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Théophile CHAUMONT FRELET Upscaling using DGM



Problematic
Upscaling in the FEM framework
Upscaling in the DGM framework

Asymptotic cost estimate
Example

Conclusion

Seismic imaging in higthly heterogeneous media

Huge domains
Large scale problem
Finely defined heterogeneities
Fine scale problem
Multiscale problem

Problematic
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We say that u ∈ H1
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Théophile CHAUMONT FRELET Upscaling using DGM



Problematic
Upscaling in the FEM framework
Upscaling in the DGM framework

Asymptotic cost estimate
Example

Conclusion

Meshes
Discretisation spaces
Important properties
Upscaling algorithm
Matricial Formulation

Meshing the domain

We must construct two meshes.

A coarse mesh TH .
A fine mesh Th.
The fine mesh Th is defined with submeshes T i

h .
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Meshing the domain

We must construct two meshes.

A coarse mesh TH .
A fine mesh Th.
The fine mesh Th is defined with submeshes T i

h .

Coarse mesh

The coarse mesh TH = (K i )NH

i=0 is a conforming triangulation
of Ω.

Submeshes

For i ∈ {1, . . . ,NH}, we consider a conforming triangulation
T i
h = (K i

j )
Mi

j=1 of K i .

We say that T i
h is the fine submesh of the coarse cell K i .
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Fine mesh

The fine mesh Th is the reunion of all fine submeshes T i
h .

Hence, we have

Th =

NH
⋃

i=1

T i
h = (K i

j )
i=1,NH

j=1,Mi
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The fine mesh Th is the reunion of all fine submeshes T i
h .

Hence, we have

Th =

NH
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T i
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j )
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Th does not need to be a conforming triangulation of Ω. (but
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Remark

Cartesian, quadrangle, or mixed meshes can be used, not only
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Théophile CHAUMONT FRELET Upscaling using DGM



Problematic
Upscaling in the FEM framework
Upscaling in the DGM framework

Asymptotic cost estimate
Example

Conclusion

Meshes
Discretisation spaces
Important properties
Upscaling algorithm
Matricial Formulation

Fine mesh

The fine mesh Th is the reunion of all fine submeshes T i
h .

Hence, we have

Th =

NH
⋃

i=1

T i
h = (K i

j )
i=1,NH

j=1,Mi

Th does not need to be a conforming triangulation of Ω. (but
the fine submeshes T i

h do)

Remark

Cartesian, quadrangle, or mixed meshes can be used, not only
triangulations.

TH and T i
h have to be conforming in the FEM framework.
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Constructing the discretisation spaces

We need to construct two discretisation spaces.
A coarse discretisation space, V̄H , using the coarse mesh TH .
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Constructing the discretisation spaces

We need to construct two discretisation spaces.
A coarse discretisation space, V̄H , using the coarse mesh TH .
A fine discretisation space, V̂h, featuring artificial boundary
conditions, using the fine mesh Th.
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Constructing the discretisation spaces

We need to construct two discretisation spaces.
A coarse discretisation space, V̄H , using the coarse mesh TH .
A fine discretisation space, V̂h, featuring artificial boundary
conditions, using the fine mesh Th.
We will also introduce the fine discretisation spaces, V̂ i

h, using
the fine submeshes T i

h .
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Constructing the discretisation spaces

We need to construct two discretisation spaces.
A coarse discretisation space, V̄H , using the coarse mesh TH .
A fine discretisation space, V̂h, featuring artificial boundary
conditions, using the fine mesh Th.
We will also introduce the fine discretisation spaces, V̂ i

h, using
the fine submeshes T i

h .

Notation
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Constructing the discretisation spaces

We need to construct two discretisation spaces.
A coarse discretisation space, V̄H , using the coarse mesh TH .
A fine discretisation space, V̂h, featuring artificial boundary
conditions, using the fine mesh Th.
We will also introduce the fine discretisation spaces, V̂ i

h, using
the fine submeshes T i

h .

Notation

Let ω ⊂ R
2 be a polyhedric domain and T be a conforming

triangulation of ω.
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Constructing the discretisation spaces

We need to construct two discretisation spaces.
A coarse discretisation space, V̄H , using the coarse mesh TH .
A fine discretisation space, V̂h, featuring artificial boundary
conditions, using the fine mesh Th.
We will also introduce the fine discretisation spaces, V̂ i

h, using
the fine submeshes T i

h .

Notation

Let ω ⊂ R
2 be a polyhedric domain and T be a conforming

triangulation of ω.
The P1 lagrangian finite element space is defined by

P1,0(T ) = {v ∈ C 0(ω̄) | v |K ∈ P1(K ) ∀K ∈ T , v |∂ω = 0}.
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Constructing the discretisation spaces

We need to construct two discretisation spaces.
A coarse discretisation space, V̄H , using the coarse mesh TH .
A fine discretisation space, V̂h, featuring artificial boundary
conditions, using the fine mesh Th.
We will also introduce the fine discretisation spaces, V̂ i

h, using
the fine submeshes T i

h .

Notation

Let ω ⊂ R
2 be a polyhedric domain and T be a conforming

triangulation of ω.
The P1 lagrangian finite element space is defined by

P1,0(T ) = {v ∈ C 0(ω̄) | v |K ∈ P1(K ) ∀K ∈ T , v |∂ω = 0}.

Note that P1,0(T ) ⊂ H1
0 (ω).
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Coarse discretisation space
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Coarse discretisation space

We simply set the coarse discretisation space V̄H to be the
classical discretisation space on TH . Hence V̄H = P1,0(TH).
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Coarse discretisation space

We simply set the coarse discretisation space V̄H to be the
classical discretisation space on TH . Hence V̄H = P1,0(TH).

Fine discretisation subspaces
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Coarse discretisation space

We simply set the coarse discretisation space V̄H to be the
classical discretisation space on TH . Hence V̄H = P1,0(TH).

Fine discretisation subspaces

For i ∈ {1, . . . ,NH}, the fine discretisation subspace V̂ i
h, is

the classical Lagrange P1 finite element space on T i
h .

Therefore V̂ i
h = P1,0(T i

h ).
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Coarse discretisation space

We simply set the coarse discretisation space V̄H to be the
classical discretisation space on TH . Hence V̄H = P1,0(TH).

Fine discretisation subspaces

For i ∈ {1, . . . ,NH}, the fine discretisation subspace V̂ i
h, is

the classical Lagrange P1 finite element space on T i
h .

Therefore V̂ i
h = P1,0(T i

h ).

The fonctions v ∈ V̂ i
h are extended by 0 on Ω \ K i .
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Coarse discretisation space

We simply set the coarse discretisation space V̄H to be the
classical discretisation space on TH . Hence V̄H = P1,0(TH).

Fine discretisation subspaces

For i ∈ {1, . . . ,NH}, the fine discretisation subspace V̂ i
h, is

the classical Lagrange P1 finite element space on T i
h .

Therefore V̂ i
h = P1,0(T i

h ).

The fonctions v ∈ V̂ i
h are extended by 0 on Ω \ K i .

It is clear that V̂ i
h ⊂ P1,0(Th).
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Coarse discretisation space

We simply set the coarse discretisation space V̄H to be the
classical discretisation space on TH . Hence V̄H = P1,0(TH).

Fine discretisation subspaces

For i ∈ {1, . . . ,NH}, the fine discretisation subspace V̂ i
h, is

the classical Lagrange P1 finite element space on T i
h .

Therefore V̂ i
h = P1,0(T i

h ).

The fonctions v ∈ V̂ i
h are extended by 0 on Ω \ K i .

It is clear that V̂ i
h ⊂ P1,0(Th).

We say that V̂ i
h contains artificial boundary contidition,

because the trace condition in the definition is not imposed by
the PDE (v |∂K i = 0).
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Fine discretisation space

The fine discretisation space is defined as the direct sum
V̂h =

⊕Nh

i=1 V̂
i
h.
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Fine discretisation space

The fine discretisation space is defined as the direct sum
V̂h =

⊕Nh

i=1 V̂
i
h.

We also have the following caracterisation

V̂h = {v ∈ P1,0(Th) | v |∂K i = 0 ∀K i ∈ TH}.
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Fine discretisation space

The fine discretisation space is defined as the direct sum
V̂h =

⊕Nh

i=1 V̂
i
h.

We also have the following caracterisation

V̂h = {v ∈ P1,0(Th) | v |∂K i = 0 ∀K i ∈ TH}.

V̂h contains artificial boundary conditions on the boundary of
all coarse cells K i ∈ TH .

Théophile CHAUMONT FRELET Upscaling using DGM



Problematic
Upscaling in the FEM framework
Upscaling in the DGM framework

Asymptotic cost estimate
Example

Conclusion

Meshes
Discretisation spaces
Important properties
Upscaling algorithm
Matricial Formulation

Fine discretisation space

The fine discretisation space is defined as the direct sum
V̂h =

⊕Nh

i=1 V̂
i
h.

We also have the following caracterisation

V̂h = {v ∈ P1,0(Th) | v |∂K i = 0 ∀K i ∈ TH}.

V̂h contains artificial boundary conditions on the boundary of
all coarse cells K i ∈ TH .

The upscaling space
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Fine discretisation space

The fine discretisation space is defined as the direct sum
V̂h =

⊕Nh

i=1 V̂
i
h.

We also have the following caracterisation

V̂h = {v ∈ P1,0(Th) | v |∂K i = 0 ∀K i ∈ TH}.

V̂h contains artificial boundary conditions on the boundary of
all coarse cells K i ∈ TH .

The upscaling space

The upscaling space Vups is defined as the direct sum

Vups = V̄H ⊕ V̂h.
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Fine discretisation space

The fine discretisation space is defined as the direct sum
V̂h =

⊕Nh

i=1 V̂
i
h.

We also have the following caracterisation

V̂h = {v ∈ P1,0(Th) | v |∂K i = 0 ∀K i ∈ TH}.

V̂h contains artificial boundary conditions on the boundary of
all coarse cells K i ∈ TH .

The upscaling space

The upscaling space Vups is defined as the direct sum

Vups = V̄H ⊕ V̂h.

We have the following inclusions P1,0(TH) ⊂ Vups ⊂ P1,0(Th).
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V̄H
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Théophile CHAUMONT FRELET Upscaling using DGM



Problematic
Upscaling in the FEM framework
Upscaling in the DGM framework

Asymptotic cost estimate
Example

Conclusion

Meshes
Discretisation spaces
Important properties
Upscaling algorithm
Matricial Formulation

V̄H
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Proposition

Let ûi ∈ V̂ i
h and v̂ j ∈ V̂

j
h , with i 6= j . Then a(ûi , v̂ j) = 0.
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Proposition

Let ûi ∈ V̂ i
h and v̂ j ∈ V̂

j
h , with i 6= j . Then a(ûi , v̂ j) = 0.

Proof.
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Proposition

Let ûi ∈ V̂ i
h and v̂ j ∈ V̂

j
h , with i 6= j . Then a(ûi , v̂ j) = 0.

Proof.

The proof is straight forward. It suffices to remark that

mes (supp ûi ∩ supp v̂ j) = 0.
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Proposition

Let ûi ∈ V̂ i
h and v̂ j ∈ V̂

j
h , with i 6= j . Then a(ûi , v̂ j) = 0.

Proof.

The proof is straight forward. It suffices to remark that

mes (supp ûi ∩ supp v̂ j) = 0.

It follows that

mes (supp (∇ûi · ∇v̂ j)) = 0,
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Proposition

Let ûi ∈ V̂ i
h and v̂ j ∈ V̂

j
h , with i 6= j . Then a(ûi , v̂ j) = 0.

Proof.

The proof is straight forward. It suffices to remark that

mes (supp ûi ∩ supp v̂ j) = 0.

It follows that

mes (supp (∇ûi · ∇v̂ j)) = 0,

and therefore

a(ûi , v̂ j ) =

∫

Ω
c∇ûi · ∇v̂ j = 0.
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Proposition

For all ū ∈ V̄H , there is a unique û ∈ V̂h, solution to

a(û, v̂ ) = L(v̂)− a(ū, v̂) ∀v̂ ∈ V̂h. (4)

For ū ∈ VH , we note Û(ū) the associated solution. That way, we

define an affine operator Û : V̄H → V̂h.
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Proposition

For all ū ∈ V̄H , there is a unique û ∈ V̂h, solution to

a(û, v̂ ) = L(v̂)− a(ū, v̂) ∀v̂ ∈ V̂h. (4)

For ū ∈ VH , we note Û(ū) the associated solution. That way, we

define an affine operator Û : V̄H → V̂h.

Proof.
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Proposition

For all ū ∈ V̄H , there is a unique û ∈ V̂h, solution to

a(û, v̂ ) = L(v̂)− a(ū, v̂) ∀v̂ ∈ V̂h. (4)

For ū ∈ VH , we note Û(ū) the associated solution. That way, we

define an affine operator Û : V̄H → V̂h.

Proof.

Since V̂h =
⊕Nh

i=1 V̂
i
h, we set

û =

Nh
∑

i=1

ûi , v̂

Nh
∑

j=1

v̂ j ,

with ûi ∈ V̂ i
h, v̂

j ∈ V̂
j
h.
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Proof.

Théophile CHAUMONT FRELET Upscaling using DGM



Problematic
Upscaling in the FEM framework
Upscaling in the DGM framework

Asymptotic cost estimate
Example

Conclusion

Meshes
Discretisation spaces
Important properties
Upscaling algorithm
Matricial Formulation

Proof.

Then, using the former proposition, (a(ûi , v̂ j) = 0), we see
that

a(û, v̂ ) =

Nh
∑

i ,j=1

a(ûi , v̂ j) =

Nh
∑

i=1

a(ûi , v̂ i ) =

Nh
∑

i=1

(L(v̂ i )− a(ū, v̂ i ))
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Proof.

Then, using the former proposition, (a(ûi , v̂ j) = 0), we see
that

a(û, v̂ ) =

Nh
∑

i ,j=1

a(ûi , v̂ j) =

Nh
∑

i=1

a(ûi , v̂ i ) =

Nh
∑

i=1

(L(v̂ i )− a(ū, v̂ i ))

Therefore, by linearity, û ∈ V̂h is solution iff

a(ûi , v̂ i) = L(v̂ i )− a(ū, v̂ i ) ∀v̂ i ∈ V̂ i
h,

for i ∈ {1, . . . ,Nh}.
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Proof.

Remarking that functions of V̂ i
h satisfy a dirichlet condition on

∂K i , we have V̂ h
i ⊂ H1

0 (K
i ). Therefore, the bilinear form a is

coercive on V̂ h
i .
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Proof.

Remarking that functions of V̂ i
h satisfy a dirichlet condition on

∂K i , we have V̂ h
i ⊂ H1

0 (K
i ). Therefore, the bilinear form a is

coercive on V̂ h
i .

We also see that the function defined by

L̃iū(v̂
i ) = L(v̂ i)− a(ū, v̂ i) ∀v̂ i ∈ V̂ i

h,

is linear and continuous.
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Proof.

Remarking that functions of V̂ i
h satisfy a dirichlet condition on

∂K i , we have V̂ h
i ⊂ H1

0 (K
i ). Therefore, the bilinear form a is

coercive on V̂ h
i .

We also see that the function defined by

L̃iū(v̂
i ) = L(v̂ i)− a(ū, v̂ i) ∀v̂ i ∈ V̂ i

h,

is linear and continuous.
Therefore, the Lax-Migram theorem shows that there is a
unique ûi ∈ V̂ i

h satisfying

a(ûi , v̂ j) = L̃iū(v̂
i ) ∀v̂ i ∈ V̂ i

h.
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Proof.

Remarking that functions of V̂ i
h satisfy a dirichlet condition on

∂K i , we have V̂ h
i ⊂ H1

0 (K
i ). Therefore, the bilinear form a is

coercive on V̂ h
i .

We also see that the function defined by

L̃iū(v̂
i ) = L(v̂ i)− a(ū, v̂ i) ∀v̂ i ∈ V̂ i

h,

is linear and continuous.
Therefore, the Lax-Migram theorem shows that there is a
unique ûi ∈ V̂ i

h satisfying

a(ûi , v̂ j) = L̃iū(v̂
i ) ∀v̂ i ∈ V̂ i

h.

Then, û =
∑Nh

i=1 û
i is the unique solution of (4).
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Théophile CHAUMONT FRELET Upscaling using DGM



Problematic
Upscaling in the FEM framework
Upscaling in the DGM framework

Asymptotic cost estimate
Example

Conclusion

Meshes
Discretisation spaces
Important properties
Upscaling algorithm
Matricial Formulation

Proof.
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Proof.

Let’s now show that Û : V̄h → V̂h is an affine application.
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Let’s now show that Û : V̄h → V̂h is an affine application.
Let ū, v̄ ∈ VH . Û(ū) and Û(v̄) satisfy

a(Û(ū), v̂) = L(v̂)− a(ū, v̂ ), a(Û(v̄), v̂ ) = L(v̂)− a(v̄ , v̂)

for v ∈ V̂h.
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Let ū, v̄ ∈ VH . Û(ū) and Û(v̄) satisfy

a(Û(ū), v̂) = L(v̂)− a(ū, v̂ ), a(Û(v̄), v̂ ) = L(v̂)− a(v̄ , v̂)

for v ∈ V̂h.
Then, using linearity, we have

a(Û(ū)− Û(v̄), v̂) = a(ū − v̄ , v̂) ∀v̂ ∈ V̂h,

witch shows that the dependance of Û(ū)− Û(v̄) to ū − v̄ is
linear.
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Then, using linearity, we have

a(Û(ū)− Û(v̄), v̂) = a(ū − v̄ , v̂) ∀v̂ ∈ V̂h,

witch shows that the dependance of Û(ū)− Û(v̄) to ū − v̄ is
linear.
We can conclude that Û is an affine operator from V̄H to V̂h.
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Let ū, v̄ ∈ VH . Û(ū) and Û(v̄) satisfy

a(Û(ū), v̂) = L(v̂)− a(ū, v̂ ), a(Û(v̄), v̂ ) = L(v̂)− a(v̄ , v̂)

for v ∈ V̂h.
Then, using linearity, we have

a(Û(ū)− Û(v̄), v̂) = a(ū − v̄ , v̂) ∀v̂ ∈ V̂h,

witch shows that the dependance of Û(ū)− Û(v̄) to ū − v̄ is
linear.
We can conclude that Û is an affine operator from V̄H to V̂h.

Remark
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Let’s now show that Û : V̄h → V̂h is an affine application.
Let ū, v̄ ∈ VH . Û(ū) and Û(v̄) satisfy

a(Û(ū), v̂) = L(v̂)− a(ū, v̂ ), a(Û(v̄), v̂ ) = L(v̂)− a(v̄ , v̂)

for v ∈ V̂h.
Then, using linearity, we have

a(Û(ū)− Û(v̄), v̂) = a(ū − v̄ , v̂) ∀v̂ ∈ V̂h,

witch shows that the dependance of Û(ū)− Û(v̄) to ū − v̄ is
linear.
We can conclude that Û is an affine operator from V̄H to V̂h.

Remark

In fact, we have shown that Û(ū)− Û(v̄ ) = P
V̂h
(ū − v̄), in

the sense of the scalar product a(., .) .
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Upscaling algorithm

We have to solve the following ”upscaled problem”: Find
u ∈ Vups such that

a(u, v) = L(v) ∀v ∈ Vups .
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Upscaling algorithm

We have to solve the following ”upscaled problem”: Find
u ∈ Vups such that

a(u, v) = L(v) ∀v ∈ Vups .

Using the decomposition Vups = V̄H ⊕ V̂h, we set u = ū + û

and v = v̂ + v̄ . By linearity, we are to solve

{

a(ū + û, v̄) = L(v̄ ) ∀v̄ ∈ V̄H

a(ū + û, v̂) = L(v̂ ) ∀v̂ ∈ V̂h.
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Upscaling algorithm

We have to solve the following ”upscaled problem”: Find
u ∈ Vups such that

a(u, v) = L(v) ∀v ∈ Vups .

Using the decomposition Vups = V̄H ⊕ V̂h, we set u = ū + û

and v = v̂ + v̄ . By linearity, we are to solve

{

a(ū + û, v̄) = L(v̄ ) ∀v̄ ∈ V̄H

a(ū + û, v̂) = L(v̂ ) ∀v̂ ∈ V̂h.

Rewriting the second equation as

a(û, v̂) = L(v̂)− a(ū, v̂) ∀v̂ ∈ V̂h,

we see that û = Û(ū).
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Upscaling algorithm

Therefore, using the two propositions, we see that what we
actualy have to solve is

{

a(ū + Û(ū), v̄ ) = L(v̄) ∀v̄ ∈ V̄H

a(ûi , v̂ i ) = L(v̂ i )− a(ū, v̂ i ) ∀v̂ i ∈ V̂ i
h (i = 1,Nh).
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Therefore, using the two propositions, we see that what we
actualy have to solve is

{

a(ū + Û(ū), v̄ ) = L(v̄) ∀v̄ ∈ V̄H

a(ûi , v̂ i ) = L(v̂ i )− a(ū, v̂ i ) ∀v̂ i ∈ V̂ i
h (i = 1,Nh).

Conclusion

What we need to do is
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Upscaling algorithm

Therefore, using the two propositions, we see that what we
actualy have to solve is

{

a(ū + Û(ū), v̄ ) = L(v̄) ∀v̄ ∈ V̄H

a(ûi , v̂ i ) = L(v̂ i )− a(ū, v̂ i ) ∀v̂ i ∈ V̂ i
h (i = 1,Nh).

Conclusion

What we need to do is

Compute the operator Û.
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Upscaling algorithm

Therefore, using the two propositions, we see that what we
actualy have to solve is

{

a(ū + Û(ū), v̄ ) = L(v̄) ∀v̄ ∈ V̄H

a(ûi , v̂ i ) = L(v̂ i )− a(ū, v̂ i ) ∀v̂ i ∈ V̂ i
h (i = 1,Nh).

Conclusion

What we need to do is

Compute the operator Û.

Solve Nh fine problems on the coarse cells K i .
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Upscaling algorithm

Therefore, using the two propositions, we see that what we
actualy have to solve is

{

a(ū + Û(ū), v̄ ) = L(v̄) ∀v̄ ∈ V̄H

a(ûi , v̂ i ) = L(v̂ i )− a(ū, v̂ i ) ∀v̂ i ∈ V̂ i
h (i = 1,Nh).

Conclusion

What we need to do is

Compute the operator Û.

Solve Nh fine problems on the coarse cells K i .

Solve a coarse problem on Ω.
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Upscaling algorithm

Therefore, using the two propositions, we see that what we
actualy have to solve is

{

a(ū + Û(ū), v̄ ) = L(v̄) ∀v̄ ∈ V̄H

a(ûi , v̂ i ) = L(v̂ i )− a(ū, v̂ i ) ∀v̂ i ∈ V̂ i
h (i = 1,Nh).

Conclusion

What we need to do is

Compute the operator Û.

Solve Nh fine problems on the coarse cells K i .

Solve a coarse problem on Ω.

Sum u = ū + û.
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Upscaling algorithm

Therefore, using the two propositions, we see that what we
actualy have to solve is

{

a(ū + Û(ū), v̄ ) = L(v̄) ∀v̄ ∈ V̄H

a(ûi , v̂ i ) = L(v̂ i )− a(ū, v̂ i ) ∀v̂ i ∈ V̂ i
h (i = 1,Nh).

Conclusion

What we need to do is

Compute the operator Û.

Solve Nh fine problems on the coarse cells K i .

Solve a coarse problem on Ω.

Sum u = ū + û.

Remark that since Û is affine, the coarse equation is linear.
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B̂h =
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i=1 B̂
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h is a basis of V̂h.
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h.

B̂h =
⋃Nh

i=1 B̂
i
h is a basis of V̂h.

Bups = B̄H ∪ B̂h is basis of Vups .

Stiffness matrices

Kcc = {a(φ̄, ψ̄)}, φ̄, ψ̄ ∈ B̄H is the coarse stiffness matrix.
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Kcc = {a(φ̄, ψ̄)}, φ̄, ψ̄ ∈ B̄H is the coarse stiffness matrix.

Kff = {a(φ̂, ψ̂)}, φ̂, ψ̂ ∈ B̂h is the fine stiffness matrix.
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B̂h =
⋃Nh

i=1 B̂
i
h is a basis of V̂h.

Bups = B̄H ∪ B̂h is basis of Vups .

Stiffness matrices

Kcc = {a(φ̄, ψ̄)}, φ̄, ψ̄ ∈ B̄H is the coarse stiffness matrix.

Kff = {a(φ̂, ψ̂)}, φ̂, ψ̂ ∈ B̂h is the fine stiffness matrix.

Kcf = {a(φ̄, ψ̂)}, φ̄ ∈ B̄H , ψ̂ ∈ B̂h is the cross stiffness matrix.
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B̄H is the lagrangian basis of V̄H .

B̂ i
h is the lagrangian basis of V̂ i

h.

B̂h =
⋃Nh

i=1 B̂
i
h is a basis of V̂h.

Bups = B̄H ∪ B̂h is basis of Vups .

Stiffness matrices

Kcc = {a(φ̄, ψ̄)}, φ̄, ψ̄ ∈ B̄H is the coarse stiffness matrix.

Kff = {a(φ̂, ψ̂)}, φ̂, ψ̂ ∈ B̂h is the fine stiffness matrix.

Kcf = {a(φ̄, ψ̂)}, φ̄ ∈ B̄H , ψ̂ ∈ B̂h is the cross stiffness matrix.

K i
ff = {a(φ̂i , ψ̂i )}, φ̂, ψ̂ ∈ B̂ i

h are the fine stiffness
submatrices.
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Proposition

The fine stiffness matrix Kff is block diagonal and Kff = diagiK
i
ff .
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Proposition

The fine stiffness matrix Kff is block diagonal and Kff = diagiK
i
ff .

Proof.
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Proposition

The fine stiffness matrix Kff is block diagonal and Kff = diagiK
i
ff .

Proof.

It’s a direct consequence of the fact that a(ûi , v̂ j) = 0 for
ûi ∈ V̂ i

h, v̂
j ∈ V̂

j
h, i 6= j .
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Proposition

The fine stiffness matrix Kff is block diagonal and Kff = diagiK
i
ff .

Proof.

It’s a direct consequence of the fact that a(ûi , v̂ j) = 0 for
ûi ∈ V̂ i

h, v̂
j ∈ V̂

j
h, i 6= j .

We set K i ,j
ff = {a(φ̂i , ψ̂j )}, φi ∈ B i

h, ψ
j ∈ B

j
h. Then

K
i ,i
ff = K i

ff , and K
i ,j
ff = 0 if i 6= j . So

Kff =







K
1,1
ff . . . K

1,Nh

ff
...

. . .
...

K
Nh,1
ff . . . K

Nh,Nh

ff






=







K 1
ff 0

. . .

0 K
Nh

ff






.
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Decomposition of the upscaling stiffness matrix
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Decomposition of the upscaling stiffness matrix

The upscaling stiffness matrix is defined by
Kups = {a(φ,ψ)}, φ, ψ ∈ Bups .
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Decomposition of the upscaling stiffness matrix

The upscaling stiffness matrix is defined by
Kups = {a(φ,ψ)}, φ, ψ ∈ Bups .
We have the following decomposition

Kups =









Kcc Kcf

KT
cf Kff









=











Kcc Kcf

KT
cf

K 1
ff 0

. . .

0 K
Nh

ff
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Decomposition of the upscaling stiffness matrix

The upscaling stiffness matrix is defined by
Kups = {a(φ,ψ)}, φ, ψ ∈ Bups .
We have the following decomposition

Kups =









Kcc Kcf

KT
cf Kff









=











Kcc Kcf

KT
cf

K 1
ff 0

. . .

0 K
Nh

ff











Upscaled matricial problem
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Decomposition of the upscaling stiffness matrix

The upscaling stiffness matrix is defined by
Kups = {a(φ,ψ)}, φ, ψ ∈ Bups .
We have the following decomposition

Kups =









Kcc Kcf

KT
cf Kff









=











Kcc Kcf

KT
cf

K 1
ff 0

. . .

0 K
Nh

ff











Upscaled matricial problem

We are to solve KupsUups = Fups . Using decomposition, we
get

(

Kcc Kcf

KT
cf Kff

)(

Uc

Uf

)

=

(

Fc
Ff

)

.
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Schur complement
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Schur complement

We obtain
{

KccUc + Kcf Uf = Fc
KT
cf Uc + Kff Uf = Ff .
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Schur complement

We obtain
{

KccUc + Kcf Uf = Fc
KT
cf Uc + Kff Uf = Ff .

We rewrite
{

KccUc + Kcf Uf = Fc
Kff Uf = Ff − KT

cf Uc .
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Schur complement

We obtain
{

KccUc + Kcf Uf = Fc
KT
cf Uc + Kff Uf = Ff .

We rewrite
{

KccUc + Kcf Uf = Fc
Kff Uf = Ff − KT

cf Uc .

Kff is inversible and we have

{

(Kcc − Kcf K
−1
ff KT

cf )Uc = Fc − KcfK
−1
ff Ff

Uf = K−1
ff (Ff − KT

cf Uc).
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Schur complement

We obtain
{

KccUc + Kcf Uf = Fc
KT
cf Uc + Kff Uf = Ff .

We rewrite
{

KccUc + Kcf Uf = Fc
Kff Uf = Ff − KT

cf Uc .

Kff is inversible and we have

{

(Kcc − Kcf K
−1
ff KT

cf )Uc = Fc − KcfK
−1
ff Ff

Uf = K−1
ff (Ff − KT

cf Uc).

K−1
ff = diagi (K

i
ff )

−1.
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Conclusion

The operator Û is defined matricialy by

Û(Uc) = −K−1
ff KT

cf Uc + K−1
ff Ff .
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Conclusion

The operator Û is defined matricialy by

Û(Uc) = −K−1
ff KT

cf Uc + K−1
ff Ff .

We inverse Nh matrices defined on a fine scale, but restricted
to the coarse cells K i , in the spaces V̂ i

h.

Kff
−1 = diagi (K

i
ff )

−1
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Conclusion

The operator Û is defined matricialy by

Û(Uc) = −K−1
ff KT

cf Uc + K−1
ff Ff .

We inverse Nh matrices defined on a fine scale, but restricted
to the coarse cells K i , in the spaces V̂ i

h.

Kff
−1 = diagi (K

i
ff )

−1

We solve a linear problem defined on the full domain, but on a
coarse scale, in the space V̄H .

(Kcc − Kcf K
−1
ff KT

cf )Uc = Fc − Kcf K
−1
ff Ff
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We use the same method to mesh the domain.
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Meshes

We use the same method to mesh the domain.

TH and T i
h do not need to be conforming anymore.
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Meshes

We use the same method to mesh the domain.

TH and T i
h do not need to be conforming anymore.

Example of non-conformity
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We define two basic discontinuous polynomial spaces.
Let ω ⊂ R

2 be a polyhedric domain and T be a triangulation
(non necessarly conformig) of ω.
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Notations

We define two basic discontinuous polynomial spaces.
Let ω ⊂ R

2 be a polyhedric domain and T be a triangulation
(non necessarly conformig) of ω.
The discontinuous polynomial space on T is defined by

D1(T ) = {v ∈ L2(ω) | v |K ∈ P1(K ) ∀K ∈ T }.
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Notations

We define two basic discontinuous polynomial spaces.
Let ω ⊂ R

2 be a polyhedric domain and T be a triangulation
(non necessarly conformig) of ω.
The discontinuous polynomial space on T is defined by

D1(T ) = {v ∈ L2(ω) | v |K ∈ P1(K ) ∀K ∈ T }.

We also define the space

D1,0(T ) = {v ∈ D1(T ) | v |∂ω = 0}.
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Notations

We define two basic discontinuous polynomial spaces.
Let ω ⊂ R

2 be a polyhedric domain and T be a triangulation
(non necessarly conformig) of ω.
The discontinuous polynomial space on T is defined by

D1(T ) = {v ∈ L2(ω) | v |K ∈ P1(K ) ∀K ∈ T }.

We also define the space

D1,0(T ) = {v ∈ D1(T ) | v |∂ω = 0}.

Discretisation spaces
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Notations

We define two basic discontinuous polynomial spaces.
Let ω ⊂ R

2 be a polyhedric domain and T be a triangulation
(non necessarly conformig) of ω.
The discontinuous polynomial space on T is defined by

D1(T ) = {v ∈ L2(ω) | v |K ∈ P1(K ) ∀K ∈ T }.

We also define the space

D1,0(T ) = {v ∈ D1(T ) | v |∂ω = 0}.

Discretisation spaces

We set V̄H = D1(TH) and V̂ i
h = D1,0(T i

h ).
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Notations

We define two basic discontinuous polynomial spaces.
Let ω ⊂ R

2 be a polyhedric domain and T be a triangulation
(non necessarly conformig) of ω.
The discontinuous polynomial space on T is defined by

D1(T ) = {v ∈ L2(ω) | v |K ∈ P1(K ) ∀K ∈ T }.

We also define the space

D1,0(T ) = {v ∈ D1(T ) | v |∂ω = 0}.

Discretisation spaces

We set V̄H = D1(TH) and V̂ i
h = D1,0(T i

h ).

We also define V̂h =
⊕Nh

i=1 V̂
i
h and Vups = V̄H ⊕ V̂h.
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Notations

We define two basic discontinuous polynomial spaces.
Let ω ⊂ R

2 be a polyhedric domain and T be a triangulation
(non necessarly conformig) of ω.
The discontinuous polynomial space on T is defined by

D1(T ) = {v ∈ L2(ω) | v |K ∈ P1(K ) ∀K ∈ T }.

We also define the space

D1,0(T ) = {v ∈ D1(T ) | v |∂ω = 0}.

Discretisation spaces

We set V̄H = D1(TH) and V̂ i
h = D1,0(T i

h ).

We also define V̂h =
⊕Nh

i=1 V̂
i
h and Vups = V̄H ⊕ V̂h.

We have the inclusions D1(TH) ⊂ Vups ⊂ D1(Th).
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Edges

We note F int
h and Fext

h the set of internal end external edges
of the mesh coarse Th.

F int
h = {∂K ∩ ∂J | K , J ∈ Th}, Fext

h = {∂K ∩ ∂Ω | K ∈ Th}.
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Edges

We note F int
h and Fext

h the set of internal end external edges
of the mesh coarse Th.

F int
h = {∂K ∩ ∂J | K , J ∈ Th}, Fext

h = {∂K ∩ ∂Ω | K ∈ Th}.

We also note Fh = F int
h ∪ Fext

h .
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Edges

We note F int
h and Fext

h the set of internal end external edges
of the mesh coarse Th.

F int
h = {∂K ∩ ∂J | K , J ∈ Th}, Fext

h = {∂K ∩ ∂Ω | K ∈ Th}.

We also note Fh = F int
h ∪ Fext

h .
The same definitions hold for F int

H , Fext
H and FH .
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We note F int
h and Fext

h the set of internal end external edges
of the mesh coarse Th.

F int
h = {∂K ∩ ∂J | K , J ∈ Th}, Fext

h = {∂K ∩ ∂Ω | K ∈ Th}.

We also note Fh = F int
h ∪ Fext

h .
The same definitions hold for F int

H , Fext
H and FH .

Jump and Mean
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Edges

We note F int
h and Fext

h the set of internal end external edges
of the mesh coarse Th.

F int
h = {∂K ∩ ∂J | K , J ∈ Th}, Fext

h = {∂K ∩ ∂Ω | K ∈ Th}.

We also note Fh = F int
h ∪ Fext

h .
The same definitions hold for F int

H , Fext
H and FH .

Jump and Mean

Let u ∈ D1(Th) and v ∈ D1(Th)2.
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Edges

We note F int
h and Fext

h the set of internal end external edges
of the mesh coarse Th.

F int
h = {∂K ∩ ∂J | K , J ∈ Th}, Fext

h = {∂K ∩ ∂Ω | K ∈ Th}.

We also note Fh = F int
h ∪ Fext

h .
The same definitions hold for F int

H , Fext
H and FH .

Jump and Mean

Let u ∈ D1(Th) and v ∈ D1(Th)2.
The jump of u and the mean of v through an internal edge
e = ∂K ∩ ∂J ∈ F int

h are defined by

[[u]]e = uK |e − uJ |e , {{v}}e =
vK |e + vJ |e

2
· nK
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Jump and Mean

The jump of u and the mean of v through an external edge
e = ∂K ∩ ∂Ω are defined by

[[u]]e = uK |e , {{v}}e = vK · nK .

Théophile CHAUMONT FRELET Upscaling using DGM



Problematic
Upscaling in the FEM framework
Upscaling in the DGM framework

Asymptotic cost estimate
Example

Conclusion

Meshes
Discretisation spaces
IPDGM bilinear form
Important properties

Jump and Mean

The jump of u and the mean of v through an external edge
e = ∂K ∩ ∂Ω are defined by

[[u]]e = uK |e , {{v}}e = vK · nK .

The IPDGM bilinear form
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Jump and Mean

The jump of u and the mean of v through an external edge
e = ∂K ∩ ∂Ω are defined by

[[u]]e = uK |e , {{v}}e = vK · nK .

The IPDGM bilinear form

For u, v ∈ D1(Th), we set

Bh(u, v) =
∑

K∈Th

∫

K

∇u·∇v , Ih(u, v) =
∑

e∈Fh

∫

e

[[u]]e{{∇v}}e

and

Jσh (u, v) =
∑

e∈Fh

∫

e

σ[[u]]e [[v ]]e .
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Jump and Mean

The jump of u and the mean of v through an external edge
e = ∂K ∩ ∂Ω are defined by

[[u]]e = uK |e , {{v}}e = vK · nK .

The IPDGM bilinear form

For u, v ∈ D1(Th), we set

Bh(u, v) =
∑

K∈Th

∫

K

∇u·∇v , Ih(u, v) =
∑

e∈Fh

∫

e

[[u]]e{{∇v}}e

and

Jσh (u, v) =
∑

e∈Fh

∫

e

σ[[u]]e [[v ]]e .

where σ is a fonction constant on each edge e ∈ Fh.
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The IPDGM bilinear form

The IPDGM bilinear form is defined for u, v ∈ D1(Th) as

ah(u, v) = Bh(u, v) + Ih(u, v) + Ih(v , u) + Jσh (u, v).
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The IPDGM bilinear form

The IPDGM bilinear form is defined for u, v ∈ D1(Th) as

ah(u, v) = Bh(u, v) + Ih(u, v) + Ih(v , u) + Jσh (u, v).

ah is symetric.
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The IPDGM bilinear form

The IPDGM bilinear form is defined for u, v ∈ D1(Th) as

ah(u, v) = Bh(u, v) + Ih(u, v) + Ih(v , u) + Jσh (u, v).

ah is symetric.

We can choose σ such that ah is coercive on D1(Th) equiped
with the norm

||v ||2DG =
∑

K∈Th

||∇v ||2L2(K) +
∑

e∈Fh

||
√
σ[[v ]]e ||2L2(e).
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The IPDGM bilinear form

The IPDGM bilinear form is defined for u, v ∈ D1(Th) as

ah(u, v) = Bh(u, v) + Ih(u, v) + Ih(v , u) + Jσh (u, v).

ah is symetric.

We can choose σ such that ah is coercive on D1(Th) equiped
with the norm

||v ||2DG =
∑

K∈Th

||∇v ||2L2(K) +
∑

e∈Fh

||
√
σ[[v ]]e ||2L2(e).

Note that, since Vups ⊂ D1(Th), ah(u, v) is well defined for
u, v ∈ Vups .
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Proposition

Let ûi ∈ V̂ i
h and v̂ j ∈ V̂

j
h with i 6= j . Then ah(û

i , v̂ j) = 0.
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Proposition

Let ûi ∈ V̂ i
h and v̂ j ∈ V̂

j
h with i 6= j . Then ah(û

i , v̂ j) = 0.

Proof.
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Proposition

Let ûi ∈ V̂ i
h and v̂ j ∈ V̂

j
h with i 6= j . Then ah(û

i , v̂ j) = 0.

Proof.

By definition of the spaces V̂ i
h and V̂

j
h, supp ûi ⊂ K i and

supp v̂ j ⊂ K j .
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Proposition

Let ûi ∈ V̂ i
h and v̂ j ∈ V̂

j
h with i 6= j . Then ah(û

i , v̂ j) = 0.

Proof.

By definition of the spaces V̂ i
h and V̂

j
h, supp ûi ⊂ K i and

supp v̂ j ⊂ K j .
Then, supp ûi ∩ supp v̂ j = ∂K i ∩ ∂K j = e ∈ F int

h .
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Proposition

Let ûi ∈ V̂ i
h and v̂ j ∈ V̂

j
h with i 6= j . Then ah(û

i , v̂ j) = 0.

Proof.

By definition of the spaces V̂ i
h and V̂

j
h, supp ûi ⊂ K i and

supp v̂ j ⊂ K j .
Then, supp ûi ∩ supp v̂ j = ∂K i ∩ ∂K j = e ∈ F int

h .

We have mes2De = 0, and therefore Bh(û
i , v̂ j) = 0.

Théophile CHAUMONT FRELET Upscaling using DGM



Problematic
Upscaling in the FEM framework
Upscaling in the DGM framework

Asymptotic cost estimate
Example

Conclusion

Meshes
Discretisation spaces
IPDGM bilinear form
Important properties

Proposition

Let ûi ∈ V̂ i
h and v̂ j ∈ V̂

j
h with i 6= j . Then ah(û

i , v̂ j) = 0.

Proof.

By definition of the spaces V̂ i
h and V̂

j
h, supp ûi ⊂ K i and

supp v̂ j ⊂ K j .
Then, supp ûi ∩ supp v̂ j = ∂K i ∩ ∂K j = e ∈ F int

h .

We have mes2De = 0, and therefore Bh(û
i , v̂ j) = 0.

We also see that

Ih(û
i , v̂ j) =

∫

e

[[ûi ]]{{∇v̂ j}}, Ih(v̂
j , ûi ) =

∫

e

[[v̂ j ]]{{∇ûi}},

and

Jσh (û
i , v̂ j ) =

∫

e

σ[[ûi ]][[v̂ j ]].
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Proof.

Since ûi ∈ V̂ i
h = D1,0(K

i ), uK i |e = 0.
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Proof.

Since ûi ∈ V̂ i
h = D1,0(K

i ), uK i |e = 0.
On the other hand, ûi = 0 on Ω \ K i , and therefore uk j |e = 0.
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Proof.

Since ûi ∈ V̂ i
h = D1,0(K

i ), uK i |e = 0.
On the other hand, ûi = 0 on Ω \ K i , and therefore uk j |e = 0.
If follows that [[u]]e = 0.
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Proof.

Since ûi ∈ V̂ i
h = D1,0(K

i ), uK i |e = 0.
On the other hand, ûi = 0 on Ω \ K i , and therefore uk j |e = 0.
If follows that [[u]]e = 0.
Similarly, [[v ]]e = 0.
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Proof.

Since ûi ∈ V̂ i
h = D1,0(K

i ), uK i |e = 0.
On the other hand, ûi = 0 on Ω \ K i , and therefore uk j |e = 0.
If follows that [[u]]e = 0.
Similarly, [[v ]]e = 0.
Therefore Ih(û

i , v̂ j) = Ih(v̂
j , ûi) = Jh(û

i , v̂ j ) = 0.
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Proof.

Since ûi ∈ V̂ i
h = D1,0(K

i ), uK i |e = 0.
On the other hand, ûi = 0 on Ω \ K i , and therefore uk j |e = 0.
If follows that [[u]]e = 0.
Similarly, [[v ]]e = 0.
Therefore Ih(û

i , v̂ j) = Ih(v̂
j , ûi) = Jh(û

i , v̂ j ) = 0.
And ah(û

i , v̂ j) = 0.

Théophile CHAUMONT FRELET Upscaling using DGM



Problematic
Upscaling in the FEM framework
Upscaling in the DGM framework

Asymptotic cost estimate
Example

Conclusion

Meshes
Discretisation spaces
IPDGM bilinear form
Important properties

Proof.

Since ûi ∈ V̂ i
h = D1,0(K

i ), uK i |e = 0.
On the other hand, ûi = 0 on Ω \ K i , and therefore uk j |e = 0.
If follows that [[u]]e = 0.
Similarly, [[v ]]e = 0.
Therefore Ih(û

i , v̂ j) = Ih(v̂
j , ûi) = Jh(û

i , v̂ j ) = 0.
And ah(û

i , v̂ j) = 0.

Proposition

For all ū ∈ V̄H , there is a unique û ∈ V̂h satisfying

ah(û, v̂ ) = L(v̂)− ah(ū, v̂ ) ∀v ∈ V̂h.

We define an affine operator Û : V̄h → V̂h by Û(ū) = û.
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Proof.

We define the linear form

L̃ū(v̂) = L(v̂)− ah(ū, v̂) ∀v̂ ∈ Vh.
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Proof.

We define the linear form

L̃ū(v̂) = L(v̂)− ah(ū, v̂) ∀v̂ ∈ Vh.

L̃ū is continous in the ||.||DG norm.
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Proof.

We define the linear form

L̃ū(v̂) = L(v̂)− ah(ū, v̂) ∀v̂ ∈ Vh.

L̃ū is continous in the ||.||DG norm.
Since, V̂h ⊂ D1,0(Th), ah is coercive on V̂h equiped with the
norm ||.||DG .
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We define the linear form

L̃ū(v̂) = L(v̂)− ah(ū, v̂) ∀v̂ ∈ Vh.

L̃ū is continous in the ||.||DG norm.
Since, V̂h ⊂ D1,0(Th), ah is coercive on V̂h equiped with the
norm ||.||DG .
We conclude with the Lax-Milgram theorem.
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Proof.

We define the linear form

L̃ū(v̂) = L(v̂)− ah(ū, v̂) ∀v̂ ∈ Vh.

L̃ū is continous in the ||.||DG norm.
Since, V̂h ⊂ D1,0(Th), ah is coercive on V̂h equiped with the
norm ||.||DG .
We conclude with the Lax-Milgram theorem.
Like in the FEM framework, we have for ū, v̄ ∈ V̄H

ah(Û(ū)− Û(v̄), v̂) = ah(ū − v̄ , v̂ ) ∀v̂ ∈ V̂h.
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Proof.

We define the linear form

L̃ū(v̂) = L(v̂)− ah(ū, v̂) ∀v̂ ∈ Vh.

L̃ū is continous in the ||.||DG norm.
Since, V̂h ⊂ D1,0(Th), ah is coercive on V̂h equiped with the
norm ||.||DG .
We conclude with the Lax-Milgram theorem.
Like in the FEM framework, we have for ū, v̄ ∈ V̄H

ah(Û(ū)− Û(v̄), v̂) = ah(ū − v̄ , v̂ ) ∀v̂ ∈ V̂h.

Therefore Û is an affine application.
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Théophile CHAUMONT FRELET Upscaling using DGM



Problematic
Upscaling in the FEM framework
Upscaling in the DGM framework

Asymptotic cost estimate
Example

Conclusion

Asymptotic cost estimate

We give an asymptotic cost estimate for regular cartesian
meshes.
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Asymptotic cost estimate

We give an asymptotic cost estimate for regular cartesian
meshes.
We suppose that most of the calculation cost resides in matrix
inversion.
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Asymptotic cost estimate

We give an asymptotic cost estimate for regular cartesian
meshes.
We suppose that most of the calculation cost resides in matrix
inversion.
We assume that we need O(n3) operations to inverse a square
matrix of size n.
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Asymptotic cost estimate

We give an asymptotic cost estimate for regular cartesian
meshes.
We suppose that most of the calculation cost resides in matrix
inversion.
We assume that we need O(n3) operations to inverse a square
matrix of size n.

Coarse mesh
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Asymptotic cost estimate

We give an asymptotic cost estimate for regular cartesian
meshes.
We suppose that most of the calculation cost resides in matrix
inversion.
We assume that we need O(n3) operations to inverse a square
matrix of size n.

Coarse mesh

We consider a N × N cartesian grid for TH .
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Asymptotic cost estimate

We give an asymptotic cost estimate for regular cartesian
meshes.
We suppose that most of the calculation cost resides in matrix
inversion.
We assume that we need O(n3) operations to inverse a square
matrix of size n.

Coarse mesh

We consider a N × N cartesian grid for TH .
We have N2 coarse cells K i .
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Asymptotic cost estimate

We give an asymptotic cost estimate for regular cartesian
meshes.
We suppose that most of the calculation cost resides in matrix
inversion.
We assume that we need O(n3) operations to inverse a square
matrix of size n.

Coarse mesh

We consider a N × N cartesian grid for TH .
We have N2 coarse cells K i .

Fine submeshes
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Asymptotic cost estimate

We give an asymptotic cost estimate for regular cartesian
meshes.
We suppose that most of the calculation cost resides in matrix
inversion.
We assume that we need O(n3) operations to inverse a square
matrix of size n.

Coarse mesh

We consider a N × N cartesian grid for TH .
We have N2 coarse cells K i .

Fine submeshes

Each corase cell K i is divided into a M ×M cartesation grid.
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Asymptotic cost estimate

We give an asymptotic cost estimate for regular cartesian
meshes.
We suppose that most of the calculation cost resides in matrix
inversion.
We assume that we need O(n3) operations to inverse a square
matrix of size n.

Coarse mesh

We consider a N × N cartesian grid for TH .
We have N2 coarse cells K i .

Fine submeshes

Each corase cell K i is divided into a M ×M cartesation grid.
Each submesh T i

h contains M2 fine cells K i
j .
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Fine mesh
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Fine mesh

The fine mesh is a regular NM × NM cartesian grid on Ω.
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Fine mesh

The fine mesh is a regular NM × NM cartesian grid on Ω.

The fine mesh contains (NM)2 fine cells.
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Fine mesh

The fine mesh is a regular NM × NM cartesian grid on Ω.

The fine mesh contains (NM)2 fine cells.

Matrices
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Fine mesh

The fine mesh is a regular NM × NM cartesian grid on Ω.

The fine mesh contains (NM)2 fine cells.

Matrices

The coarse matrix Kcc is of size αN2.
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Fine mesh

The fine mesh is a regular NM × NM cartesian grid on Ω.

The fine mesh contains (NM)2 fine cells.

Matrices

The coarse matrix Kcc is of size αN2.

Each fine submatrix K i
ff is of size αM2.
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Fine mesh

The fine mesh is a regular NM × NM cartesian grid on Ω.

The fine mesh contains (NM)2 fine cells.

Matrices

The coarse matrix Kcc is of size αN2.

Each fine submatrix K i
ff is of size αM2.

The classical stiffness matrix on the fine mesh is of size
αN2M2.
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Fine mesh

The fine mesh is a regular NM × NM cartesian grid on Ω.

The fine mesh contains (NM)2 fine cells.

Matrices

The coarse matrix Kcc is of size αN2.

Each fine submatrix K i
ff is of size αM2.

The classical stiffness matrix on the fine mesh is of size
αN2M2.

Where αFEM = 1 and αDG = 4.
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Asymptotic cost of the upscaling algorithm
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Asymptotic cost of the upscaling algorithm

Using the upscaling algorithm, inverse the N2 K i
ff matrices.
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Asymptotic cost of the upscaling algorithm

Using the upscaling algorithm, inverse the N2 K i
ff matrices.

Each inversion requires O(α3M6) operations.
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Asymptotic cost of the upscaling algorithm

Using the upscaling algorithm, inverse the N2 K i
ff matrices.

Each inversion requires O(α3M6) operations.
The inversion of all the submatrices requires O(α3N2M6)
operations.
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Asymptotic cost of the upscaling algorithm

Using the upscaling algorithm, inverse the N2 K i
ff matrices.

Each inversion requires O(α3M6) operations.
The inversion of all the submatrices requires O(α3N2M6)
operations.
We also inverse the matrix of the coarse problem
Kcc − Kcf K

−1
ff KT

cf , of size αN
2.
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Asymptotic cost of the upscaling algorithm

Using the upscaling algorithm, inverse the N2 K i
ff matrices.

Each inversion requires O(α3M6) operations.
The inversion of all the submatrices requires O(α3N2M6)
operations.
We also inverse the matrix of the coarse problem
Kcc − Kcf K

−1
ff KT

cf , of size αN
2.

This inversion requires O(α3N6) operations.
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Asymptotic cost of the upscaling algorithm

Using the upscaling algorithm, inverse the N2 K i
ff matrices.

Each inversion requires O(α3M6) operations.
The inversion of all the submatrices requires O(α3N2M6)
operations.
We also inverse the matrix of the coarse problem
Kcc − Kcf K

−1
ff KT

cf , of size αN
2.

This inversion requires O(α3N6) operations.
The total cost of the upscaling algorithm is
O(α3N6 + α3N2M6).
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Asymptotic cost of the upscaling algorithm

Using the upscaling algorithm, inverse the N2 K i
ff matrices.

Each inversion requires O(α3M6) operations.
The inversion of all the submatrices requires O(α3N2M6)
operations.
We also inverse the matrix of the coarse problem
Kcc − Kcf K

−1
ff KT

cf , of size αN
2.

This inversion requires O(α3N6) operations.
The total cost of the upscaling algorithm is
O(α3N6 + α3N2M6).
If the domain is higly heterogeneous, then N << M, and the
cost is approximatly O(α3N2M6).
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Asymptotic cost of the upscaling algorithm

Using the upscaling algorithm, inverse the N2 K i
ff matrices.

Each inversion requires O(α3M6) operations.
The inversion of all the submatrices requires O(α3N2M6)
operations.
We also inverse the matrix of the coarse problem
Kcc − Kcf K

−1
ff KT

cf , of size αN
2.

This inversion requires O(α3N6) operations.
The total cost of the upscaling algorithm is
O(α3N6 + α3N2M6).
If the domain is higly heterogeneous, then N << M, and the
cost is approximatly O(α3N2M6).

Comparison with the classical method
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Asymptotic cost of the upscaling algorithm

Using the upscaling algorithm, inverse the N2 K i
ff matrices.

Each inversion requires O(α3M6) operations.
The inversion of all the submatrices requires O(α3N2M6)
operations.
We also inverse the matrix of the coarse problem
Kcc − Kcf K

−1
ff KT

cf , of size αN
2.

This inversion requires O(α3N6) operations.
The total cost of the upscaling algorithm is
O(α3N6 + α3N2M6).
If the domain is higly heterogeneous, then N << M, and the
cost is approximatly O(α3N2M6).

Comparison with the classical method

The inversion of the classical stiffness matrix requires
O(α3N6M6) operations.
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Asymptotic cost of the upscaling algorithm

Using the upscaling algorithm, inverse the N2 K i
ff matrices.

Each inversion requires O(α3M6) operations.
The inversion of all the submatrices requires O(α3N2M6)
operations.
We also inverse the matrix of the coarse problem
Kcc − Kcf K

−1
ff KT

cf , of size αN
2.

This inversion requires O(α3N6) operations.
The total cost of the upscaling algorithm is
O(α3N6 + α3N2M6).
If the domain is higly heterogeneous, then N << M, and the
cost is approximatly O(α3N2M6).

Comparison with the classical method

The inversion of the classical stiffness matrix requires
O(α3N6M6) operations.
The upscaling algorithm is N4 times less expensive.
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Example

We solve the equation

{

−∆u = f in Ω
u = 0 on ∂Ω,
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Example

We solve the equation

{

−∆u = f in Ω
u = 0 on ∂Ω,

where f (x , y) = sin(πx) sin(πy).
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Example

We solve the equation

{

−∆u = f in Ω
u = 0 on ∂Ω,

where f (x , y) = sin(πx) sin(πy).

On a 10× 10 coarse cartesian grid.
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Example

We solve the equation

{

−∆u = f in Ω
u = 0 on ∂Ω,

where f (x , y) = sin(πx) sin(πy).

On a 10× 10 coarse cartesian grid.

Each coarse cell is subdivide with a 5× 5 fine cartesian grid.
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Coarse componant ū ∈ V̄H
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Fine componant û ∈ V̂h
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Upscaled solution u ∈ Vups
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Slide at Y = 0.48
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Upscaling algorithm simplifies calcution using artificial
boundary conditions.
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Upscaling algorithm simplifies calcution using artificial
boundary conditions.

DGM is adapted to upscaling algorithm.

We need to investigate heterogeneous problems.
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boundary conditions.

DGM is adapted to upscaling algorithm.

We need to investigate heterogeneous problems.

We need to investigate properties for higher order polynmial.
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Conlusion

Upscaling algorithm simplifies calcution using artificial
boundary conditions.

DGM is adapted to upscaling algorithm.

We need to investigate heterogeneous problems.

We need to investigate properties for higher order polynmial.

Questions

Do you have any question?
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