
Current challenges for parallel
graph (re)partitioning and
(re)mapping

Cédric Chevalier, Sébastien Fourestier, Jun-Ho Her, François
Pellegrini

EQUIPE PROJET
BACCHUS
Bordeaux

Sud-Ouest 25/07/2012

Outline of the talk

• Graph partitioning and nested dissection

• The Scotch project and roadmap

• The multilevel framework and its parallelization

• Three challenges for the next roadmap

• Where we are now...

Graph partitioning

Graph partitioning (1)

• Graph partitioning is an ubiquitous technique which has
proven useful in a wide number of application fields

● Used to model domain-dependent optimization
problems

● “Good solutions” take the form of partitions which
minimize vertex or edge cuts, while balancing the
weight of graph parts

• NP-hard problem in the general case

• Many algorithms have been proposed in the literature :
● Graph algorithms, evolutionary algorithms, spectral

methods, linear optimization methods, …

Graph partitioning (2)

• Two main problems for our team :
• Sparse matrix ordering for direct methods
• Domain decomposition for iterative

methods

• These problems can be modeled as graph
partitioning problems on the adjacency graph
of symmetric positive-definite matrices

• Edge separator problem for domain
decomposition

• Vertex separator problem for sparse
matrix ordering by nested dissection

Nested dissection

• Top-down strategy for removing potential fill-inducing paths

• Principle [George, 1973]
● Find a vertex separator of the graph
● Order separator vertices with available indices of

highest rank
● Recursively apply the algorithm on the separated

subgraphs

A

S
B

A S B

The Scotch project and roadmap

The Scotch project

• Devise robust parallel graph partitioning methods
● Initial roadmap : should handle graphs of more than a

billion vertices distributed across one thousand
processors

● Improve sequential graph partitioning methods if possible
● E.g. provide new features such as fixed vertices

• Provide graph repartitioning methods
• Investigate alternate graph models (meshes/hypergraphs)
• Provide a software toolbox for scientific applications

• Scotch sequential software tools
• PT-Scotch parallel software tools

DONE !

Parallel partitioning : weak scalability results

• Since version 5.1.10, Scotch is fully 64-bit
• Can handle graphs above 2 billion vertices
• But less than 2 billion edges by processing elements,

because of MPI interface limitations
– Not really a problem for us on many-core machines

• Several weak scalability experiments performed :

• Up to 8192 processors on the Hera machine at LLNL,
with graphs above 2 billion edges

• Up to 30k cores on BG/L at LLNL
• Quality preserved on these numbers of vertices and of

processors, but what will happen for more ?

The multilevel framework and its
parallelization

From k-partitioning to recursive bipartitioning

• K-way graph partitioning can be approximated by a
sequence of recursive bipartitions

• Bipartitioning is easier to implement than k-way
partitioning

– No need to choose the destination part of vertices
• It is only an approximation, but a rather good one [Simon &

Teng, 1993]

Recursive bipartitioning in parallel

• After a separator has been computed, the two separated
subgraphs are folded and redistributed each on a half of
the available processors

● All subgraphs at a same level are processed
concurrently on separate subsets of processors

● Ability to fold a graph on any number of processors
(not only a power of 2)

Multilevel framework

• Principle [Hendrickson & Leland, 1994]
● Create a family of topologically equivalent coarser

graphs by clustering groups of vertices
● Compute an initial partition of the smallest graph
● Propagate back the result, with local refinement

Coarsening in parallel

• The coarsened graph can either be:
● Kept on the same number of processors: decreases

memory and processing cost
● Folded and duplicated on two subsets of processors:

increases quality but also cost

Parallel matching

• Parallel coarsening is based on parallel matching
• These matchings do not need to be maximal

• Synchronization between non-local neighbors is critical
• Dependency chains or loops between mating requests

can stall the whole algorithm because of sequential
constraints

• Some distributed tie-breaking is required
• Too many requests decrease matching probability

Parallel probabilistic matching

• Principle [Chevalier, 2007]
● Do not discriminate between local and non-local

neighbors when selecting a neighbor for mating
● Vertices request for matings with their neighbors

(whether local or remote) with a prescribed probability

• Reduces topological biases and converges quickly
● 5 collective passes are

enough to match 80 %
of the vertices on
average

Band graphs

• Principle [Chevalier & Pellegrini, 2006]
● Only local improvements along the projected cut

are necessary, so work only on a small band
around the cut

• Reduce problem space dramatically
● Allow one to use expensive algorithms, such as

genetic algorithms

Band graphs in parallel

• Anchor vertices may have very high degrees compared to
sequential band graphs

• Two anchor vertices per process
● Remote anchor vertices for each part form a clique

– Will soon be a hypercube to accommodate for large
numbers of processes

Jug of the Danaides (1)

• Principle [Pellegrini, 2007]
● Analogous to “bubble growing” algorithms but natively

integrates the load balancing constraint
● The graph is modeled as a set of leaking barrels and pipes
● Two antagonistic liquids flow from two source vertices
● Liquids vanish when

they meet

Jug of the Danaides (2)

• Using JotD as the refinement algorithm in the multi-level
process :

● Yields smooth interfaces
● Is slower than sequential FM (20 times for 500

iterations, but only 3 times for 40 iterations)
• Band graph anchor vertices used as source vertices

Runtime and sparse matrix ordering quality
T e st N u m b e r o f p ro ce sse s
ca se 2 4 8 1 6 3 2 6 4

a u d ikw 1

5.73E+12 5.65E+12 5.54E+12 5.45E+12 5.45E+12 5.45E+12

5 .8 2 E + 1 2 6 .3 7 E + 1 2 7 .7 8 E + 1 2 8 .8 8 E + 1 2 8 .9 1 E + 1 2 1 .0 7 E + 1 3

6 4 .1 4 4 3 .7 2 3 1 .2 5 2 0 .6 6 1 3 .8 6 9 .8 3

3 2 .6 9 2 3 .0 9 1 7 .1 5 9 .8 0 5 .6 5 3 .8 2

O
P T S

O
P M

t
P T S

t
P M

Runtime and partition quality (1)

1 10 100 1000

10

100

1000

PT-Scotch

45MILLIONS

2 parts
4 parts
8 parts
16 parts
32 parts
64 parts
128 parts
256 parts
512 parts
1024 parts
2048 parts

of Proc [log]

T
im

e
 (

se
c .

)
[lo

g
]

1 10 100 1000

0

2000000

4000000

6000000

8000000

10000000

12000000

PT-Scotch

45MILLIONS

2 parts
4 parts
8 parts
16 parts
32 parts
64 parts
128 parts
256 parts
512 parts
1024 parts
2048 parts

of Proc [log]

C
ut

 s
iz

e

Runtime and partition quality (2)

● Partition quality of
ParMeTiS is irregular
for small numbers of
parts

● Gets worse when
number of parts
increases as recursive
bipartitioning prevents
performing global
optimization 10 100 1000

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

2 parts
4 parts
8 parts
16 parts
32 parts
64 parts
128 parts
256 parts
512 parts
1024 parts
2048 parts

● Cut size ratio is most often in favor of PT-Scotch vs.
ParMeTiS up to 2048 parts

 82MILLIONS

Three challenges for the next
roadmap

New roadmap

• To be able to map graphs of about a trillion vertices spread
across a million processing elements

● Same number of vertices per processing element as in
the first roadmap

● Focus on scalability problems related to the large
number of processors

• Parallel dynamic repartitioning capabilities are mandatory

Three challenges

• Scalability

• How will the algorithms behave for large numbers of
processing elements ?

• Heterogeneity

• How will the architecture of the target machine impact
performance ?

• Asynchronicity

• Will our algorithms still be able to rely on fast collective
communication ?

Design constraints

• Parallel algorithms have to be carefully designed
• Algorithms for distributed memory machines
• Preserve independence between the number of parts

k and the number of processing elements P on which
algorithms are to be executed

• Algorithms must be “quasi-linear” in |V| and / or |E|
– Constants should be kept small

• Data structures must be scalable :
● In |V| and/or |E| : graph data must not be duplicated
● In P and k : arrays in k|V| , k2, kP, P|V| or P2 are

forbidden

• Extension to k parts of the multilevel framework used for
recursive bipartitioning

● Straightforward for the multi-level framework itself
● Relies on distributed k-way band graphs

Parallel direct k-way graph partitioning

Architectural considerations matter

• Upcoming machines will comprise very large numbers of
processing units, and will possess NUMA / heterogeneous
architectures

• More than a million processing elements on the Blue
Waters machine to be built at UIUC

• Impacts on our research :
• Target architecture has to be taken into account
• Do static mapping and not only graph partitioning

– Reduces number of neighbors and improves
communication locality, at the expense of slight
increase in message sizes

Static mapping

• Compute a mapping of V(S) and E(S) of source graph S to
V(T) and E(T) of target architecture graph T, respectively

• Communication cost function accounts for distance

S

T

• Static mapping features
are already present in the
sequential Scotch library

• We have to go parallel

Recursive bi-mapping

● Partial cost function for recursive bipartitioning

● Decision depends on available mapping information

Parallel static mapping (1)

● Recursive bi-mapping cannot be parallelized as is
● All subgraphs at some level are supposed to be processed

simultaneously for parallel efficiency
● Yet, ignoring decisions in neighboring subgraphs can lead

to “twists”

● Sequential processing only!

1

2

4

3

Parallel static mapping (2)

● Parallel multilevel framework for static mapping
● Parallel coarsening and k-way mapping refinement
● Initial mapping by sequential recursive bi-mapping

Asynchronous algorithms

• Need for algorithms that can evolve asynchronously at
different paces depending on communication latency

• Genetic algorithms are good candidates at a global
level but are still too slow to converge

• Diffusion-based methods can be envisioned
– Most probably on the form of influence methods

• Multilevel optimization algorithms can also be
considered

Where we are now...

• Dynamic graph repartitioning with fixed vertices, based on
a direct k-way partitioning framework [PhD of Sébastien
Fourestier]

• Sequential code extensively tested (v. 6.0)

• Parallel code being completed (v. 6.0 or 6.1)
• Shared memory parallelism (pthread-based)

• Coding started for Scotch (v. 6.0 or 6.1)

• Will have to be extended to PT-Scotch (v. 6.1 or 6.2)

On-going work (1)

• Multi-criterion (re)partitioning ?

• PhD thesis may start next December
• Asynchronous algorithms for exaflop computing ?

• PhD thesis next year ?
• Parallel hypergraph partitioning ?

• Only if gains can be expected over existing works
• Move upwards to application mesh models : PaMPA

• Joint work with C. Lachat and C. Dobrzynski

• Based on the expertise accumulated on the handling of
distributed graphs

On-going work (2)

Repartitioning

• Ability to compute repartitions that take into account
fixed vertices, new vertices and a wide range of
migration costs

 0.1 1 10 original partition

K-way vertex partitioning with overlap

• Balance part loads according to inner vertices as well as
neighboring separator vertices [Post-doc of Jun-Ho Her]

• Separator vertices may contribute to several parts
• Mixed results in terms of HID (experiments with HIPS)

• Must take other criteria into account

Thank you for your attention !
Any questions ?

http://scotch.gforge.inria.fr/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

