laplace problem)

@ Minkoff et Al. 2006 (Acoustic wave equation)

@ Minkoff et Al. 2009 (Elastic wave equation)
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Seismic imaging in higthly heterogeneous media

@ Huge domains

Large scale problem

Finely defined heterogeneities
Fine scale problem
Multiscale problem

(7

® @ ¢

Problematic

@ How to handle heterogenities while discretising on a coarse
mesh?

@ Arbogast et Al. 1998 (Laplace problem)

@ Minkoff et Al. 2006 (Acoustic wave equation)

@ Minkoff et Al. 2009 (Elastic wave equation)

@ Split the solution v into a coarse and a fine part
@ Set artificial boundary conditions on the fine part
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@ We consider
—div (cVu) = f inQ (1)
u = 0 ondQ,

o where Q = (0,1)? C R?, f € H7}(Q), and ¢ € L>®(Q).
@ c is piecewise constant and ¢, < ¢(x) < ¢* for ¢, c* > 0.

- .

Variational formulation

@ We say that u € H}(R) is a weak solution to (1) if

a(u,v) = L(v) Yve H}Q), 2)

@ where

a(u, v):/QchVv L(v):/ﬂfv Yu,v e HX(Q). (3)
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@ We must construct two meshes.
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@ A coarse mesh Tj.
@ A fine mesh Tp.
@ The fine mesh 7T, is defined with submeshes 7;,’

Coarse mesh

@ The coarse mesh Ty = (K’ fV:”O is a conforming triangulation
of Q.
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@ We must construct two meshes.
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@ A coarse mesh Tj.
@ A fine mesh Tp.
@ The fine mesh 7T, is defined with submeshes 7;,’

. .
Coarse mesh

@ The coarse mesh Ty = (K’ fV:”O is a conforming triangulation
of Q.

@ For i€ {1,..., Ny}, we consider a conforming triangulation

o= (KJ’)JMz'l of K.
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Meshing the domain

@ We must construct two meshes.

Upscaling in the FEM framework

@ A coarse mesh Tj.
@ A fine mesh Tp.
@ The fine mesh 7T, is defined with submeshes 7;,’

. .
Coarse mesh

@ The coarse mesh Ty = (K’ fV:”O is a conforming triangulation
of Q.

@ For i€ {1,..., Ny}, we consider a conforming triangulation
§ = (KD of K
@ We say that Th’ is the fine submesh of the coarse cell K.
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Fine mesh

@ The fine mesh 7} is the reunion of all fine submeshes Th’
Hence, we have

@ Tp, does not need to be a conforming triangulation of Q. (but
the fine submeshes 7, do)
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@ The fine mesh 7} is the reunion of all fine submeshes Th’
Hence, we have
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@ Tp, does not need to be a conforming triangulation of Q. (but
the fine submeshes 7, do)
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@ The fine mesh 7} is the reunion of all fine submeshes Th’
Hence, we have
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@ Tp, does not need to be a conforming triangulation of Q. (but
the fine submeshes 7, do)

@ Cartesian, quadrangle, or mixed meshes can be used, not only
triangulations.
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@ The fine mesh 7} is the reunion of all fine submeshes Th’
Hence, we have

Upscaling in the FEM framework

@ Tp, does not need to be a conforming triangulation of Q. (but
the fine submeshes 7, do)

@ Cartesian, quadrangle, or mixed meshes can be used, not only
triangulations.

@ Ty and Th’ have to be conforming in the FEM framework.
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@ We need to construct two discretisation spaces.
@ A coarse discretisation space, Vy, using the coarse mesh 7.
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Construc he discretisation spaces

@ We need to construct two discretisation spaces.

@ A coarse discretisation space, Vy, using the coarse mesh 7.

@ A fine discretisation space, V}, featuring artificial boundary
conditions, using the fine mesh Tp.
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@ We need to construct two discretisation spaces.

@ A coarse discretisation space, Vy, using the coarse mesh 7.

@ A fine discretisation space, V}, featuring artificial boundary
conditions, using the fine mesh Tp.

@ We will also introduce the fine discretisation spaces, \7i, using
the fine submeshes Th’
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Constructing the discretisation spaces

@ We need to construct two discretisation spaces.

@ A coarse discretisation space, Vy, using the coarse mesh 7.

@ A fine discretisation space, V}, featuring artificial boundary
conditions, using the fine mesh Tp.

@ We will also introduce the fine discretisation spaces, \7i, using
the fine submeshes Th’
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@ We need to construct two discretisation spaces.

@ A coarse discretisation space, Vy, using the coarse mesh 7.

@ A fine discretisation space, V}, featuring artificial boundary
conditions, using the fine mesh Tp.

@ We will also introduce the fine discretisation spaces, \7i, using
the fine submeshes Th’
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@ Let w C R? be a polyhedric domain and 7 be a conforming
triangulation of w.
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Constructing the discretisation spaces

@ We need to construct two discretisation spaces.

@ A coarse discretisation space, Vy, using the coarse mesh 7.

@ A fine discretisation space, V}, featuring artificial boundary
conditions, using the fine mesh Tp.

@ We will also introduce the fine discretisation spaces, \7i, using
the fine submeshes Th’
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@ Let w C R? be a polyhedric domain and 7 be a conforming
triangulation of w.
@ The P; lagrangian finite element space is defined by

P1o(T)={ve Co@) | vikePu(K)VKET, v|p =0}
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Constructing the discretisation spaces

@ We need to construct two discretisation spaces.

@ A coarse discretisation space, Vy, using the coarse mesh 7.

@ A fine discretisation space, V}, featuring artificial boundary
conditions, using the fine mesh Tp.

@ We will also introduce the fine discretisation spaces, \7i, using
the fine submeshes Th’

Upscaling in the FEM framework

v

@ Let w C R? be a polyhedric domain and 7 be a conforming
triangulation of w.
@ The P; lagrangian finite element space is defined by

P1o(T)={ve Co@) | vikePu(K)VKET, v|p =0}

@ Note that P1o(7) C H3(w).

v
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Coarse discretisation space

@ We simply set the coarse discretisation space V to be the
classical discretisation space on Tp. Hence Vi =P o(7TH).
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Coarse discretisation space

@ We simply set the coarse discretisation space V to be the
classical discretisation space on Tp. Hence Vi =P o(7TH).

Fine discretisation subspaces

Upscaling in the FEM framework
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Coarse discretisation space

@ We simply set the coarse discretisation space V to be the
classical discretisation space on Tp. Hence Vi =P o(7TH).

Fine discretisation subspaces

@ For i€ {1,..., Ny}, the fine discretisation subspace \A//7 is
the classical Lagrange P; finite element space on 7.
Therefore V| = Py o(7).

Upscaling in the FEM framework
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Coarse discretisation space

@ We simply set the coarse discretisation space V to be the
classical discretisation space on Tp. Hence Vi =P o(7TH).

Fine discretisation subspaces

@ For i€ {1,..., Ny}, the fine discretisation subspace \A//7 is
the classical Lagrange P; finite element space on 7.
Therefore V| = Py o(7).

@ The fonctions v € \A//; are extended by 0 on Q\ K'.

Upscaling in the FEM framework
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Upscaling in the FEM framework

Coarse discretisation space

@ We simply set the coarse discretisation space V to be the
classical discretisation space on Tp. Hence Vi =P o(7TH).

Fine discretisation subspaces

@ For i € {1,..., Ny}, the fine discretisation subspace_ \A//7 is
the cIassicaAI 'Lagrange 7.)1 finite element space on 7.
Therefore V| =Py (7).

@ The fonctions v € \A//; are extended by 0 on Q\ K'.

@ It is clear that \A/,’7 C P1,0(Th)-

-
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Coarse discretisation space

@ We simply set the coarse discretisation space V to be the
classical discretisation space on Tp. Hence Vi =P o(7TH).

Fine discretisation subspaces

@ For i€ {1,..., Ny}, the fine discretisation subspace \A//7 is
the classical Lagrange P; finite element space on 7.
Therefore V| = Py o(7).

@ The fonctions v € \A//; are extended by 0 on Q\ K'.

Upscaling in the FEM framework

o It is clear that Vj C PPy o(7h).

@ We say that \A/,’; contains artificial boundary contidition,
because the trace condition in the definition is not imposed by
the PDE (v|yxi = 0).
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Fine discretisation space

@ The fine discretisation space is defined as the direct sum
2 N
Vi, =@, V).

Upscaling in the FEM framework
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Fine discretisation space

@ The fine discretisation space is defined as the direct sum
2 N
Vi = @i:h1 h-

@ We also have the following caracterisation

Upscaling in the FEM framework

Vp={vePio(Th) | vlsxi =0VYK' e Ty}
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Fine discretisation space

@ The fine discretisation space is defined as the direct sum
2 N
Vi = @i:h1 h-

@ We also have the following caracterisation

Upscaling in the FEM framework

Vp={vePio(Th) | vlsxi =0VYK' e Ty}

o U, contains artificial boundary conditions on the boundary of
all coarse cells K' € Ty.
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Fine discretisation space

@ The fine discretisation space is defined as the direct sum
2 N
V= V..

@ We also have the following caracterisation

Upscaling in the FEM framework

Vp={vePio(Th) | vlsxi =0VYK' e Ty}

o U, contains artificial boundary conditions on the boundary of
all coarse cells K' € Ty.

The upscaling space
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Fine discretisation space

@ The fine discretisation space is defined as the direct sum
2 N
V= V..

@ We also have the following caracterisation

Upscaling in the FEM framework

Vp={vePio(Th) | vlsxi =0VYK' e Ty}

o U, contains artificial boundary conditions on the boundary of
all coarse cells K' € Ty.

The upscaling space
© The upscaling space Vs is defined as the direct sum

Vups = \_/H &) \A/h.
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Fine discretisation space

@ The fine discretisation space is defined as the direct sum
2 N
V= V..

@ We also have the following caracterisation

Upscaling in the FEM framework

Vp={vePio(Th) | vlsxi =0VYK' e Ty}

o U, contains artificial boundary conditions on the boundary of
all coarse cells K' € Ty.

The upscaling space
© The upscaling space Vs is defined as the direct sum

Vups = \_/H &) \A/h.

@ We have the following inclusions Py o(7T) C Vips C P1,0(7h)-
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Proposition
Let o' € Vi and 9/ € Vi, with i # j. Then a(&/, ) = 0.
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Proposition
Let o' € Vi and 9/ € Vi, with i # j. Then a(&/, ) = 0.
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Proposition
Let o' € Vi and 9/ € Vi, with i # j. Then a(&/, ) = 0.

@ The proof is straight forward. It suffices to remark that

mes (supp &' N'supp /) = 0.
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Proposition
Let o' € Vi and 9/ € Vi, with i # j. Then a(&/, ) = 0.

@ The proof is straight forward. It suffices to remark that

mes (supp &' N'supp /) = 0.

@ It follows that

mes (supp (V' - Vi4)) = 0,

v
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Proposition
Let o' € Vi and 9/ € Vi, with i # j. Then a(&/, ) = 0.

@ The proof is straight forward. It suffices to remark that

mes (supp &' N'supp /) = 0.

@ It follows that

mes (supp (V' - Vi4)) = 0,

@ and therefore

a(df, of):/ cVil -V =0.
Q

|

v
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Important properties
Up algorithm

Proposition

For all G € Vi, there is a unique o € \7,,, solution to
a(t,0) = L(V) — a(m, ) Vo e V. (4)

For @ € Vi, we note U(@i) the associated solution. That way, we
define an affine operator U : Vi — V.
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Proposition

For all G € Vi, there is a unique o € \7,,, solution to
a(t,0) = L(V) — a(m, ) Vo e V. (4)

For @ € Vi, we note U(@i) the associated solution. That way, we
define an affine operator U : Vi — V.

Proof.

| \
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Proposition

For all G € Vi, there is a unique o € \7,,, solution to
a(t,0) = L(V) — a(m, ) Vo e V. (4)

For @ € Vi, we note U(@i) the associated solution. That way, we
define an affine operator U : Vi — V.

o Since V), = @M, Vi, we set

=

Np Ny
o= E o, v E v,
i=1 Jj=1

with &' € Vj, ¥ € V.

O
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@ Then, using the former proposition, (a(', ¥/) = 0), we see

that
Nj, A Ny,

a(0,0) =Y a(@, o) =) a(@’, v') =) (L(V') - a(z, ')
ij=1 i=1 i=1
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@ Then, using the former proposition, (a(', ¥/) = 0), we see

that
Nj, A Ny,

a(0,0) =Y a(@, o) =) a(@’, v') =) (L(V') - a(z, ')
ij=1 i=1 i=1

@ Therefore, by linearity, o € \7;, is solution iff
a(o’, 0" = L(V)) — a(m, 0") Vi eV,

forie {1,..., Ny}

O

>
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@ Remarking that functions of \A/,; satisfy a dirichlet condition on
OK', we have \7/’ C H&(Ki). Therefore, the bilinear form a is
coercive on \7,-”.

Upscaling in the FEM framework

>
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@ Remarking that functions of \A/,; satisfy a dirichlet condition on
OK', we have \7/’ C H&(Ki). Therefore, the bilinear form a is

coercive on V1.
@ We also see that the function defined by

Upscaling in the FEM framework

L) = L)) —a(@,v)) Vo' e V],

is linear and continuous.

>
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@ Remarking that functions of \A/,; satisfy a dirichlet condition on
OK', we have \7/’ C H&(Ki). Therefore, the bilinear form a is
coercive on \7,-”.

@ We also see that the function defined by

Upscaling in the FEM framework

L) = L)) —a(@,v)) Vo' e V],

is linear and continuous.
@ Therefore, the Lax-Migram theorem shows that there is a
unique &' € V| satisfying

Ao

a(o', v9) = LL(v") W' e V.

>
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@ Remarking that functions of \A/,; satisfy a dirichlet condition on
OK', we have \7/’ C H&(Ki). Therefore, the bilinear form a is
coercive on \7,-”.

@ We also see that the function defined by

Upscaling in the FEM framework

L) = L)) —a(@,v)) Vo' e V],

is linear and continuous.
@ Therefore, the Lax-Migram theorem shows that there is a
unique &' € V| satisfying

a(th, o) = LL(v)) Vil e V.

o Then, i = Zf\ﬁl o' is the unique solution of (4).

O

v
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o Let's now show that U : V, — ¥} is an affine application.

Upscaling in the FEM framework
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@ Let's now show that U : V, — ¥} is an affine application.
o Let o,v € V. U(d) and U(v) satisfy

Upscaling in the FEM framework

a(0(@), 0) = L(V) — a(@, ¥), a(U(V), ) = L(V) — a(¥, V)
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@ Let's now show that U : V, — ¥} is an affine application.
o Let o,v € V. U(d) and U(v) satisfy

a(U(@), 9) = L(9) — a(z, 0), a(U(v),9) = L(V) - a(v, 0)

for v e \7;,.
@ Then, using linearity, we have

Upscaling in the FEM framework

5)

a(0@) - O@),0) =a(@—v,0) Voe

witch shows that the dependance of U(z) — U(¥) to o — v is
linear.
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@ Let's now show that U : V, — ¥} is an affine application.
o Let o,v € V. U(d) and U(v) satisfy

a(U(@), 9) = L(9) — a(z, 0), a(U(v),9) = L(V) - a(v, 0)

for v e \7;,.
@ Then, using linearity, we have

5)

a(0@) - O@),0) =a(@—v,0) Voe

witch shows that the dependance of U(z) — U(¥) to o — v is
linear.
@ We can conclude that U is an affine operator from Vi to V.

|

v
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@ Let's now show that U : V, — ¥} is an affine application.
o Let o,v € V. U(d) and U(v) satisfy

a(U(@), 9) = L(9) — a(z, 0), a(U(v),9) = L(V) - a(v, 0)

for v e \7;,.
@ Then, using linearity, we have

Upscaling in the FEM framework

A~

a(0@) - O@),9) = a@—v,9) voe U,

>

witch shows that the dependance of U(z) — U(¥) to o — v is
linear.
@ We can conclude that U is an affine operator from Vi to V.

|

v

o
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@ Let's now show that U : V, — ¥} is an affine application.
o Let o,v € V. U(d) and U(v) satisfy

a(U(@), 9) = L(9) — a(z, 0), a(U(v),9) = L(V) - a(7,

for v e \7;,.
@ Then, using linearity, we have

Upscaling in the FEM framework

<!
<
=

A~

a(0(@@) — U(v),0) = a(@—7v,0) VeV,

>

witch shows that the dependance of U(z) — U(¥) to o — v is
linear.
@ We can conclude that U is an affine operator from Vi to V.

|

v

@ In fact, we have shown that U(@) — U(v) = Py, (T —7), in
the sense of the scalar product a(.,.) .

o
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Upscaling algorithm

@ We have to solve the following " upscaled problem”: Find
u € Vps such that

a(u,v) = L(v) Vv e Vyps.
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Upscaling algorithm

@ We have to solve the following " upscaled problem”: Find
u € Vps such that

a(u,v) = L(v) Vv e Vyps.

@ Using the decomposition V55 = Vi@V, weset u=10+0

and v = ¥ + v. By linearity, we are to solve

a+o,v) = L) Vve Wy
a(@+1,0) = L) Voe V.
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Upscaling algorithm

@ We have to solve the following " upscaled problem”: Find
u € Vps such that

a(u,v) = L(v) Vv e Vyps.

@ Using the decomposition V55 = Vi@V, weset u=10+0
and v = ¥ + v. By linearity, we are to solve

{ a(u+o,v) = L(

a(u+o,0) = L(

< <I
<> <|
<> <'

) v

) v

@ Rewriting the second equation as
a(,0) = L(V) — a(m, ) V0 e W,

we see that i = U(@).
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@ Therefore, using the two propositions, we see that what we
actualy have to solve is

a(o+ 0(@),v) = L(v) Vv € Vy
a(0',97) = L)~ a(@,v) Vo'e V] (i=1 Np).
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@ Therefore, using the two propositions, we see that what we
actualy have to solve is
a(@+ 0(),v) = L(©) Vv € Vy
a(o,v') = L(V)—a(, o) viie Vi (i=1,Np).

Conclusion
What we need to do is

| \

>
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@ Therefore, using the two propositions, we see that what we
actualy have to solve is
a(@+ 0(),v) = L(©) Vv € Vy
a(o,v') = L(V)—a(, o) viie Vi (i=1,Np).

Conclusion
What we need to do is

| \

o Compute the operator U.

>
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@ Therefore, using the two propositions, we see that what we
actualy have to solve is
a(@+ 0(),v) = L(©) Vv € Vy
a(o,v') = L(V)—a(, o) viie Vi (i=1,Np).

Conclusion
What we need to do is

| \

o Compute the operator U.

@ Solve N, fine problems on the coarse cells K'.

>
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@ Therefore, using the two propositions, we see that what we
actualy have to solve is
a(@+ 0(),v) = L(©) Vv € Vy
a(o,v') = L(V)—a(, o) viie Vi (i=1,Np).

Conclusion
What we need to do is

| \

o Compute the operator U.
@ Solve N, fine problems on the coarse cells K'.

@ Solve a coarse problem on €.

>
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@ Therefore, using the two propositions, we see that what we
actualy have to solve is
a(@+ 0(),v) = L(©) Vv € Vy
a(o,v') = L(V)—a(, o) viie Vi (i=1,Np).

Conclusion
What we need to do is

| \

o Compute the operator U.
@ Solve N, fine problems on the coarse cells K'.
@ Solve a coarse problem on €.

@ Sumu=u0+10.

>
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@ Therefore, using the two propositions, we see that what we
actualy have to solve is
a(@+ 0(),v) = L(©) Vv € Vy
a(o,v') = L(V)—a(, o) viie Vi (i=1,Np).

Conclusion
What we need to do is

| \

o Compute the operator U.
@ Solve N, fine problems on the coarse cells K'.
@ Solve a coarse problem on €.

@ Sumu=u0+10.

Remark that since U is affine, the coarse equation is linear.

>
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Basis

@ We use the lagrangian basis of the spaces V4 and \A/,;'.
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Basis

@ We use the lagrangian basis of the spaces V4 and \A/,;'.

@ By is the lagrangian basis of V.
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@ We use the lagrangian basis of the spaces V4 and \A/,;'.

@ By is the lagrangian basis of V.

o Bj is the lagrangian basis of V.
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Basis

@ We use the lagrangian basis of the spaces V4 and \A/,;'.

@ By is the lagrangian basis of V.
o Bj is the lagrangian basis of V.

o B, =UMN, Bj is a basis of V.
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Basis

@ We use the lagrangian basis of the spaces V4 and \A/,;'.

@ By is the lagrangian basis of V.
o Bj is the lagrangian basis of V.
° B, = U,N:hl é,’; is a basis of V.

® Byps = By U Eh is basis of Vps.
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Basis

@ We use the lagrangian basis of the spaces V4 and \A/,;'.
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@ By is the lagrangian basis of V.
o Bj is the lagrangian basis of V.
° B, = U,N:hl é,’; is a basis of V.

® Byps = By U Eh is basis of Vps.

-

Stiffness matrices

>
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Basis

@ We use the lagrangian basis of the spaces V4 and \A/,;'.
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@ By is the lagrangian basis of V.
o Bj is the lagrangian basis of V.
° B, = U,N:hl é,’; is a basis of V.

® Byps = By U Eh is basis of Vps.

-

Stiffness matrices

o K ={a(¢,1)}, ¢, € By is the coarse stiffness matrix.

>
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@ We use the lagrangian basis of the spaces V4 and \A/,;'.
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@ By is the lagrangian basis of V.
o Bj is the lagrangian basis of V.
° B, = U,N:hl é,’; is a basis of V.

® Byps = By U Eh is basis of Vps.

-

Stiffness matrices

€ By is the coarse stiffness matrix.

€ By, is the fine stiffness matrix.

>
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@ We use the lagrangian basis of the spaces V4 and \A/,;'.
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@ By is the lagrangian basis of V.
o Bj is the lagrangian basis of V.
° B, = U,N:hl é,’; is a basis of V.

® Byps = By U Eh is basis of Vps.

>

Stiffness matrices

zZ € By is the coarse stiffness matrix.
Qﬁ,\ € Bh is the fine stiffness matrix.
€ BH,w € By, is the cross stiffness matrix.

o
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Basis

@ We use the lagrangian basis of the spaces V4 and \A/,;'.

Upscaling in the FEM framework

@ By is the lagrangian basis of V.
o Bj is the lagrangian basis of V.
° B, = U,N:hl é,’; is a basis of V.

® Byps = By U Eh is basis of Vps.

>

Stiffness matrices

o K ={a(¢,1)}, ¢, € By is the coarse stiffness matrix.
o K = {a(gg D)}, 6,1 € By is the fine stiffness matrix.
b€ BH,zﬁ € éh is the cross stiffness matrix.

o =1{a(o' 12 }, ¢, € Bj are the fine stiffness
submatrlces. )
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Important properties
Upscalin ithm

Proposition

The fine stiffness matrix Kg is block diagonal and Kg = diag,-K}f.
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The fine stiffness matrix Kg is block diagonal and Kg = diag,-K}f.

Upscaling in the FEM framework
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The fine stiffness matrix Kg is block diagonal and Kg = diag,-K}f.

o It's a direct consequence of the fact that a(2, %) = 0 for
oeVi, eVl i#j.

Upscaling in the FEM framework

>
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Upscaling in the FEM framework

Proposition

The fine stiffness matrix Kg is block diagonal and Kg = diag,-K}f.

Proof.

@ It's a direct consequence of the fact that a(', /) = 0 for
oe Vi VJEV,/;AJ.
° We set K/ = {a(¢', )}, ¢ € B}, %/ € B). Then
= —Kff, and K¢/ =0if i # j. So

11 1,N, 1
Kff Kﬁ— Kff 0
Np,1 Np,Np Np,
Ke .. Kg 0 K

O

>
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Upscaling in the FEM framework

Decompositi stiffness matrix
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ecomposition of the upscaling stiffness matrix

@ The upscaling stiffness matrix is defined by

Kups = {a(gb, d))}, ¢a"/} S Bups-
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Decomposition of the upscaling stiffness matrix

@ The upscaling stiffness matrix is defined by

Kups = {a(gb, d))}, ¢a"/} S Bups-

@ We have the following decomposition

Upscaling in the FEM framework

ch| K. Kee Ker
KL 0

Rors =\ K| Ka — | KT -
0 Kyt
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Decomposition of the upscaling stiffness matrix

@ The upscaling stiffness matrix is defined by

Kups = {a(gb, d))}a (b)d} S Bups-

@ We have the following decomposition

Upscaling in the FEM framework

ch| K. Kee Ker
Kk 0

Fos = | KT ke N :
0 Kyt

Upscaled matricial problem

v
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Decomposition of the upscaling stiffness matrix

@ The upscaling stiffness matrix is defined by

Kups = {a(gb, d))}a (b)d} S Bups-

@ We have the following decomposition

Upscaling in the FEM framework

Kee | K. Kee Ker
Kf%r 0
K — .
ups — -
P Kr| Kr Ker -
N
0 K"
Upscaled matricial problem
@ We are to solve K,psUyps = Fups. Using decomposition, we

get
ch ch Uc _ 7 c
KL Kg Ur Fr )
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Schur complemen

Upscaling in the FEM framework
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Schur compleme

@ We obtain

Upscaling in the FEM framework

chUc + chUf = Fc
KJUc + Ke Ur

|
=

v
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Important properties

Upscaling algorithm
Matricial Formulation

Schur complement

@ We obtain
{ chUchchUf = Fc

Kc—’;UC + KeUsr = Fr.

@ We rewrite

{chUc+chUf = Fc
KeUs = Fr—KLU..

v
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Schur complement

@ We obtain
chUc + ch Uf = Fc
Kc—’;UC + KeUsr = Fr.

Upscaling in the FEM framework

@ We rewrite
{ chUc"' chUf = Fc
KeUs = Fr—KLU..

@ Kjy is inversible and we have

{ (ch - chfFlKg,;)Uc = Fc - chKfFlFf
U = Kg'(Fr— KLU).

v
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- Meshes
Upscaling in the FEM framework Dlmsicsifon Spaees

Important properties
Upscaling algorithm
Matricial Formulation

Schur complement

@ We obtain
chUc + ch Uf = Fc
Kc—’;UC + KeUsr = Fr.

@ We rewrite
{ chUc"' chUf = Fc
KeUs = Fr—KLU..

@ Kjy is inversible and we have

{ (Kee = Kb KZ'KD)Ue = Fo— KK Fy
U = Kg'(Fr— KLU).

o K ' = diag;(Kj)™t.
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Conclusio

Upscaling in the FEM framework
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Conclusion

@ The operator U is defined matricialy by

Upscaling in the FEM framework

U(U) = —K ' KE U + KL Fr.
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Conclusion

@ The operator U is defined matricialy by

Upscaling in the FEM framework

U(U) = —K ' KE U + KL Fr.

@ We inverse N, matrices defined on a fine scale, but restricted
to the coarse cells K, in the spaces V.

Ke ' = diag;(Kf) ™!
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Conclusion

@ The operator U is defined matricialy by

Upscaling in the FEM framework

P 14T =il
U(Uc) = — fF Ker Ue + Kff Fr.
@ We inverse N, matrices defined on a fine scale, but restricted
to the coarse cells K, in the spaces V.
—1 . iN—1
Ke ™ = diag;(K)
@ We solve a linear problem defined on the full domain, but on a
coarse scale, in the space V.
14T -1
(Kee — KKy Ki)Uc. = Fc — KK Fr
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Important properties

@ We use the same method to mesh the domain.
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Upscaling in the DGM framework Disc on spaces
IPD

Important properties

@ We use the same method to mesh the domain.

@ Ty and 7;7’ do not need to be conforming anymore.
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Upscaling in the DGM framework Discretisation spaces
IPDGM bilinear form
Important properties

@ We use the same method to mesh the domain.

@ Ty and 7;,’ do not need to be conforming anymore.

'

Example of non-conformity

A\
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IPDGM bilinear form
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1ons

@ We define two basic discontinuous polynomial spaces.
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o) ns

@ We define two basic discontinuous polynomial spaces.

@ Let w C R? be a polyhedric domain and 7 be a triangulation
(non necessarly conformig) of w.
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o) ns

@ We define two basic discontinuous polynomial spaces.

@ Let w C R? be a polyhedric domain and 7 be a triangulation
(non necessarly conformig) of w.

@ The discontinuous polynomial space on 7 is defined by

Dy(7T)={vel®(w) | vlkePi(K)VKeT}.
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IPDGM bilinear form
Important properties

@ We define two basic discontinuous polynomial spaces.

@ Let w C R? be a polyhedric domain and 7 be a triangulation
(non necessarly conformig) of w.

@ The discontinuous polynomial space on 7 is defined by

Dy(7T)={vel®(w) | vlkePi(K)VKeT}.

@ We also define the space

D1o(7T) ={veDi(T) | vl|ow =0}
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IPDGM bilinear form
Important properties

@ We define two basic discontinuous polynomial spaces.

@ Let w C R? be a polyhedric domain and 7 be a triangulation
(non necessarly conformig) of w.

@ The discontinuous polynomial space on 7 is defined by

Dy(7T)={vel®(w) | vlkePi(K)VKeT}.

@ We also define the space

D1o(7T) ={veDi(T) | vl|ow =0}

v

Discretisation spaces

v

Théophile CHAUMONT FRELET Upscaling using DGM



Meshes
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IPDGM bilinear form
Important properties

@ We define two basic discontinuous polynomial spaces.

@ Let w C R? be a polyhedric domain and 7 be a triangulation
(non necessarly conformig) of w.

@ The discontinuous polynomial space on 7 is defined by

Dy(7T)={vel®(w) | vlkePi(K)VKeT}.

@ We also define the space

D1o(7T) ={veDi(T) | vl|ow =0}

v

Discretisation spaces

@ We set Vy = Dy(7x) and \7,’, = D1o(T/).

v
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IPDGM bilinear form
Important properties

@ We define two basic discontinuous polynomial spaces.

@ Let w C R? be a polyhedric domain and 7 be a triangulation
(non necessarly conformig) of w.

@ The discontinuous polynomial space on 7 is defined by

Dy(7T)={vel®(w) | vlkePi(K)VKeT}.

@ We also define the space

D1o(7T) ={veDi(T) | vl|ow =0}

v

Discretisation spaces

@ We set Vy = Dy(7x) and \7,’, = D1o(T/).
o We also define V/, = @f\i’l \A/,; and Vps = Vy @ V.

v
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IPDGM bilinear form
Important properties

@ We define two basic discontinuous polynomial spaces.

@ Let w C R? be a polyhedric domain and 7 be a triangulation
(non necessarly conformig) of w.

@ The discontinuous polynomial space on 7 is defined by

Dy(7T)={vel®(w) | vlkePi(K)VKeT}.

@ We also define the space

D1o(7T) ={veDi(T) | vl|ow =0}

v

Discretisation spaces

@ We set Vy = Dy(7x) and \7,’, = D1o(T/).
o We also define V/, = @f\i’l \A/,; and Vps = Vy @ V.
@ We have the inclusions D1(7x) C Vips C D1(75).

v
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Upscaling in the DGM framework is on spaces
inear form
Important properties

@ We note Fi" and F£* the set of internal end external edges
of the mesh coarse 7.

Fit ={0KNJ| K, J €T}, Fi* ={0KNOQ| K € Tn}.
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Upscaling in the DGM framework is on spaces
inear form
Important properties

@ We note Fi" and F£* the set of internal end external edges
of the mesh coarse 7.

Fit ={0KNJ| K, J €T}, Fi* ={0KNOQ| K € Tn}.

o We also note Fj, = Fjmt U F&<t.
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IPDGM bilinear form
Important properties

@ We note Fi" and F£* the set of internal end external edges
of the mesh coarse 7.

Fit ={0KNJ| K, J €T}, Fi* ={0KNOQ| K € Tn}.

o We also note Fj, = Fjmt U F&<t.
@ The same definitions hold for Fi7t, 7 and Fp.
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Upscaling in the DGM framework Discretisation spaces
IPDGM bilinear form

Important properties

@ We note ]-',’;”t and F£** the set of internal end external edges
of the mesh coarse 7.

Fit ={0KNJ| K, J €T}, Fi* ={0KNOQ| K € Tn}.

o We also note Fj, = Fjmt U F&<t.
@ The same definitions hold for Fi7t, 7 and Fp.

-

Jump and Mean
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Meshes
Upscaling in the DGM framework Discretisation spaces

IPDGM bilinear form
Important properties

@ We note ]-',’;”t and F£** the set of internal end external edges
of the mesh coarse 7.

Fit ={0KNJ| K, J €T}, Fi* ={0KNOQ| K € Tn}.

o We also note Fj, = Fjmt U F&<t.
@ The same definitions hold for Fi7t, 7 and Fp.

-

Jump and Mean

o Let u € Dy(Ts) and v € D1(Th)?.
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Meshes
Upscaling in the DGM framework Discretisation spaces
IPDGM bilinear form

Important properties

@ We note ]-',’;”t and F£** the set of internal end external edges
of the mesh coarse 7.

Fit ={0KNJ| K, J €T}, Fi* ={0KNOQ| K € Tn}.

o We also note Fj, = Fjmt U F&<t.
@ The same definitions hold for Fi7t, 7 and Fp.

-

Jump and Mean
o Let u € Dy(Ts) and v € D1(Th)?.
@ The jump of u and the mean of v through an internal edge
e =0KNAaJ e Fj' are defined by

VK|e+ VJ|e .

[[ulle = ukle — usle;  {{v}}e = )




Upscaling in the DGM framework sc n spaces

IPDGM bilinear form
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Important properties

Jump and Mean
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Upscaling in the DGM framework scretisation spaces
IPDGM bilinear form
Important properties

Jump and Mean

@ The jump of u and the mean of v through an external edge
e = 0K N 0N2 are defined by

[[ulle = ukle, {{v}}e = vk - k.
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IPDGM bilinear form
Important properties

Jump and Mean

@ The jump of u and the mean of v through an external edge
e = 0K N 0N2 are defined by

[[ulle = ukle, {{v}}e = vk - k.

The IPDGM bilinear form
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IPDGM bilinear form
Important properties

Jump and Mean

@ The jump of u and the mean of v through an external edge
e = 0K N 0N2 are defined by

[[ulle = ukle, {{v}}e = vk - k.

The IPDGM bilinear form

o For u,v € D1(7p), we set
Bp(u,v) = Vu-Vv, Ip(u,v)= [ul]le{{VV}}e
’ KE'E/ ’ ee]—'h/

and

R =3 [ ollallivle

ecFy
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Meshes
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IPDGM bilinear form
Important properties

Jump and Mean

@ The jump of u and the mean of v through an external edge
e = 0K N 0N2 are defined by

[[ulle = ukle, {{v}}e = vk - k.

The IPDGM bilinear form

o For u,v € D1(7p), we set
Bp(u,v) = Vu-Vv, Ip(u,v)= [ul]le{{VV}}e
’ KE'E/ ’ e;h/

and

R =3 [ ollallivle

ecFy

@ where ¢ is a fonction constant on each edge e € F.
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Important properties

The IP bilinear form
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Meshes

Upscaling in the DGM framework Discretisation spaces
IPDGM bilinear form
Important properties

The IPDGM bilinear form

@ The IPDGM bilinear form is defined for u, v € D1(7j) as

ap(u,v) = Bp(u, v) + In(u, v) + In(v, u) + Jf (u, v).

i
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IPDGM bilinear form
Important properties

The IPDGM bilinear form

@ The IPDGM bilinear form is defined for u, v € D1(7j) as

ap(u,v) = Bp(u, v) + In(u, v) + In(v, u) + Jf (u, v).

@ ap is symetric.

i
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Upscaling in the DGM framework Discretisation spaces
IPDGM bilinear form
Important properties

The IPDGM bilinear form

@ The IPDGM bilinear form is defined for u, v € D1(7j) as

ap(u,v) = Bp(u, v) + In(u, v) + In(v, u) + Jf (u, v).

@ ap is symetric.

@ We can choose o such that aj is coercive on Dy(7j) equiped
with the norm

IviiBe = > IVVilfa + D IIVallVIlellze)-

KeTy ecFp

i
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IPDGM bilinear form
Important properties

The IPDGM bilinear form

@ The IPDGM bilinear form is defined for u, v € D1(7j) as

ap(u,v) = Bp(u, v) + In(u, v) + In(v, u) + Jf (u, v).

@ ap is symetric.

@ We can choose o such that aj is coercive on Dy(7j) equiped
with the norm

IviiBe = > IVVilfa + D IIVallVIlellze)-

KeTy ecFp

@ Note that, since V,ps C D1(74), an(u, v) is well defined for
u,v € Vips.
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Ml bilinear form
Important properties

Proposition

Let o' € Vj and 0/ € VJ with i # j. Then an(2,%/) = 0.
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Upscaling in the DGM framework iscreti on spaces
IPDGM bilinear form
Important properties

Proposition

Let o' € Vj and 0/ € VJ with i # j. Then an(2,%/) = 0.
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Upscaling in the DGM framework s isation spaces

IPDGM bilinear form
Important properties

Let o' € Vj and 0/ € VJ with i # j. Then an(2,%/) = 0.

@ By definition of the spaces \A/,; and V4, supp &' € K’ and
supp ¥ C K.
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Upscaling in the DGM framework s isation spaces

IPDGM bilinear form
Important properties

Let o' € Vj and 0/ € VJ with i # j. Then an(2,%/) = 0.

@ By definition of the spaces \A/,; and V4, supp &' € K’ and
supp ¥ C K.
@ Then, supp &' Nsupp ¥ = OK' NOK/ = e € F;™.
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Upscaling in the DGM framework s isation spaces

IPDGM bilinear form
Important properties

Let o' € Vj and 0/ € VJ with i # j. Then an(2,%/) = 0.

@ By definition of the spaces \A/,; and V4, supp &' € K’ and
supp ¥ C K.

@ Then, supp &' Nsupp ¥ = OK' N OKI = e € Fit.

@ We have mesype = 0, and therefore By (&', #/) = 0.
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Upscaling in the DGM framework Discretisation spaces
IPDGM bilinear form
Important properties

Proposition

Let o' € Vj and 0/ € VJ with i # j. Then an(2,%/) = 0.

Proof.

@ By definition of the spaces \A/,; and \A/# supp &' € K’ and
supp ¥ C K.

@ Then, supp &' Nsupp ¥ = OK' N OKI = e € Fit.

@ We have mesype = 0, and therefore By (&', #/) = 0.

@ We also see that

W@ o) = [T, h(@,0) = [PV},

and

I (0, 07) = / el

U
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Important properties

o Since i € V/ = D1,0(K"), ukile = 0.
@ On the other hand, @ =0 on Q\ K, and therefore u;|e = 0.
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Important properties

o Since i € Vi =Dy o(K'), ugile = 0.
@ On the other hand, @ =0 on Q\ K, and therefore u;|e = 0.
o If follows that [[u]]e = 0.
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Important properties

o Since i € V/ = D1,0(K"), ukile = 0.

On the other hand, &' =0 on Q\ K’, and therefore u;|e = 0.
If follows that [[u]]e = 0.

Similarly, [[v]]e = 0.

e © ¢
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Upscaling in the DGM framework tisation spaces
IPDGM bilinear form
Important properties

o Since i € Vi =Dy o(K'), ugile = 0.

On the other hand, &' =0 on Q\ K’, and therefore u;|e = 0.
If follows that [[u]]e = O.

Similarly, [[v]]e = 0.

Therefore Iy(2, 97) = Iy(04, 07) = Jp(&7, 94) = 0.

¢ ¢ © ¢
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IPDGM bilinear form
Important properties

Since &' € Vj = D1 o(K'), ukile = 0.

On the other hand, &' =0 on Q\ K’, and therefore u;|e = 0.
If follows that [[u]]e = O.

Similarly, [[v]]e = 0.

Therefore Iy(2, 97) = Iy(04, 07) = Jp(&, 9) = 0.

And a,(@', ¢/) = 0.

e © ¢ ¢ ¢
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Meshes
Upscaling in the DGM framework Discretisation spaces

IPDGM bilinear form
Important properties

o Since i € Vi =Dy o(K'), ukile = 0.

On the other hand, & =0 on Q\ K, and therefore u|e = 0.
If follows that [[u]]e = O.

Similarly, [[v]]e = 0.

Therefore Iy(2, 97) = Iy(04, 07) = Jp(&, 9) = 0.

@ And ay (2, %) = 0.

¢ ¢ © ¢

O

~

For all i € Vyy, there is a unique @i € Vs satisfying

an(, 0) = L(0) — ap(T, ) Vv e V.

We define an affine operator U : Vy — V, by U(71) = .

ot

Théophile CHAUMONT FRELET Upscaling using DGM



Upscaling in the DGM framework n spaces

bilinear form
Important properties

Théophile CHAUMONT F

LET Upscaling using DGM



Upscaling in the DGM framework

Théophile CHAUMONT F

LET

Meshes

Discretisation spaces
IPDGM bilinear form
Important properties

Upscaling usin




Meshes

Upscaling in the DGM framework Discretisation spaces
IPDGM bilinear form
Important properties

@ We define the linear form

[a(V) = L(D) — an(B, 0) VO € Vi

v
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Meshes

Upscaling in the DGM framework Discretisation spaces
IPDGM bilinear form
Important properties

@ We define the linear form

[a(V) = L(D) — an(B, 0) VO € Vi

@ [ is continous in the ||.||pg norm.

v
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Meshes

Upscaling in the DGM framework Discretisation spaces
IPDGM bilinear form
Important properties

@ We define the linear form

[a(V) = L(D) — an(B, 0) VO € Vi

o Ly is continous in the ||.|[pg norm.
o Since, V}, C D1,0(Tr), an is coercive on Vi, equiped with the
norm ||.||pG-

v
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Meshes

Upscaling in the DGM framework Discretisation spaces
IPDGM bilinear form
Important properties

@ We define the linear form

[a(V) = L(D) — an(B, 0) VO € Vi

o Ly is continous in the ||.|[pg norm.

o Since, V}, C D1,0(Tr), an is coercive on Vi, equiped with the
norm ||.||pG-

@ We conclude with the Lax-Milgram theorem.

v
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Meshes

Upscaling in the DGM framework Discretisation spaces
IPDGM bilinear form
Important properties

@ We define the linear form

[a(V) = L(D) — an(B, 0) VO € Vi

o Ly is continous in the ||.|[pg norm.

@ Since, V}, C D1,0(7h), an is coercive on V}, equiped with the
norm ||.||pG-

@ We conclude with the Lax-Milgram theorem.

o Like in the FEM framework, we have for 7, v € Vy

an(U(@) — U(©),0) = ap(@ —v,0) Ve V.

v
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Meshes

Upscaling in the DGM framework Discretisation spaces
IPDGM bilinear form
Important properties

@ We define the linear form

[a(V) = L(D) — an(B, 0) VO € Vi

[ is continous in the ||.||[pg norm.

Since, V), C D1,0(7h), an is coercive on V}, equiped with the
norm ||.||pG-

We conclude with the Lax-Milgram theorem.

Like in the FEM framework, we have for &, v € Vy

e ©

® @

an(U(@) — U(©),0) = ap(@ —v,0) Ve V.

¢

Therefore U is an affine application.

O

v
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Asymptotic cost estimate

@ We give an asymptotic cost estimate for regular cartesian
meshes.

@ We suppose that most of the calculation cost resides in matrix
inversion.
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@ We assume that we need O(n?) operations to inverse a square
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@ We give an asymptotic cost estimate for regular cartesian
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inversion.

@ We assume that we need O(n?) operations to inverse a square
matrix of size n.

Coarse mesh
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Asymptotic cost estimate

Asymptotic cost estimate

@ We give an asymptotic cost estimate for regular cartesian
meshes.

@ We suppose that most of the calculation cost resides in matrix
inversion.

@ We assume that we need O(n?) operations to inverse a square
matrix of size n.

Coarse mesh

@ We consider a N x N cartesian grid for 7.
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Asymptotic cost estimate

Asymptotic cost estimate

@ We give an asymptotic cost estimate for regular cartesian
meshes.

@ We suppose that most of the calculation cost resides in matrix
inversion.

@ We assume that we need O(n?) operations to inverse a square
matrix of size n.

Coarse mesh

@ We consider a N x N cartesian grid for 7.
@ We have N2 coarse cells K.
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Asymptotic cost estimate

Asymptotic cost estimate

@ We give an asymptotic cost estimate for regular cartesian
meshes.

@ We suppose that most of the calculation cost resides in matrix
inversion.

@ We assume that we need O(n?) operations to inverse a square
matrix of size n.

Coarse mesh

@ We consider a N x N cartesian grid for Ty.
@ We have N2 coarse cells K.

. J
Fine submeshes
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Asymptotic cost estimate

Asymptotic cost estimate

@ We give an asymptotic cost estimate for regular cartesian
meshes.

@ We suppose that most of the calculation cost resides in matrix
inversion.

@ We assume that we need O(n?) operations to inverse a square
matrix of size n.

Coarse mesh

@ We consider a N x N cartesian grid for Ty.
@ We have N2 coarse cells K.

. J
Fine submeshes

@ Each corase cell K’ is divided into a M x M cartesation grid.
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Asymptotic cost estimate

Asymptotic cost estimate

@ We give an asymptotic cost estimate for regular cartesian
meshes.

@ We suppose that most of the calculation cost resides in matrix
inversion.

@ We assume that we need O(n?) operations to inverse a square
matrix of size n.

Coarse mesh

@ We consider a N x N cartesian grid for Ty.
@ We have N2 coarse cells K.

. J
Fine submeshes

@ Each corase cell K’ is divided into a M x M cartesation grid.
o Each submesh 7, contains M? fine cells K.
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@ The fine mesh is a regular NM x NM cartesian grid on .

@ The fine mesh contains (NM)? fine cells.

@ The coarse matrix K. is of size aN?.
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Asymptotic cost estimate

@ The fine mesh is a regular NM x NM cartesian grid on .

@ The fine mesh contains (NM)? fine cells.

@ The coarse matrix K. is of size aN?.

@ Each fine submatrix K}f is of size aM?.
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Asymptotic cost estimate

@ The fine mesh is a regular NM x NM cartesian grid on .

@ The fine mesh contains (NM)? fine cells.

@ The coarse matrix K. is of size aN?.
@ Each fine submatrix K}f is of size aM?.

@ The classical stiffness matrix on the fine mesh is of size
aN?>M?.
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Asymptotic cost estimate

@ The fine mesh is a regular NM x NM cartesian grid on .

@ The fine mesh contains (NM)? fine cells.

Matrices
@ The coarse matrix K. is of size aN?.
@ Each fine submatrix K}f is of size aM?.
@ The classical stiffness matrix on the fine mesh is of size
aN?M?.
@ Where apgy = 1 and apg = 4.
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Asymptotic cost of the upscaling algorithm
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Asymptotic cost of the upscaling algorithm
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@ Using the upscaling algorithm, inverse the N2 # matrices.
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Asymptotic cost estimate

Asymptotic cost of the upscaling algorithm
i

@ Using the upscaling algorithm, inverse the N2 # matrices.
@ Each inversion requires O(a3M?®) operations.
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Asymptotic cost estimate

Asymptotic cost of the upscaling algorithm

@ Using the upscaling algorithm, inverse the N2 }F matrices.

@ Each inversion requires O(a3M?®) operations.

@ The inversion of all the submatrices requires O(a3N2M®)
operations.
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Asymptotic cost estimate

Asymptotic cost of the upscaling algorithm

@ Using the upscaling algorithm, inverse the N2 }F matrices.
@ Each inversion requires O(a3M?®) operations.
@ The inversion of all the submatrices requires O(a®N?M®)
operations.
@ We also inverse the matrix of the coarse problem
Kee — KoKt KE, of size alN?.

Théophile CHAUMONT FRELET Upscaling using DGM



Asymptotic cost estimate

Asymptotic cost of the upscaling algorithm

@ Using the upscaling algorithm, inverse the N2 }F matrices.
@ Each inversion requires O(a3M?®) operations.
@ The inversion of all the submatrices requires O(a®N?M®)
operations.
@ We also inverse the matrix of the coarse problem
Kee — KKK L, of size a2,
@ This inversion requires O(a>N®) operations.
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Asymptotic cost estimate

@ Using the upscaling algorithm, inverse the N2 }F matrices.
@ Each inversion requires O(a3M?®) operations.
@ The inversion of all the submatrices requires O(a®N?M®)
operations.
@ We also inverse the matrix of the coarse problem
Kee — KKK L, of size a2,
@ This inversion requires O(a>N®) operations.
@ The total cost of the upscaling algorithm is
O(a3N6 + a3 N2MPO).
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Asymptotic cost estimate

@ Using the upscaling algorithm, inverse the N2 }F matrices.

@ Each inversion requires O(a3M?®) operations.

@ The inversion of all the submatrices requires O(a®N?M®)
operations.

@ We also inverse the matrix of the coarse problem
Kee — KKK L, of size a2,

@ This inversion requires O(a>N®) operations.

@ The total cost of the upscaling algorithm is
O(a3N6 + a3 N2MPO).

o If the domain is higly heterogeneous, then N << M, and the
cost is approximatly O(a3N?MS®).
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Asymptotic cost estimate

@ Using the upscaling algorithm, inverse the N2 }F matrices.

@ Each inversion requires O(a3M?®) operations.

@ The inversion of all the submatrices requires O(a®N?M®)
operations.

@ We also inverse the matrix of the coarse problem
Kee — KKK L, of size a2,

@ This inversion requires O(a>N®) operations.

@ The total cost of the upscaling algorithm is
O(a3N6 + a3 N2MPO).

o If the domain is higly heterogeneous, then N << M, and the
cost is approximatly O(a3N?MS®).

Comparison with the classical method
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Asymptotic cost estimate

@ Using the upscaling algorithm, inverse the N2 }F matrices.

@ Each inversion requires O(a3M?®) operations.

@ The inversion of all the submatrices requires O(a®N?M®)
operations.

@ We also inverse the matrix of the coarse problem
Kee — KKK L, of size a2,

@ This inversion requires O(a>N®) operations.

@ The total cost of the upscaling algorithm is
O(a3N6 + a3 N2MPO).

o If the domain is higly heterogeneous, then N << M, and the
cost is approximatly O(a3N?MS®).

Comparison with the classical method

@ The inversion of the classical stiffness matrix requires
O(a3N®M®) operations.
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Asymptotic cost estimate

@ Using the upscaling algorithm, inverse the N2 }F matrices.

@ Each inversion requires O(a3M?®) operations.

@ The inversion of all the submatrices requires O(a®N?M®)
operations.

@ We also inverse the matrix of the coarse problem
Kee — KKK L, of size a2,

@ This inversion requires O(a>N®) operations.

@ The total cost of the upscaling algorithm is
O(a3N6 + a3 N2MPO).

o If the domain is higly heterogeneous, then N << M, and the
cost is approximatly O(a3N?MS®).

Comparison with the classical method

@ The inversion of the classical stiffness matrix requires
O(a3N®M®) operations.
@ The upscaling algorithm is N* times less expensive.

v
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@ We solve the equation

—Au = f inQ
u = 0 on0Q,
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@ We solve the equation

—Au = f inQ
u = 0 on0Q,

@ where f(x,y) = sin(mx)sin(my).
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@ We solve the equation

—Au = f inQ
u = 0 on0Q,

@ where f(x,y) = sin(mx)sin(my).

@ On a 10 x 10 coarse cartesian grid.
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@ We solve the equation

—Au = f inQ
u = 0 on0Q,

@ where f(x,y) = sin(mx)sin(my).

@ On a 10 x 10 coarse cartesian grid.

@ Each coarse cell is subdivide with a 5 x 5 fine cartesian grid.

-
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Coarse componant u € Vi
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Coarse componant u € Vi
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Fine componant & € V,
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Upscaled solution u € Vps
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Example

Slideat Y =0

u(X,0.48)
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Conclusion

Conlusion

@ Upscaling algorithm simplifies calcution using artificial
boundary conditions.
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Conclusion

Conlusion

@ Upscaling algorithm simplifies calcution using artificial
boundary conditions.

@ DGM is adapted to upscaling algorithm.
@ We need to investigate heterogeneous problems.

@ We need to investigate properties for higher order polynmial.
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Conclusion

Conlusion

@ Upscaling algorithm simplifies calcution using artificial
boundary conditions.

@ DGM is adapted to upscaling algorithm.
@ We need to investigate heterogeneous problems.

@ We need to investigate properties for higher order polynmial.

@ Do you have any question?
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