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Introduction

* |terative methods in parallel distributed
environment.

* If one Processor fails, all its data are lost.
* Impossible to continue iterations.
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Introduction

* |terative methods in parallel distributed
environment.

* If one Processor fails, all its data are lost.
* Impossible to continue iterations.

Resilience: Ability to compute a correct output in presence of faults.

Goal: Keep converging in presence of fault.

Method: Re-generate lost data without Checkpoint/Restart strategy.
Approach: Numerical algorithm.

Context: Krylov solvers.

* % % %
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Faults in HPC Systems
Framework

Forecast for exascale systems
* Mean Time Between Failure (MTBF): less the one hour.

* Checkpoint overhead:

» 30 minutes per checkpoint.
» 1 Terabyte/second.
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Limitation of classical checkpointing.
Explore fault-tolerant schemes with less/no overhead.
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Faults in HPC Systems
Framework

Forecast for exascale systems
* Mean Time Between Failure (MTBF): less the one hour.

Checkpoint overhead:

» 30 minutes per checkpoint.
» 1 Terabyte/second.

*

*

Limitation of classical checkpointing.
Explore fault-tolerant schemes with less/no overhead.
Numerical algorithms to deal with overhead issue.

*

*

Faults in this presentation
* Invalid processor (memory, caches, network connections,

)
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2. lterative methods for sparse linear systems
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lterative methods for sparse linear systems

Ax = b.

We have to design fault tolerant solver
for sparse linear system.
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lterative methods for sparse linear systems

Ax = b.

We have to design fault tolerant solver
for sparse linear system.

Two classes of iterative methods
* Stationary methods (Jacobi, Gauss-Seidel, .. .).

* Krylov subspace methods (GMRES, CG, Bi-CGStab, .. .).
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lterative methods for sparse linear systems

Ax = b.

We have to design fault tolerant solver
for sparse linear system.

Two classes of iterative methods
*

* Krylov subspace methods (GMRES, CG, Bi-CGStab, .. .).

* Krylov methods have attractive potential for resilience.
* They combine two main advantages:

» Numerical robustness.
» Converging in presence of fault when clever
recovering schemes are employed.
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r model assumptions

Block row dlstrlbutlon
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Our model assumptions

Block row dlstrlbutlon

B

B

Fy

2l

Three categories of lost data [Julien
Langou et al, SIAM J. Sci, 2007]

» Computational environment.

» Static data.

» Dynamic data.
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Our model assumptions

Wsatic data [T] Dynamic data
A X b

Three categories of lost data [Julien
i Langou et al, SIAM J. Sci, 2007]

5

» Computational environment.
= Static data.
» Dynamic data.
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» Computational environment.
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» Dynamic data.

Let's Assume that P, fails.
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Our model assumptions

Wl static data  [] Dynamic data [l Lost data

A X b

B Three categories of lost data [Julien

Langou et al, SIAM J. Sci, 2007]
B

» Computational environment.
» Static data.

» Dynamic data.

B

Let’'s Assume that P, fails.
* Failed processor is replaced.
* Static data are recovered.
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Our model assumptions

Wl static data  [] Dynamic data [l Lost data

A X b
B o Three categories of lost data [Julien
_ Langou et al, SIAM J. Sci, 2007]
* | » Computational environment.
B » Static data.
P i » Dynamic data.

Let's Assume that P, fails.

* Failed processor is replaced. » Reset: Set (x;) to zero.
» Static data are recovered.
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Our model assumptions

Wl static dota [T pmamic duta [l tovtdata [ inerpotateds data

A b
Three categories of lost data [Julien
S

Langou et al, SIAM J. Sci, 2007]
» Failed processor is replaced. » Reset: Set (x;) to zero.
» Static data are recovered.

x

5

B . .
» Computational environment.

* Static data.
» Dynamic data.

B

Fy

Let's Assume that P, fails.

Our algorithms aim at recovering x;.
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Our model assumptions

Overview of our fault tolerant algorithm

Ny

P,

N

Time

* Matlab prototype.
* Simulation of parallel
environment.
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Our model assumptions

Overview of our fault tolerant algorithm

—— Fault

F,
|

: |

P,

3 | ]

i |

Time

* Matlab prototype. * Generation of fault trace.
* Simulation of parallel » Realistic probability distribution.

environment.
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P,
e L
i |
Time
* Matlab prototype. * Generation of fault trace.
* Simulation of parallel » Realistic probability distribution.

environment.

. &z&’a_..- Joint lab INRIA-CERFACS TEAM HiePACs - Towards resilient Krylov solvers July 25, 2012- 10



Our model assumptions

Overview of our fault tolerant algorithm

— Fault [ Successful iteration

P,
e L
i |
Time
* Matlab prototype. * Generation of fault trace.
* Simulation of parallel * Realistic probability distribution.

environment.

. hu’a,— Joint lab INRIA-CERFACS TEAM HiePACs - Towards resilient Krylov solvers July 25, 2012- 10



Our model assumptions

Overview of our fault tolerant algorithm

—— Fault 3 Successful iteration W Failed iteration

P,
e L
i |
Time
* Matlab prototype. * Generation of fault trace.
* Simulation of parallel * Realistic probability distribution.

environment.

. hu’a_,— Joint lab INRIA-CERFACS TEAM HiePACs - Towards resilient Krylov solvers July 25, 2012- 10



Our model assumptions

Overview of our fault tolerant algorithm

— Fault [ Successful iteration WM Failed iteration [ Interpolation
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i |
Time
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Our model assumptions

Overview of our fault tolerant algorithm

Restart

— Fault [ Successful iteration WM Failed iteration [ Interpolation

P,

P

&N

Time

* Matlab prototype. * Generation of fault trace.

* Simulation of parallel * Realistic probability distribution.
environment.
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4. Interpolation methods
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Interpolation methods

Linear Interpolation (LI) [J. Langou et al, SIAM J. Sci, 2007]

Wlstatic data [] Dynamic data W zost data

A
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Interpolation methods

Linear Interpolation (LI) [J. Langou et al, SIAM J. Sci, 2007]

[Wlstatic data [] Dynamic data Wl o5t data
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Interpolation methods

Linear Interpolation (LI) [J. Langou et al, SIAM J. Sci, 2007]

.Static data l:l Dynamic data . Lost data

A(1,1) x1 A(1,2) x2 A(1,3) x3 A(1,4) x4

EI+ '

A(171)X1+ A(172)X2+ A(173)X3 + A(174)X4 = bl .
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Interpolation methods

Linear Interpolation (LI) [J. Langou et al, SIAM J. Sci, 2007]

- Static data l:l Dynamic data - Lost data

A(1,1) x1 bl  A1,2) x2 A(1,3) 3 Al,4) x4

BT

Aq Xt =br - A )% - A 3)%s - A a)Xa-
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Interpolation methods

Linear Interpolation (LI) [J. Langou et al, SIAM J. Sci, 2007]

- Static data |:| Dynamic data - Lost data l:‘ Interpolated data

A(1,1) x1 bl  A@1,2) x2  A(1,3) x3 A(l1,4) x4

Aq Xt =br - A )% - A 3)%s - A a)Xa-
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Interpolation methods

Linear Interpolation (LI) [J. Langou et al, SIAM J. Sci, 2007]

- Static data |:| Dynamic data - Lost data l:‘ Interpolated data

Al,1) x1 bl  A(1,2) x2 Al,3) x3 Al4

Aq Xt =br - A )% - A 3)%s - A a)Xa-

A(i,i)xz(nEW) =bi— Y AjpX-
i

x4
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Interpolation methods

Linear Interpolation (LI) [J. Langou et al, SIAM J. Sci, 2007]

GMRES-Matrix:Averous_epb0(n=1794,nnz=7764)
P=10 -mtbf=88.05Mflops (SF=8)

0.1

0.01

AN W

0.0001

le-05

le-06 \\
1e-07 \
N \

[1Ax-bI1/|[bl]

1e-08
Reset \\
1le-09 [ LI
REF \
le-10 ! ! b

0 148 296 444 592 740 888 1036 1184 1332 1480
Iterations
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Interpolation methods

Least squares interpolation (LSI)

Wlstatic data [T] Dynamic data Ml zost data

A
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Interpolation methods

Least squares interpolation (LSI)
Ml static data D Dynamic data - Lost data

A(:,2)

T

A( 1)X1+ A( 2)X2+ A( 3)X3 +A( 4)X.
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Interpolation methods

Least squares interpolation (LSI)

Wl static data [ |Pynamic data Wl o5t data
x| = argmm||(b A yXa — A 3)X3 — A ayXa) — Agnxll,-

l &L?,{a,— Joint lab INRIA-CERFACS TEAM HiePACs - Towards resilient Krylov solvers July 25, 2012- 14



Interpolation methods

Least squares interpolation (LSI)

Wl static data Dnynamic data -Lost data I:l Interpolated data

46T

x| = argmm||(b A yXa — A 3)X3 — A ayXa) — Agnxll,-
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Interpolation methods

Least squares interpolation (LSI)

Wl static data Dnynamic data -Lost data I:l Interpolated data

46T

x| = argmm||(b A yXa — A 3)X3 — A ayXa) — Agnxll,-

LSI preserves the residual norm decrease monotony of GMRES.
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Interpolation methods

Least squares interpolation (LSI)

GMRES-Matrix:Averous_epb0(n=1794,nnz=7764)
P=10 -mtbf=88.05Mflops (SF=8)

0.1

0.01

WAL

0.0001 AN \\ \\ \ \ N

le-05 \ \
1le-06
1le-07 \
1e-08 Reset — TN
u— \\

le-09 [ LSl

R‘EF -

[1Ax-bI1/|[bl]

le-10
0 129 258 387 516 645 774 903 1032 1161 1290

Iterations
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Interpolation methods

Multiple Faults

Restart

___ Fault [ Successful iteration W Failed iteration [ Interpolation

P,

P,

N

Time
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Interpolation methods

Multiple Faults

Restart

___ Fault = Successful iteration W Failed iteration [ Interpolation

P

P,

N

Time

Multiple faults: more than one fault at the same iteration.

. hu’a,— Joint lab INRIA-CERFACS TEAM HiePACs - Towards resilient Krylov solvers July 25, 2012- 16



Interpolation methods

Multiple Faults

Wlstatic data [] Dynamic data W o5t data

A

x b
- B

S

P,

* x3 is needed to interpolate x;, vice-versa.
* How to deal with data dependency?

=
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Interpolation methods

Assembled recovery: LI-A/LSI-A

Wlstatic data [] Dynamic data Wl o5t data

Joint lab INRIA-CERFACS TEAM HiePACs - Towards resilient Krylov solvers July 25, 2012- 18



Interpolation methods
Assembled recovery: LI-A/LSI-A

[Wlstatic data [] Dynamic data W o5t data

Failed blocks are assembled.
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Interpolation methods

Assembled recovery: LI-A/LSI-A

[Wlstatic data [] Dynamic data W o5t data

Failed blocks are assembled.
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Interpolation methods

Assembled recovery: LI-A/LSI-A

GMRES-Matrix:Averous_epb0(n=1794,nnz=7764)
P=34 -mtbf=.66Mflops (SF=213, MF=2)

0.1

0.01

0.001

3 00001 o
= le-05 b
Qo e- L
< 1e-06 ‘\ \.\
1e-07 = N
1e-08 Reset \ \\\k\
LA \\ "\\
1e-:09 |- | Lsia
o e — ™~ N

0 179 358 537 716 895 1074 1253 1432 1611 1790
Iterations

* 2 multiple faults.
* 56™ jteration and 784™ iteration.
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Interpolation methods

Parallel recovery: LI-P/LSI-P

Wl static data [T] Dynamic data Wl o5t data

S

Interpolate x; assuming that x; is equal to zero subvector.
Interpolate x; assuming that x; is equal to zero subvector.
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Interpolation methods

Parallel recovery: LI-P/LSI-P

Wl static data [T] Dynamic data Mot data [ Jrnerpotated data

S

b

Interpolate x; assuming that x; is equal to zero subvector.
Interpolate x; assuming that x; is equal to zero subvector.
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Interpolation methods

GMRES-Matrix:Averous_epb0(n=1794,nnz=7764)
P=34 -mtbf=.66Mflops (SF=213, MF=2)

1
0.1
0.01
0.001 | L |
= =
o 0.0001 NG
= S \
o le-05 NN
< 1e-06 ‘\ =h X
- ™.
1e-07 \ -\\'\\\C:
le-08 [~  Reset ™ :\u\
Lp \ \xp\\\_\"“\-\
1 L ™
e-09 LI-A \ \
REF
le-10 —+— . L
0 179 358 537 716 895 1074 1253 1432 1611 1790
Iterations

* 2 multiple faults.
* 56™ jteration and 784™ iteration.
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Interpolation methods

GMRES-Matrix:Averous_epb0(n=1794,nnz=7764)
P=34 -mtbf=.66Mflops (SF=213, MF=2)

1
0.1
0.01
0.001 | L |
3 0000
= —~
= \
o) le-05 —1
% \ \T
< 1e-06 ‘\ \
1e-07 < \
‘\
1e-08 Reset \ ‘h\\
LSI-P \ ~——_
le-09 | | Lsia AN B S
REF \ \\
le-10 —+— . L
0 179 358 537 716 895 1074 1253 1432 1611 1790
Iterations

* 2 multiple faults.
* 56™ jteration and 784™ iteration.
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Interpolation methods

Impact of data dependency in LSI-P

-Static data I:I Dynamic data . Lost data

A X
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Interpolation methods

Impact of data dependency in LSI-P

Wstetic dote [ Jounamic data

AL A2

x1 b

* Taking x3 = 0, induces perturbation.
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Impact of data dependency in LSI-P

.S!uﬁz data Dbynamic data D Unsed data

a0, 8D

H

A3) x3 A4 x4
H L J H * Taking x3 = 0, induces perturbation.
* Sparse overdetermined least squares.
[
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Impact of data dependency in LSI-P

.smﬁc data DDyrmmic data D Unsed data l Pertubed data

A1)

X1 b A2 x2

A3 x3 A4 x4
H H L J H * Taking x3 = 0, induces perturbation.
* Sparse overdetermined least squares.

* |dentification of perturbed rows.

ol |
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Impact of data dependency in LSI-P

.smﬁc data DDmeic data D Unsed data l Pertubed data

ALY o b A2 2 A3 x3 A4 x4
H H 1 H * Taking x3 = 0, induces perturbation.
* Sparse overdetermined least squares.
* |ldentification of perturbed rows.
—.= - - - D[ * Discard of perturbed rows.
ﬂ] = |
'
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Impact of data dependency in LSI-P

.smﬁc data DDmeic data D Unsed data l Pertubed data

A g b A2) “ A3 3 A x4

L

_
r "

Taking x; = 0, induces perturbation.
Sparse overdetermined least squares.
Identification of perturbed rows.
Discard of perturbed rows.

Risk: rank deficiency.

LS S R

ﬂ]ji
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5. Concluding remarks and perspectives
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Concluding remarks and perspectives
Concluding remarks

Concluding remarks

» Assembled approaches more robust than parallel
approaches.

LSI-A preserve residual norm monotony for GMRES.
LSI-P more robust than LI-P.

Similar behavior for BICGSTAB and CG.

No fault, no overhead.

*

*

*

*

Perspectives
= Consider the cost of interpolation.
» Best combination of interpolation and selective checkpoint.
» Real code.

v
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Thank you for listening

rd

S http://hiepacs.bordeaux.inria.fr/
V2577
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Concluding remarks and perspectives
Concluding remarks

Concluding remarks

*» Assembled approaches more robust than parallel
approaches.

LSI-A preserve residual norm monotony for GMRES.
LSI-P more robust than LI-P.

Similar behavior for BICGSTAB and CG.

No fault, no overhead.

*

*

*

*

Questions?

Perspectives
» Consider the cost of interpolation.
» Best combination of interpolation and selective checkpoint.

*

Real code.
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