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Resilience: Ability to compute a correct output in presence of faults.

F Goal: Keep converging in presence of fault.
F Method: Re-generate lost data without Checkpoint/Restart strategy.
F Approach: Numerical algorithm.
F Context: Krylov solvers.

F Iterative methods in parallel distributed
environment.

F If one Processor fails, all its data are lost.
F Impossible to continue iterations.



Outline
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2. Iterative methods for sparse linear systems

3. Our model assumptions

4. Interpolation methods
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Faults in HPC Systems

Framework

Forecast for exascale systems
F Mean Time Between Failure (MTBF): less the one hour.
F Checkpoint overhead:

I 30 minutes per checkpoint.
I 1 Terabyte/second.

F Limitation of classical checkpointing.
F Explore fault-tolerant schemes with less/no overhead.
F Numerical algorithms to deal with overhead issue.

Faults in this presentation
F Invalid processor (memory, caches, network connections,

. . . )
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=

Ax = b.
We have to design fault tolerant solver
for sparse linear system.
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x bA

=

Ax = b.
We have to design fault tolerant solver
for sparse linear system.

Two classes of iterative methods
F Stationary methods (Jacobi, Gauss-Seidel, . . . ).
F Krylov subspace methods (GMRES, CG, Bi-CGStab, . . . ).

F Krylov methods have attractive potential for resilience.
F They combine two main advantages:

I Numerical robustness.
I Converging in presence of fault when clever

recovering schemes are employed.
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F Failed processor is replaced.
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F Reset: Set (x1) to zero.
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Three categories of lost data [Julien
Langou et al, SIAM J. Sci, 2007]

F Computational environment.
F Static data.
F Dynamic data.

Let’s Assume that P1 fails.
F Failed processor is replaced.
F Static data are recovered.

F Reset: Set (x1) to zero.

Our algorithms aim at recovering x1.
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Linear Interpolation (LI) [J. Langou et al, SIAM J. Sci, 2007]
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Least squares interpolation (LSI)
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A(:,2) x2 A(:,3) x3 A(:,4) x4x1
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− − −

Interpolated data

x1 = argmin
x
‖(b− A(:,2)x2 − A(:,3)x3 − A(:,4)x4)− A(:,1)x‖2.

LSI preserves the residual norm decrease monotony of GMRES.
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Least squares interpolation (LSI)
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Multiple faults: more than one fault at the same iteration.
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Multiple Faults

-
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F x3 is needed to interpolate x1, vice-versa.
F How to deal with data dependency?
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Assembled recovery: LI-A/LSI-A
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Assembled recovery: LI-A/LSI-A
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F 2 multiple faults.
F 56th iteration and 784th iteration.
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Parallel recovery: LI-P/LSI-P
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Interpolate x3 assuming that x1 is equal to zero subvector.
Interpolate x1 assuming that x3 is equal to zero subvector.
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Parallel recovery: LI-P/LSI-P
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Interpolation methods

LI-P
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LSI-P
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Impact of data dependency in LSI-P
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F Taking x3 = 0, induces perturbation.
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F Risk: rank deficiency.
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Concluding remarks and perspectives

Concluding remarks

Concluding remarks
F Assembled approaches more robust than parallel

approaches.
F LSI-A preserve residual norm monotony for GMRES.
F LSI-P more robust than LI-P.
F Similar behavior for BICGSTAB and CG.
F No fault, no overhead.

Perspectives
F Consider the cost of interpolation.
F Best combination of interpolation and selective checkpoint.
F Real code.
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Concluding remarks and perspectives

Thank you for listening
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Concluding remarks and perspectives

Concluding remarks

Concluding remarks
F Assembled approaches more robust than parallel

approaches.
F LSI-A preserve residual norm monotony for GMRES.
F LSI-P more robust than LI-P.
F Similar behavior for BICGSTAB and CG.
F No fault, no overhead.

Questions?

Perspectives
F Consider the cost of interpolation.
F Best combination of interpolation and selective checkpoint.
F Real code.
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