Vertex discretization of two phase Darcy flows: convergence analysis and discontinuous capillary pressures

K. Brenner¹³, R. Eymard², C. Guichard³, R. Masson³

¹ ENSMP Sophia Antipolis
 ² Université Paris Est
 ³ Université de Nice Sophia Antipolis and INRIA Sophia Antipolis

First CNPq/INRIA meeting july 25-27th 2012

うして ふゆう ふほう ふほう うらつ

1 Convergence of the VAG discretization for a two phase Darcy flow

2 VAG discretization of two phase Darcy flow with discontinuous capillary pressures

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Vertex Approximate Gradient (VAG) scheme [Eymard et al 2010]

- Tetrahedral submesh ${\mathcal T}$
- Interpolation at the face centres \boldsymbol{x}_{σ} using the face nodal values
- \blacksquare \mathbb{P}_1 finite element discretization on $\mathcal T$ with interpolation at the face centres
- Nodal basis: $\eta_{\kappa}, \eta_{s}, s \in \mathcal{V}_{\kappa}, \kappa \in \mathcal{M}$

$$\mathbf{x}_{\sigma} = \sum_{s \in \mathcal{V}_{\sigma}} \frac{1}{\mathsf{Card}\mathcal{V}_{\sigma}} \mathbf{x}_{s}, \quad u_{\sigma} = \sum_{s \in \mathcal{V}_{\sigma}} \frac{1}{\mathsf{Card}\mathcal{V}_{\sigma}} u_{s}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Variational formulation and fluxes

$$a(u_{\mathcal{T}}, v_{\mathcal{T}}) = \int_{\Omega} K(\mathbf{x}) \nabla u_{\mathcal{T}}(\mathbf{x}) \cdot \nabla v_{\mathcal{T}}(\mathbf{x}) \ d\mathbf{x} = \int_{\Omega} f(\mathbf{x}) \ v_{\mathcal{T}}(\mathbf{x}) \ d\mathbf{x}$$

$$\begin{aligned} \mathsf{a}(u_{\mathcal{T}}, \mathsf{v}_{\mathcal{T}}) &= \sum_{\kappa \in \mathcal{M}} \sum_{\mathbf{s} \in \mathcal{V}_{\kappa}} \left(\int_{\kappa} -\mathcal{K}(\mathbf{x}) \nabla u_{\mathcal{T}}(\mathbf{x}) \cdot \nabla \eta_{\mathbf{s}}(\mathbf{x}) d\mathbf{x} \right) \left(\mathsf{v}_{\kappa} - \mathsf{v}_{\mathbf{s}} \right), \\ &= \sum_{\kappa \in \mathcal{M}} \sum_{\mathbf{s} \in \mathcal{V}_{\kappa}} \mathcal{F}_{\kappa, \mathbf{s}}(u_{\mathcal{T}}) \left(\mathsf{v}_{\kappa} - \mathsf{v}_{\mathbf{s}} \right) \end{aligned}$$

with the fluxes $F_{\kappa,\mathbf{s}}(u_{\mathcal{T}}) = -F_{\mathbf{s},\kappa}(u_{\mathcal{T}}) = \int_{\kappa} -\mathcal{K}(\mathbf{x})\nabla u_{\mathcal{T}} \cdot \nabla \eta_{\mathbf{s}}(\mathbf{x})d\mathbf{x}.$

Equivalent discrete conservation laws

$$\int_{\kappa} \sum_{s \in \mathcal{V}_{\kappa}} F_{\kappa,s}(u_{\mathcal{T}}) = \int_{\kappa} f(\boldsymbol{x}) \eta_{\kappa}(\boldsymbol{x}) \ d\boldsymbol{x} \text{ for all } \kappa \in \mathcal{M},$$
$$\sum_{\kappa \in \mathcal{M}_{s}} F_{s,\kappa}(u_{\mathcal{T}}) = \int_{\Omega} f(\boldsymbol{x}) \eta_{s}(\boldsymbol{x}) \ d\boldsymbol{x} \text{ for all } s \in \mathcal{V} \setminus \partial \Omega$$

$$\mathsf{Mass lumping:} \ \left\{ \begin{array}{l} \displaystyle \sum_{s \in \mathcal{V}_{\kappa}} F_{\kappa, \mathbf{s}}(u_{\mathcal{T}}) = m_{\kappa} f(\mathbf{x}_{\kappa}) \text{ for all } \kappa \in \mathcal{M}, \\ \displaystyle \sum_{\kappa \in \mathcal{M}_{\mathbf{s}}} F_{\mathbf{s}, \kappa}(u_{\mathcal{T}}) = m_{\mathbf{s}} f(\mathbf{x}_{\mathbf{s}}) \text{ for all } \mathbf{s} \in \mathcal{V} \setminus \partial \Omega \end{array} \right.$$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 … 釣�?

The Darcy fluxes between κ and **s** are discretized by:

$$V_{\kappa,\mathbf{s}}^{\alpha} = F_{\kappa,\mathbf{s}}(P_{\mathcal{T}}^{\alpha,n}) + \rho_{\kappa,\mathbf{s}}^{\alpha} g F_{\kappa,\mathbf{s}}(Z_{\mathcal{T}}).$$

・ロト ・ 日 ・ モート ・ 田 ・ うへで

with the conservativity property $V^{lpha}_{\mathbf{s},\kappa}=-V^{lpha}_{\kappa,\mathbf{s}}.$

$$\begin{split} m_{\kappa}\phi_{\kappa}\frac{S_{\kappa}^{\alpha,n}-S_{\kappa}^{\alpha,n-1}}{\Delta t} + \sum_{\mathbf{s}\in\mathcal{V}_{\kappa}}\frac{k_{r}^{\alpha}(S_{up^{\alpha}}^{\alpha,n})}{\mu^{\alpha}}V_{\kappa,\mathbf{s}}^{\alpha} = 0, \kappa\in\mathcal{M}, \\ m_{\mathbf{s}}\phi_{\mathbf{s}}\frac{S_{\mathbf{s}}^{\alpha,n}-S_{\mathbf{s}}^{\alpha,n-1}}{\Delta t} - \sum_{\kappa\in\mathcal{M}_{\mathbf{s}}}\frac{k_{r}^{\alpha}(S_{up^{\alpha}}^{\alpha,n})}{\mu^{\alpha}}V_{\kappa,\mathbf{s}}^{\alpha} = 0, \mathbf{s}\in\mathcal{V}\setminus\mathcal{V}_{D}, \\ up^{\alpha} = \begin{cases} \kappa \text{ if } V_{\kappa,\mathbf{s}}^{\alpha} \ge 0, \\ \mathbf{s} \text{ if } V_{\kappa,\mathbf{s}}^{\alpha} < 0. \end{cases} \end{cases}$$

Definition of a volume and a porous volume to each cell and vertex

Volumes:
$$\begin{cases} m_{\kappa,\mathbf{s}} = \alpha_{\kappa,\mathbf{s}} \int_{\kappa} d\mathbf{x} & \text{for all } \kappa \in \mathcal{M}, \mathbf{s} \in \mathcal{V}_{\kappa} \setminus \mathcal{V}_{D}, \\ m_{\mathbf{s}} = \sum_{\kappa \in \mathcal{M}_{\mathbf{s}}} m_{\kappa,\mathbf{s}} & \text{for all } \mathbf{s} \in \mathcal{V} \setminus \mathcal{V}_{D}, \\ m_{\kappa} = \int_{\kappa} d\mathbf{x} - \sum_{\mathbf{s} \in \mathcal{V}_{\kappa} \setminus \mathcal{V}_{D}} m_{\kappa,\mathbf{s}} & \text{for all } \kappa \in \mathcal{M}, \end{cases}$$
which are such that $\sum_{\kappa \in \mathcal{M}} m_{\kappa} + \sum_{\mathbf{s} \in \mathcal{V} \setminus \mathcal{V}_{D}} m_{\mathbf{s}} = \int_{\Omega} d\mathbf{x}.$
Porosities:
$$\begin{cases} \phi_{\kappa} = \frac{1}{\int_{k} d\mathbf{x}} \int_{\kappa} \phi(\mathbf{x}) d\mathbf{x}, \\ \phi_{\mathbf{s}} = \frac{\sum_{\kappa \in \mathcal{M}_{\mathbf{s}}} \phi_{\kappa} m_{\kappa,\mathbf{s}}}{m_{\mathbf{s}}}. \end{cases}$$

Control Volume Finite Element (CVFE) interpretation of the VAG Fluxes in 2D

$$F_{\kappa,\mathbf{s}}(u_{\mathcal{T}}) = \int_{\kappa} -K_{\kappa} \nabla u_{\mathcal{T}}(\mathbf{x}) \cdot \nabla \eta_{\mathbf{s}}(\mathbf{x}) \, d\mathbf{x},$$
$$= \int_{\mathbf{x}_{\sigma}^{-}\mathbf{a} \cup \mathbf{x}_{\sigma'}^{-}\mathbf{a}} -K_{\kappa} \nabla u_{\mathcal{T}}(\mathbf{x}) \cdot \mathbf{n}_{\kappa} d\sigma$$

・ロト ・個ト ・モト ・モト

æ

How does the choice of the volumes m_{κ,s} affect the convergence of the scheme for two phase Darcy flows?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

How to deal with different rocktypes ?

Convergence analysis of a two phase immiscible incompressible Darcy flow model

$$\begin{cases} \operatorname{div}(-\lambda(S) \ K\nabla p) = k^{o} + k^{w} & \text{on } \Omega \times (0, t_{f}), \\ \phi \partial_{t}S + \operatorname{div}(-f(S)\lambda(S) \ K\nabla p) + \operatorname{div}(-K\nabla\varphi(S)) = k^{o} & \text{on } \Omega \times (0, t_{f}), \\ S = 0, \ p = 0 & \text{on } \partial\Omega \times (0, t_{f}), \\ S|_{t=0} = S_{0} & \text{on } \Omega. \end{cases}$$

- Capillary diffusion: φ(S) strictly increasing with φ'(0) = φ'(1) = 0 (degenerate parabolic equation for S), φ⁻¹ Holder continuous.
- Total Mobility: $\underline{\lambda} < \lambda(S) \leq \overline{\lambda}$
- Fractional flow: f(S) nondecreasing with f(0) = 0, f(1) = 1.
- Source term: $k^o + k^w \ge 0$.

Convergence analysis for TPFA [Eymard et al 2006], and for SUSHI-Mimetic schemes [Brenner 2011].

Why it will work independently of the choice of the $m_{\kappa,s}$?

Two representations of a discrete function u (saturation S):

$$\mathsf{Finite \ Element \ interpolation:} \ u_\mathcal{T}(\boldsymbol{x}) = \sum_{\kappa \in \mathcal{M}} u_\kappa \eta_\kappa(\boldsymbol{x}) + \sum_{\boldsymbol{\mathsf{s}} \in \mathcal{V}} u_{\boldsymbol{\mathsf{s}}} \eta_{\boldsymbol{\mathsf{s}}}(\boldsymbol{x})$$

and

Finite Volume interpolation:
$$\begin{cases} u_{\mathcal{D}}(\mathbf{x}) = u_{\kappa} \text{ on } \omega_{\kappa}, \text{ Vol}(\omega_{\kappa}) = m_{\kappa}, \\ u_{\mathcal{D}}(\mathbf{x}) = u_{s} \text{ on } \omega_{s}, \text{ Vol}(\omega_{s}) = m_{s}. \end{cases}$$

Under shape regularity assumptions we can prove the estimates:

$$\|u_{\mathcal{D}}\|_{L^{2}(\Omega)} \lesssim \|u_{\mathcal{T}}\|_{L^{2}(\Omega)},$$

and

$$\|u_{\mathcal{D}} - u_{\mathcal{T}}\|_{L^{2}(\Omega)} \lesssim h_{\mathcal{T}} \|\nabla u_{\mathcal{T}}\|_{L^{2}(\Omega)^{d}}.$$

For any choice of the weights $\alpha_{\kappa,s}^m \in [0,1)$ such that $1 - \sum_{s \in \mathcal{V}_{\kappa} \setminus \mathcal{V}_{D}} \alpha_{\kappa,s} \ge 0$, one has the a priori estimates:

$$\|\varphi(S)_{\mathcal{D},\Delta t}\|_{L^{\infty}(0,t_{f};L^{2}(\Omega))}+\|\nabla\varphi(S)_{\mathcal{T},\Delta t}\|_{L^{2}((0,t_{f})\times\Omega)}+\|\nabla p_{\mathcal{T},\Delta t}\|_{L^{\infty}(0,t_{f};L^{2}(\Omega))}\leq C.$$

with a constant C depending on the shape regularity constant of the submesh \mathcal{T} and on $\max_{s \in \mathcal{V}} \# \mathcal{M}_s$.

Proof: use basically the equivalence

$$\sum_{\mathbf{s}\in\mathcal{V}_{\kappa}}(u_{\kappa}-u_{\mathbf{s}})F_{\kappa,\mathbf{s}}(u)\sim \|\nabla u_{\mathcal{T}}\|_{L^{2}(\kappa)}^{2},$$

and the discrete Poincaré inequality

 $\|u_{\mathcal{D}}\|_{L^{2}(\Omega)} \lesssim \|u_{\mathcal{T}}\|_{L^{2}(\Omega)} \lesssim \|\nabla u_{\mathcal{T}}\|_{L^{2}(\Omega)^{d}}.$

Let $\mathcal{D}^m, m \in \mathbb{N}$ be a family of discretizations such that the family of simpletic submeshes $\mathcal{T}^m, m \in \mathbb{N}$ is shape regular, $\max_{\mathbf{s} \in \mathcal{V}^m} \# \mathcal{M}_{\mathbf{s}}$ is bounded, and $h_{\mathcal{T}^m} \to 0$. Let $\Delta t^m \to 0$. Let the weights $\alpha^m_{\kappa, \mathbf{s}} \in [0, 1)$ be chosen such that $1 - \sum_{\mathbf{s} \in \mathcal{V}_{\kappa} \setminus \mathcal{V}_{D}} \alpha^m_{\kappa, \mathbf{s}} \ge 0$.

Then, up to a subsequence, one has

$$S_{\mathcal{T}^m,\Delta t^m} \to S$$
 strongly in $L^2(0, t_f; L^2(\Omega))$
 $P_{\mathcal{T}^m,\Delta t^m} \to P$ weakly in $L^2(0, t_f; L^2(\Omega))$

where (P, S) is a weak solution.

Numerical experiment on the Buckley Leverett 1D solution

$$\begin{cases} \partial_t S + \partial_x f(S) - \partial_{x^2} \varphi(S) = 0 & \text{on } (0,1) \times (0,t_f), \\ S = 1 & \text{on } \{0\} \times (0,t_f), \\ S = 0 & \text{on } \{1\} \times (0,t_f), \\ S|_{t=0} = 0 & \text{on } (0,1), \end{cases} \quad P(x,t) = 1 + \int_x^1 \frac{du}{\lambda(S(u,t))}$$

Oil saturation and Global Pressure for $P_{c,1} = 0.1 (Pe \ge 150)$

Three choices of the $m_{\kappa,s}$. Meshes from the 2D FVCA5 and 3D FVCA6 Benchmarks

Choices 1 and 2:
$$\alpha_{\kappa, \mathbf{s}} = \omega \; rac{1}{\# \mathcal{M}_{\mathbf{s}}}, \; ext{for} \; \omega = 0.5 \; ext{or} \; \omega = 0.01.$$

$$\begin{array}{ll} \text{Choice 3 (rocktype):} \ \alpha_{\kappa, \mathbf{s}} = \left\{ \begin{array}{ll} 0.5 \frac{1}{\#\mathcal{M}_{\mathbf{s}}} & \text{if} \quad \{\kappa \mid \text{ rocktype}_{\kappa} = 2\} = \mathcal{M}_{\mathbf{s}}, \\ 0.5 \frac{1}{\#\mathcal{M}_{\mathbf{s}}} & \text{else if rocktype}_{\kappa} = 1, \\ 0 & \text{else if rocktype}_{\kappa} = 2. \end{array} \right. \end{array}$$

Numerical results in 2D: cartesian, random quadrangular and triangular meshes

Numerical results in 2D: cartesian, random quadrangular and triangular meshes

Saturation L2(0,T;L2) Error

(日) (同) (日) (日)

Numerical results in 3D: cartesian, random hexahedral, tetrahedral and prismatic meshes

Numerical results in 3D: cartesian, random hexahedral, tetrahedral and prismatic meshes

◆□ > ◆□ > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

- Convergence slightly dependent on m_{κ,s}
- Better accuracy for balanced volumes at cells and vertices

Conclusion: choose the volumes

- to match the heterogeneities
- to balance the cell/vertex volumes as much as possible (improve the Newton convergence for more complex models with phase transitions)

ション ふゆ アメリア メリア しょうくの

Immiscible two phase Darcy flows with discontinuous capillary pressures

$$\begin{cases} \partial_t \rho^{\alpha} S^{\alpha} + \operatorname{div} \left(\mathbf{Q}^{\alpha} \right) = 0, \ \alpha = w, o, \\ \mathbf{Q}^{\alpha} = -\rho^{\alpha} \ \frac{k_r^{\alpha} (S^{\alpha}, \mathbf{x})}{\mu^{\alpha}} \mathcal{K}(\mathbf{x}) (\nabla P^{\alpha} - \rho^{\alpha} \mathbf{g}), \ \alpha = w, o, \\ S^w + S^o = 1, \\ P^o - P^w = P_c(S^o, \mathbf{x}). \end{cases}$$

Rocktypes 1 and 2:

$$\begin{cases} P_{\boldsymbol{c}}(S^{\boldsymbol{o}}, \boldsymbol{x}) = P_{\boldsymbol{c},i}(S^{\boldsymbol{o}}), \\ k_{\boldsymbol{r}}^{\alpha}(S^{\alpha}, \boldsymbol{x}) = k_{\boldsymbol{r},i}^{\alpha}(S^{\alpha}) \text{ if } \boldsymbol{x} \in \Omega_{i}, i = 1, 2. \end{cases}$$

Matching conditions at the interface $\Gamma = \Omega_1 \cap \Omega_2$ between the two rocktypes [Enchery et al 2008], [Cances et al 2011], [Brenner et al 2011]:

$$\begin{cases} P_{c,1}(S^{o}) \cap P_{c,2}(S^{o}) \neq \emptyset, \\ P_{1}^{w} = P_{2}^{w} (\text{if mobile phase}), \\ \mathbf{Q}_{1}^{\alpha} \cdot \mathbf{n}_{1} + \mathbf{Q}_{2}^{\alpha} \cdot \mathbf{n}_{1} = 0, \ \alpha = w, o. \end{cases}$$

VAG discretization: main ideas

- Allow for discontinuous saturations at the interfaces between two different rocktypes: $S_{\kappa,s}$, $\kappa \in \mathcal{M}_s$
- Fluxes continuity at a given interface s given by the conservation equations at s
- Reduce the number of unknowns by choosing the phase pressures as primary unknowns. The saturations are given for each cell κ by

$$\begin{cases} S^{o}_{\kappa,\mathbf{s}} = P^{-1}_{c,\kappa}(p^{o}_{\mathbf{s}} - p^{w}_{\mathbf{s}}), \ \kappa \in \mathcal{M}_{\mathbf{s}}, \\ S^{o}_{\kappa} = P^{-1}_{c,\kappa}(p^{o}_{\kappa} - p^{w}_{\kappa}). \end{cases}$$

which accounts for the phase pressure continuity interface conditions

 Extension of the scheme [Brenner et al 2011], [Brenner 2011] to the VAG discretization on general meshes.

VAG discretization

$$\begin{split} m_{\kappa}\phi_{\kappa}\frac{S_{\kappa}^{\alpha,n}-S_{\kappa}^{\alpha,n-1}}{\Delta t} + \sum_{\mathbf{s}\in\mathcal{V}_{\kappa}}\frac{k_{r,\kappa}^{\alpha}(S_{\kappa}^{\alpha,n})}{\mu^{\alpha}}(V_{\kappa,\mathbf{s}}^{\alpha})^{+} + \frac{k_{r,\kappa}^{\alpha}(S_{\kappa,\mathbf{s}}^{\alpha,n})}{\mu^{\alpha}}(V_{\kappa,\mathbf{s}}^{\alpha})^{-} = 0,\\ k \in \mathcal{M}, \ \alpha = w, o, \end{split}$$
$$\begin{aligned} \sum_{\kappa \in \mathcal{M}_{\mathbf{s}}}m_{\kappa,\mathbf{s}}\phi_{\kappa}\frac{S_{\kappa,\mathbf{s}}^{\alpha,n}-S_{\kappa,\mathbf{s}}^{\alpha,n-1}}{\Delta t} - \sum_{\kappa \in \mathcal{M}_{\mathbf{s}}}\frac{k_{r,\kappa}^{\alpha}(S_{\kappa}^{\alpha,n})}{\mu^{\alpha}}(V_{\kappa,\mathbf{s}}^{\alpha})^{+} + \frac{k_{r,\kappa}^{\alpha}(S_{\kappa,\mathbf{s}}^{\alpha,n})}{\mu^{\alpha}}(V_{\kappa,\mathbf{s}}^{\alpha})^{-} = 0,\\ \mathbf{s}\in\mathcal{V}\setminus\mathcal{V}_{D}, \ \alpha = w, o. \end{split}$$

$$\left\{\begin{array}{l} S_{\kappa,\mathbf{s}}^{o,n} = P_{c,\kappa}^{-1}(p_{\mathbf{s}}^{o,n} - p_{\mathbf{s}}^{w,n}), \ \kappa \in \mathcal{M}_{\mathbf{s}}, \mathbf{s} \in \mathcal{V} \setminus \mathcal{V}_{D}, \\ S_{\kappa}^{o,n} = P_{c,\kappa}^{-1}(p_{\kappa}^{o,n} - p_{\kappa}^{w,n}), \ \kappa \in \mathcal{M}. \end{array}\right.$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ● < ① へ ○</p>

Problem of non uniqueness of the solution P^w, P^o

Pcm1 Rocktype 1 -Rocktype 3 0.8 Example: initial state P^w , $S^w = 1$: 0.6 20 P^o is clearly not unique ! 0.4 0.2 -50000 50000 100000 150000 200000 Po-Pw

To avoid this singularity when solving the discrete nonlinear system:

Projections of $P_{\kappa}^{o} - P_{\kappa}^{w}$ on the interval:

$$\left[\min_{\{p \mid (P_{\boldsymbol{c},\kappa}^{-1})'(p)>0\}} P_{\boldsymbol{c},\kappa}^{-1}(p), \max_{\{p \mid (P_{\boldsymbol{c},\kappa}^{-1})'(p)>0\}} P_{\boldsymbol{c},\kappa}^{-1}(p)\right]$$

and of $P_{\mathbf{s}}^{o} - P_{\mathbf{s}}^{w}$ on

$$\left[\min_{\kappa \in \mathcal{M}_{\mathsf{s}}} \min_{\{p \mid (P_{\boldsymbol{c},\kappa}^{-1})'(p) > 0\}} P_{\boldsymbol{c},\kappa}^{-1}(p), \max_{\kappa \in \mathcal{M}_{\mathsf{s}}} \max_{\{p \mid (P_{\boldsymbol{c},\kappa}^{-1})'(p) > 0\}} P_{\boldsymbol{c},\kappa}^{-1}(p)\right].$$

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Test Case: two barriers

Porous media with two rocktypes: $K_1 = K_2 = 1.10^{-12} m^2$, $\phi_1 = \phi_2 = 0.1$, $k_{r,1}^{\alpha} = k_{r,2}^{\alpha}$, $\alpha = w, o$, and the following $P_{c,1}^{-1}$, $P_{c,2}^{-1}$:

Density driven flow: $\rho^o = 800$, $\rho^w = 1000 \ kg/m^3$, $k_r^o(S^o) = (S^o)^2$, $\mu^o = 5.10^{-3}$, $k_r^w(S^w) = (S^w)^2$, $\mu^w = 1.10^{-3}$.

Barriers test case: numerical result on a Cartesian grid 16×16

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 … のへで

Comparison of the solution at final time on cartesian, random quadrangular and triangular meshes

Comparison of the solution on cartesian 64×64 , random quadrangular 64×64 , and triangular (1900 nodes) meshes

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへ⊙

CPR-AMG preconditioner

$$R = \begin{pmatrix} R_1 \\ R_2 \end{pmatrix} = \begin{pmatrix} R^w + R^o \\ R^o \end{pmatrix}, \quad X = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} = \begin{pmatrix} P^w \\ P^o - P^w \end{pmatrix}.$$
$$A = \frac{\partial R}{\partial X} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}.$$

CPR-AMG Preconditioner: multiplicative combination of ILU0 on A and AMG on the elliptic bloc A_{11} .

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

•
$$X^{(1)} = \text{ILU0}(A)^{-1}R$$

• $X_1^{(2)} = \text{AMG}(A_{11})^{-1} \left(R_1 - A_{11}X_1^{(1)} - A_{12}X_2^{(1)} \right)$
• $X = \begin{pmatrix} X_1^{(1)} + X_1^{(2)} \\ X_2^{(1)} \end{pmatrix}$

Apply AMG also on the A_{22} bloc (degenerate Parabolic equation).

$$X^{(1)} = \text{ILU0}(A)^{-1}R$$

$$X^{(2)} = \begin{pmatrix} \text{AMG}(A_{11})^{-1} & 0\\ 0 & \text{AMG}(A_{22})^{-1} \end{pmatrix} \begin{pmatrix} R - AX^{(1)} \end{pmatrix}$$

$$X = X^{(1)} + X^{(2)}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

CPU time with different solvers/preconditioners: barriers test case with 137 time steps.

Barriers test case 2

Po-Pw

$$\rho^{o} = 800$$

 $\rho^{o} = 750$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

≣ •**१**९०

Test case with change of wettability: imbibition in the barriers

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 _ のへで

3D test case

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ④�?

- Vertex centred discretization of Darcy flows:
 - adapted to general meshes,
 - very efficient on simpletic meshes compared with cell centred schemes,
 - a can be adapted to highly heterogeneous media and different rocktypes.
- Extension to compositional models with discontinuous capillary pressures (following the pressure-pressure formulation of [Angelini 2010] for Black Oil models)

ション ふゆ アメリア メリア しょうくの

References I

P

- R. Eymard, R. Herbin, C. Guichard, R. Masson, Vertex Centred discretization of compositional Multiphase Darcy flows on general meshes. Comp. Geosciences, accepted 2012.
- Angelini, O.: Étude de schémas numériques pour les écoulements diphasiques en milieu poreux déformable pour des maillages quelconques: application au stockage de déchets radioactifs. PhD, Université Paris-Est Marne-la-Vallée (2010).
- K. Brenner, C. Cances, D. Hilhorst, A Convergent Finite Volume Scheme for Two-Phase Flows in Porous Media with Discontinuous Capillary Pressure Field, Finite volumes for Complex Applications VI, june 2011.
- K. Brenner, Méthodes Volume Fini sur maillage quelconques pour des systèmes d'évolution non linéaires. Thèse de Doctorat, 2011.

- R. Eymard, C. Guichard and R. Herbin: Small-stencil 3D schemes for diffusive flows in porous media. ESAIM: Mathematical Modelling and Numerical Analysis, 46, 265-290 (2010).
 - C. Cances and M. Pierre: An existence result for multidimensional immiscible two-phase flows with discontinuous capillary pressure field, SIAM J. Math. Anal., 2012, 44 (2), pp. 966-992
- G. Enchery, R. Eymard and A. Michel: Numerical approximation of a two-phase flow in a porous medium with discontinuous capillary forces, SIAM J. Numer. Anal., 43 (2006), pp. 2402-2422.
 - R. Eymard, T. Gallouet, R. Herbin, and A. Michel: Convergence of a finite volume scheme for nonlinear degenerate parabolic equations. Numer. Math., 92 :41-82, 2002.

ション ふゆ アメリア メリア しょうくの