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• Graph partitioning and nested dissection
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• The multilevel framework and its parallelization

• Three challenges for the next roadmap

• Where we are now...



Graph partitioning



Graph partitioning (1)

• Graph partitioning is an ubiquitous technique which has 
proven useful in a wide number of application fields

● Used to model domain-dependent optimization 
problems

● “Good solutions” take the form of partitions which 
minimize vertex or edge cuts, while balancing the 
weight of graph parts

• NP-hard problem in the general case

• Many algorithms have been proposed in the literature :
● Graph algorithms, evolutionary algorithms, spectral 

methods, linear optimization methods, …



Graph partitioning (2)

• Two main problems for our team :
• Sparse matrix ordering for direct methods
• Domain decomposition for iterative 

methods

• These problems can be modeled as graph 
partitioning problems on the adjacency graph 
of symmetric positive-definite matrices

• Edge separator problem for domain 
decomposition

• Vertex separator problem for sparse 
matrix ordering by nested dissection



Nested dissection

• Top-down strategy for removing potential fill-inducing paths

• Principle [George, 1973]
● Find a vertex separator of the graph
● Order separator vertices with available indices of 

highest rank
● Recursively apply the algorithm on the separated 

subgraphs
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The Scotch project and roadmap



The Scotch project

• Devise robust parallel graph partitioning methods
● Initial roadmap : should handle graphs of more than a 

billion vertices distributed across one thousand 
processors

● Improve sequential graph partitioning methods if possible
● E.g. provide new features such as fixed vertices

• Provide graph repartitioning methods
• Investigate alternate graph models (meshes/hypergraphs)
• Provide a software toolbox for scientific applications

• Scotch sequential software tools
• PT-Scotch parallel software tools

DONE !



Parallel partitioning : weak scalability results

• Since version 5.1.10, Scotch is fully 64-bit
• Can handle graphs above 2 billion vertices
• But less than 2 billion edges by processing elements, 

because of MPI interface limitations
– Not really a problem for us on many-core machines

• Several weak scalability experiments performed :

• Up to 8192 processors on the Hera machine at LLNL, 
with graphs above 2 billion edges

• Up to 30k cores on BG/L at LLNL
• Quality preserved on these numbers of vertices and of 

processors, but what will happen for more ?



The multilevel framework and its 
parallelization



From k-partitioning to recursive bipartitioning

• K-way graph partitioning can be approximated by a 
sequence of recursive bipartitions

• Bipartitioning is easier to implement than k-way 
partitioning

– No need to choose the destination part of vertices
• It is only an approximation, but a rather good one [Simon & 

Teng, 1993]



Recursive bipartitioning in parallel

• After a separator has been computed, the two separated 
subgraphs are folded and redistributed each on a half of 
the available processors

● All subgraphs at a same level are processed 
concurrently on separate subsets of processors

● Ability to fold a graph on any number of processors    
(not only a power of 2)



Multilevel framework

• Principle [Hendrickson & Leland, 1994]
● Create a family of topologically equivalent coarser 

graphs by clustering groups of vertices
● Compute an initial partition of the smallest graph
● Propagate back the result, with local refinement



Coarsening in parallel

• The coarsened graph can either be:
● Kept on the same number of processors: decreases 

memory and processing cost
● Folded and duplicated on two subsets of processors: 

increases quality but also cost



Parallel matching

• Parallel coarsening is based on parallel matching
• These matchings do not need to be maximal

• Synchronization between non-local neighbors is critical
• Dependency chains or loops between mating requests 

can stall the whole algorithm because of sequential 
constraints

• Some distributed tie-breaking is required
• Too many requests decrease matching probability



Parallel probabilistic matching

• Principle [Chevalier, 2007]
● Do not discriminate between local and non-local 

neighbors when selecting a neighbor for mating
● Vertices request for matings with their neighbors 

(whether local or remote) with a prescribed probability

• Reduces topological biases and converges quickly
● 5 collective passes are 

enough to match 80 % 
of the vertices on 
average 



Band graphs

• Principle [Chevalier & Pellegrini, 2006]
● Only local improvements along the projected cut 

are necessary, so work only on a small band 
around the cut

• Reduce problem space dramatically
● Allow one to use expensive algorithms, such as 

genetic algorithms



Band graphs in parallel

• Anchor vertices may have very high degrees compared to 
sequential band graphs

• Two anchor vertices per process
● Remote anchor vertices for each part form a clique

– Will soon be a hypercube to accommodate for large 
numbers of processes



Jug of the Danaides (1)

• Principle [Pellegrini, 2007]
● Analogous to “bubble growing” algorithms but natively 

integrates the load balancing constraint
● The graph is modeled as a set of leaking barrels and pipes
● Two antagonistic liquids flow from two source vertices
● Liquids vanish when 

they meet



Jug of the Danaides (2)

• Using JotD as the refinement algorithm in the multi-level 
process :

● Yields smooth interfaces
● Is slower than sequential FM (20 times for 500 

iterations, but only 3 times for 40 iterations)
• Band graph anchor vertices used as source vertices



Runtime and sparse matrix ordering quality
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Runtime and partition quality (1)
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Runtime and partition quality (2)

                                              
                                 

● Partition quality of 
ParMeTiS is irregular 
for small numbers of 
parts

● Gets worse when 
number of parts 
increases as recursive 
bipartitioning prevents 
performing global 
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Three challenges for the next 
roadmap



New roadmap

• To be able to map graphs of about a trillion vertices spread 
across a million processing elements

● Same number of vertices per processing element as in 
the first roadmap

● Focus on scalability problems related to the large 
number of processors

• Parallel dynamic repartitioning capabilities are mandatory



Three challenges

• Scalability

• How will the algorithms behave for large numbers of 
processing elements ?

• Heterogeneity

• How will the architecture of the target machine impact 
performance ?

• Asynchronicity

• Will our algorithms still be able to rely on fast collective 
communication ?



Design constraints

• Parallel algorithms have to be carefully designed
• Algorithms for distributed memory machines
• Preserve independence between the number of parts 

k and the number of processing elements P on which 
algorithms are to be executed

• Algorithms must be “quasi-linear” in |V| and / or |E|
– Constants should be kept small

• Data structures must be scalable :
● In |V| and/or |E| : graph data must not be duplicated
● In P and k : arrays in k|V| , k2, kP, P|V| or P2 are 

forbidden



• Extension to k parts of the multilevel framework used for 
recursive bipartitioning

● Straightforward for the multi-level framework itself
● Relies on distributed k-way band graphs

Parallel direct k-way graph partitioning



Architectural considerations matter

• Upcoming machines will comprise very large numbers of 
processing units, and will possess NUMA / heterogeneous 
architectures

• More than a million processing elements on the Blue 
Waters machine to be built at UIUC

• Impacts on our research :
• Target architecture has to be taken into account
• Do static mapping and not only graph partitioning

– Reduces number of neighbors and improves 
communication locality, at the expense of slight 
increase in message sizes



Static mapping

• Compute a mapping of V(S) and E(S) of source graph S to 
V(T) and E(T) of target architecture graph T, respectively

• Communication cost function accounts for distance

S

T

• Static mapping features 
are already present in the 
sequential Scotch library

• We have to go parallel



Recursive bi-mapping

● Partial cost function for recursive bipartitioning

● Decision depends on available mapping information



Parallel static mapping (1)

● Recursive bi-mapping cannot be parallelized as is
● All subgraphs at some level are supposed to be processed 

simultaneously for parallel efficiency
● Yet, ignoring decisions in neighboring subgraphs can lead 

to “twists”

● Sequential processing only!
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Parallel static mapping (2)

●  Parallel multilevel framework for static mapping
● Parallel coarsening and k-way mapping refinement
● Initial mapping by sequential recursive bi-mapping



Asynchronous algorithms

• Need for algorithms that can evolve asynchronously at 
different paces depending on communication latency

• Genetic algorithms are good candidates at a global 
level but are still too slow to converge

• Diffusion-based methods can be envisioned
– Most probably on the form of influence methods

• Multilevel optimization algorithms can also be 
considered



Where we are now...



• Dynamic graph repartitioning with fixed vertices, based on 
a direct k-way partitioning framework [PhD of Sébastien 
Fourestier]

• Sequential code extensively tested (v. 6.0)

• Parallel code being completed (v. 6.0 or 6.1)
• Shared memory parallelism (pthread-based)

• Coding started for Scotch (v. 6.0 or 6.1)

• Will have to be extended to PT-Scotch (v. 6.1 or 6.2)

On-going work (1)



• Multi-criterion (re)partitioning ?

• PhD thesis may start next December
• Asynchronous algorithms for exaflop computing ?

• PhD thesis next year ?
• Parallel hypergraph partitioning ?

• Only if gains can be expected over existing works
• Move upwards to application mesh models : PaMPA

• Joint work with C. Lachat and C. Dobrzynski

• Based on the expertise accumulated on the handling of 
distributed graphs

On-going work (2)



Repartitioning

• Ability to compute repartitions that take into account 
fixed vertices, new vertices and a wide range of 
migration costs

       0.1                        1                       10           original partition



K-way vertex partitioning with overlap

• Balance part loads according to inner vertices as well as 
neighboring separator vertices [Post-doc of Jun-Ho Her]

• Separator vertices may contribute to several parts
• Mixed results in terms of HID (experiments with HIPS)

• Must take other criteria into account



Thank you for your attention !
Any questions ?

http://scotch.gforge.inria.fr/


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

