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Motivation

@ Simulation of seismic wave propagation at regional scale, especially site
effects

@ We solve the direct problem with a discontinuous Galerkin (DG) method with
the possibilities of using:

o meshes adapted to complex geometries

o coarser meshes thanks to high order polynomial interpolation

@ Objective is to take into account realistic physical phenomena — like
attenuation
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@ Modeling wave attenuation
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Modeling wave attenuation

Definition

Attenuation: decrease in amplitude of the seismic wave

Several processes are involved

One is not described within the theory of elasticity: intrinsic attenuation

@ Implies conversion of energy into heat by permanent deformation of the
medium
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Modeling wave attenuation

1D Boltzmann's principle

@ Stress at time t depends of the entire strain history until t:

t
az/ ¢(t —7)0re(T)dT = Orp % €
where ¢ is the relaxation function

@ Convolution: nearly intractable in a numerical computation

@ Successful approach is to consider frequency-domain relations using
rheological models [DAY AND MINSTER, Geophys. J. R. astr. Soc. (1984)]
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Modeling wave attenuation

Frequency-domain relations

@ The convolution is replaced by a multiplication using a Fourier Transform:

o=0bxe 13 5(w) = Mw)ew)
where M = F[0;¢] = iwF [¢] is the complex modulus

@ Now, if M is a rational fraction of jw:

YR p(iw)
M) = S o)

then
l I'/( /'/

and the convolution has been replaced by differential equations
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Modeling wave attenuation

Rheological models

@ Linear rheological models are made of springs and dashpots connected in
series and/or parallel

o Time and frequency-domain rules (k elastic modulus, 1 viscosity):

Element Hooke (spring)  Stokes (dashpot)
Time relation o(t) = ke(t) o(t) = n Oe(t)

Frequency relation o(w) = ke(w) 7(w) = iwnew)

Connection In series In parallel
o equal additive
€ additive equal
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Modeling wave attenuation

Maxwell Body
Maxwell body
o Spring: opg(w) = kepg(w) 7
@ Dashpot: Tsg(w) = iwnesg(w)
k
@ Inseriess 0 =0xyg =0sg and €= €xp+esn
. N . kiw -
o Finally: o =Me= <—> € n
wo + 1w
k. .
where wg = — is the relaxation frequency
Ui
o€
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Modeling wave attenuation

Generalized Maxwell Body

@ One spring and L Maxwell
Bodies in parallel

Generalized Maxwell body

wy = k;/m relaxation frequency of

T h

the /-th Maxwell Body

[EMMERICH AND KORN, Geophysics (1987)]
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Modeling wave attenuation

Generalized Maxwell Body

e
o GMB modulus:  M(w (kH +Z - I:L)
!

w——+00

L
o Unrelaxed modulus: MY = lim M(w) = I|m M(t) = kH—|—ZkI
=1

L

TM,/

o M(w) Z YY) where TM = ki/MVY are the anelastic
= wi +Iw

coefficients
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Modeling wave attenuation

Generalized Maxwell Body

@ Stress-strain time relation:
L
o(t) = mY (e(t) -3 TM”C'(t)>
=1
t

where (/(t) = w,/ e~ “t=7) ¢(7) dr are the anelastic functions

— 00

@ These anelastic functions verify differential equations:

D:C (1) + wi ¢ (t) = wre(t)
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Modeling wave attenuation

2D/3D viscoelastic attenuation

L
In 1D, had f GMB: M(w) = MY
e In we had for one (w) < ,E; ot M)

@ The 3D generalization is obtained by introducing as many GMB as needed

@ For example, in the isotropic case, we consider one for A\ and one for u:

Ly bW Ly /
TN w; THl )
Mw)=AY[1- d N
(w) ( Z wy + iw) and - p(w) =p ( Z wr + iw)

=1

where \Y and 1Y are the unrelaxed Lamé parameters
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Modeling wave attenuation

Attenuation law
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Modeling wave attenuation

Summary

Step-by-step modeling for the isotropic case:

o Consider two GMB, one for A and one for u, each composed of L MB

@ Choose relaxation frequencies for these GMB so that they cover efficiently
the frequency range of interest

o Determine anelastic coefficients T*/ and T#/ using measured/desired
attenuation laws

It is then possible to solve the global system by adding the differential equations
verified by the anelastic functions
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Outline

© A DG scheme for viscoelastic attenuation
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A DG scheme for viscoelastic attenuation

The DG method

Initially introduced to solve neutron transport problems (Reed and Hill, 1973)

@ Became popular as a framework for solving hyperbolic systems (especially
Maxwell equations)

@ Increasing number of contributions in seismic wave propagation

Somewhere between a finite element and a finite volume method

@ Main properties:

can easily deal with discontinuous coefficients and solutions
can handle unstructured or non-conforming meshes

yield local finite element mass matrices

high-order accurate methods with compact stencils
naturally suited for p-adaptivity

amenable to efficient parallelization

@ Main drawback: CPU and memory cost
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A DG scheme for viscoelastic attenuation

Viscoelastic velocity-stress system

@ Stress-displacement linear elastic relation:

o=V -u)l+pu(Vu+Vu")
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A DG scheme for viscoelastic attenuation

Viscoelastic velocity-stress system

@ Stress-displacement linear viscoelastic relation:

~

=MV -u)+p(Vu+Vul) =Y (AT er() 14201 ()
=1
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A DG scheme for viscoelastic attenuation

Viscoelastic velocity-stress system

@ Stress-displacement linear viscoelastic relation:

L
=MV -u)+p(Vu+Vul) =Y (AT er() 14201 ()

1=1
o Velocity-stress elastic system (9 equations in 3D, 5 in 2D):

ov

pa = V.o
Jdo -
3 = AMV-v)I+pu(Vv+Vvh)
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A DG scheme for viscoelastic attenuation

Viscoelastic velocity-stress system

@ Stress-displacement linear viscoelastic relation:

~

=MV -u)+p(Vu+Vul) =Y (AT er() 14201 ()
=1

@ Velocity-stress viscoelastic system (946L equations in 3D, 5+3L in 2D):

ov

pa = V-0

9o _ MV V) +p(Vv+ V) i ATM tr(ely 1+ 2prm ¢l
ot =

ol w T / _

5 = ?(Vv%—Vv )—wi&, I=1,...,L

18 / 37

F. Peyrusse, N. Glinsky, S. Lanteri (Nachos, Inria) A DG method for viscoelastic wave propagation June 26, 2012



A DG scheme for viscoelastic attenuation

Viscoelastic velocity-stress 2D system

o Let W= (V,E,Z)T, where @ = (0'11,0'22,0'12)T and
B i

=, ..., T with & = (&, & &l)T

o Compact form:

— + Z Au O =EW
ae{l,2}

where ja and E are 5 + 3L block matrices
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A DG scheme for viscoelastic attenuation

Main features

o Finite element type discretization in triangles

o Lagrange nodal interpolation — degree 1 to 4 — on simplicial elements
@ Boundary conditions: free surface, absorbing, periodic
@ Centered fluxes for the internal faces combined with a leap-frog time scheme

o Stability [DELCOURTE ET AL., ESAIM: Proceedings, 2009]

o A priori convergence (submitted)
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A DG scheme for viscoelastic attenuation

DG scheme

After spatial and leap-frog time discretization, we obtain:

=7 f— 7 N

M (Wit -wg) = acFl ()
7 (] T
M (Wetz-wiiz) = acgl, (w € )
=T (T T o
M (waE-wiE) = aenl (v e

where:

e Wy, We,, and W . contain respectively the values of v,, 0,8 and 5;5
(e,8=1,2and I =1,...,L) on an element T;

o FJi, g(fjﬁ and Hzﬂ (o, B8 = 1,2) are operators collecting the integrals on T;
and 97;
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© Numerical results
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Numerical results

Layered media

@ A vertical S plane wave generated by a source

free surface

propagates in a 1D column made of 7 layers T
(with differents parameters) above a bedrock 2
3
@ An absorbing condition is applied at the B
bottom and periodic conditions on the sides
5 xT
Vp Vs 14 Qp Qs ® [
300m
1 1500 | 130 | 2050 | 75 15 6
2 1500 | 200 | 2150 | 75 20 -
3 1650 | 300 | 2075 | 83 30
4 2050 | 450 | 2100 | 103 40
5 2450 | 600 | 2155 | 123 60 e
6 2550 | 700 | 2200 | 140 70
7 3500 | 1250 | 2500 | 200 100 *
source
rock || 4500 | 2600 | 2600 | 50000 | 50000
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Numerical results

Layered media

| | | | 1 1 L
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Numerical results

Layered media

@ We compare our 2D discontinuous Galerkin code with:

e a 2D finite difference (DF) code from C. Gélis (IRSN) using the Liu/Archuleta
method (Liu and Archuleta, 2006)

o the Haskell-Thomson method (HT), with solutions also provided by C. Gélis

@ We compute the ratios between the surface spectrum and twice the source
spectrum of vy, in order to know the amplification versus frequency curve
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Numerical results

Layered media
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Numerical results

Layered media

| I | | I I
0 6
frequency (Hz)

Spectral ratios in the viscoelastic case
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Numerical results

Layered media

16
——GD elastic
——DF elastic
14 ——HT elastic

——GD viscoelastic|
—— DF viscoelastic
——— HT viscoelastic

0 1 1 1 1 1 1

6
frequency (Hz)

Spectral ratios in the elastic and viscoelastic cases
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Numerical results

Layered media

9-
——GD - 8 mech]

~——GD - 5 mech,

8 \ ——GD - 3 mech|
——DF

——HT

3
frequency (Hz)

Spectral ratios in the viscoelastic case — influence of the number of mechanisms
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Numerical results

Layered media
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Solutions in time — influence of the number of mechanisms
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Numerical results

Layered media

The velocity is given at a reference frequency f, and a different choice gives very
different results because A and p are modified too

6
frequency (Hz)

Spectral ratios in the viscoelastic case — influence of the reference frequency
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Numerical results

2D test-case

Nice basin 2D model (7 media + bedrock) — data are from the Seismic Risk team
of CETE Méditerranée de Nice
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Numerical results

2D test-case

@ Application to a simplified 2D model of the Nice basin
@ A vertical S plane wave propagates in the domain (homogeneous basin)

@ The boundary conditions and the source characteristics are unchanged from
the previous test-case

@ We compare 2D simulations and 1D simulations for 5 columns

40

20 1

Vp Vs P Qp Qs ol ]

20 4

basin 730 300 2000 73 30 wl 1
rock 2450 1000 | 2100 | 245 100 -60 1

L i i i i
5500 6000 6500 7000 7500
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Numerical results

2D test-case — viscoelastic time solutions

003 003

o o1 — ol o120 —
@ oo @ oo
£ g S
E E W
= x
£ oapf £ oo
00z 1] ooz
00 003
o B 10 15 0 s 10 15
time (s) time (s)
003 - 003
hpes column 210 —— hys column2-20 ——
@ oor @ oo
5 DJ*;:, E UM
= %
5 oorf 5 oo f
<00z 1 002 1
00 003
o B 10 15 0 s 10 15
time (s) time (s)
003 003
ppes column 310 —— hys column 3-20 ——
@ oor @ oo
M M
% ujhs— % 0 e U
5 oorf X oo
<00z 1 ooz
00 003
o B 10 15 0 s 10 15
time (s) time (s)
jedn| 10 hood 2
ppes column 4 - hyes column 4 -
@ oor T oo
E o E
x x
X oo s oot
ooz | ooz f
003 003
o B 10 15 0 s 10 15
time (s) time (s)
il -
hpes column 510 —— column 5-20 ——
@ oor z
E o E
x x
5 ool =
ooz | «
00
o 10 15 10 15

s
time (s) time (s)

1D - viscoelastic 2D — viscoelastic

Peyrusse, N. Glinsky, 5. Lanteri (Nachos, Inria) A DG method for viscoelastic wave propagation



Numerical results

2D test-case — spectral ratios
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@ Conclusion
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Conclusion

@ Linear viscoelastic attenuation can be modeled using rheological models
@ Resulting system generalizes the elastic case
@ Our DG method has been applied to the viscoelastic case

@ Ongoing and future work:

o heterogeneous Nice basin: comparisons with the FD code and observational
data using higher-degree polynomials on coarser meshes

o investigation of the best compromise between accuracy and memory/CPU cost

o other models for viscoelastic attenuation
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