Complimentarity constraints with a system of nonlinear PDE's

Jérôme Jaffré 1

Joint work with Ibtihel Ben Gharbia 1,2, Jean Charles Gilbert 1

1: INRIA, Rocquencourt (Pomdapi). 2: CEREMADE, Paris Dauphine University

1st CNPq-INRIA meeting

25-27 July 2012, Sophia Antipolis

Work partially funded by GNR MOMAS and ANDRA

- Motivation
- Problem Formulation
- 3 Discretization and solution method
- Mumerical results
 - Test 1: Homogeneous setting
 - Test 2: Heterogeneous setting
- Conclusion

- Motivation
- Problem Formulation
- 3 Discretization and solution method
- Mumerical results
 - Test 1: Homogeneous setting
 - Test 2: Heterogeneous setting
- Conclusion

Motivation: Couplex-Gas, an Andra-Momas benchmark

- In a deep underground nuclear waste disposal.
- Production of hydrogen from corrosion of waste packages.
- Migration of this hydrogen ?
- Flow can be saturated (only liquid) or unsaturated (liquid/gas).
- Numerical difficulties when gas phase appears/disappears.
- Examples of complementarity problems for porous media flow:
 - Chavent-Jaffré, Mathematical models and finite elements for reservoir simulation (North-Holland, 1986).
 - Jaffré-Sboui. Henrys law and gas phase disappearance. Transport in Porous Media 12 (2010).
 - Lauser-Hager-Helmig-Wohlmuth. Advances in Water Resources 34 (2011).
 - Buchholzer-Kanzow-Knabner-Kraütle. Computational Optimization and Applications 50 (2011).

Motivation - Goals

Advantage of formulation with complementarity constraints: Valid whether the gas phase exists or not.

Goals

- Address numerical difficulties coming from gas phase appearance/disappearance.
- Construct a robust algorithm to resolve these difficulties.
- Develop a solver for nonlinear complementarity problems.

- Motivation
- 2 Problem Formulation
- Oiscretization and solution method
- Mumerical results
 - Test 1: Homogeneous setting
 - Test 2: Heterogeneous setting
- Conclusion

Phase equations

2 fluid phases: liquid $(i = \ell)$ and gas (i = g)

Darcy's law:
$$\mathbf{q}_i = -K(x)k_i(s_i)(\vec{\nabla}p_i - \rho_i g\vec{\nabla}z), \quad i = \ell, g$$

K the absolute permeability

 \mathbf{q}_i Darcy velocity, s_i saturation, p_i fluid pressure, k_i mobility

Phases occupy the entire pore space: $s_{\ell} + s_{g} = 1$.

Capillary pressure law: $p_c(s_\ell) = p_g - p_\ell \ge 0$, p_c decreasing, $p_c(1) = 0$.

Since liquid phase does not disappear while gas phase may disappear, the main unknowns will be s_{ℓ} and p_{ℓ} .

Fluid components

2 components: water (j = w) and hydrogen (j = h).

Mass density of phase i: $\rho_i = \rho_w^i + \rho_h^i$, $i = \ell, g$.

Molar concentration of phase
$$i$$
: $c_i = c_w^i + c_h^i = \frac{s_i \rho_w^i}{M^w} + \frac{s_i \rho_h^i}{M^h}, \quad i = \ell, g$.

$$\text{Molar fractions} \colon \chi_h^i = \frac{c_h^i}{c_i}, \quad \chi_w^i = \frac{c_w^i}{c_i}, \quad i = \ell, \mathsf{g}, \quad (\chi_w^i + \chi_h^i = 1).$$

Physical assumptions:

- Liquid phase contains both components.
- Gas phase contains only hydrogen.
- Gas is compressible $\rho_g = \kappa_g p_g$.
- ullet Liquid incompressible $ho_{w}^{\ell}=$ constant, $c_{h}^{\ell}\ll c_{w^{\ell}}$,

$$\chi_h^\ell \simeq \frac{c_h^\ell}{c_w^\ell} = C_\ell \rho_h^\ell \text{ with } C_\ell = \frac{M^h}{M^w \rho_w^\ell}.$$

χ_h^{ℓ} is the third main unknown.

Mass conservation for each component

Water:
$$\phi \frac{\partial}{\partial t} (s_{\ell} \rho_w^{\ell}) + \operatorname{div}(\rho_w^{\ell} \mathbf{q}_{\ell} + j_w^{\ell}) = Q_w$$

Hydrogen:
$$\phi \frac{\partial}{\partial t} (s_{\ell} \rho_h^{\ell} + s_g \rho_g) + \text{div}(\rho_h^{\ell} \mathbf{q}_{\ell} + \rho_g \mathbf{q}_g + j_h^{\ell}) = Q_h,$$

where diffusion of the components in the liquid phase is modeled by

$$j_h^\ell = -\phi M^h s_\ell c_\ell D_h^\ell \vec{\nabla} \chi_h^\ell, \quad j_h^\ell + j_w^\ell = 0.$$

 $\phi = \text{porosity}, \quad D_h^{\ell} = \text{molecular diffusion coefficient}.$

Complementarity equations

- Henry's law is $\widetilde{H}(T)M^hp_g=Hp_g=\rho_h^\ell=C_\ell\,\chi_h^\ell$. It is valid when both phases are present.
- To integrate Henry's law into a formulation which includes the case with no gas phase, introduce the liquid pressure $p_{\ell} = p_g p_c(s_{\ell})$, and
 - ullet either gas phase exists: $1-s_\ell>0$ and $H(p_\ell+p_c(s_\ell))-C_\ell\,\chi_h^\ell=0$,
 - or gas phase does not exist: $s_{\ell}=1, p_c(s_{\ell})=0$ and $Hp_{\ell}-C_{\ell}\,\chi_h^{\ell}\geq 0$, that is χ_h^{ℓ} is too small for gas to appear.

Complementarity constraints

$$egin{aligned} (1-s_\ell)ig(H(p_\ell+p_c(s_\ell))-C_\ell\chi_h^\ellig) &= 0, & 1-s_\ell \geq 0, \ H(p_\ell+p_c(s_\ell))-C_\ell\,\chi_h^\ell \geq 0. \end{aligned}$$

Advantage: Avoid the change of variables and equations in saturated/unsaturated regions.

A nonlinear problem with nonlinear complementarity equations

$$\begin{split} \phi \frac{\partial}{\partial t} \left(\rho_w^\ell \, \mathbf{s}_\ell \right) \right) + \operatorname{div} \left(\rho_w^\ell \, \mathbf{q}_\ell - j_h^\ell \right) &= Q_w \\ \phi \frac{\partial}{\partial t} \left(\mathbf{s}_\ell \, C_\ell \, \chi_h^\ell + (1 - \mathbf{s}_\ell) \kappa_g (p_\ell + p_c(\mathbf{s}_\ell)) \right) + \\ \operatorname{div} \left(C_\ell \, \chi_h^\ell \, \mathbf{q}_\ell + \kappa_g (p_\ell + p_c(\mathbf{s}_\ell)) \, \mathbf{q}_g + j_h^\ell \right) &= Q_h \end{split}$$
 where $j_h^\ell = -\phi \, \mathbf{s}_\ell^2 \, C_\ell \, (1 + \chi_h^\ell) \, D_h^\ell \, \vec{\nabla} \chi_h^\ell$
$$\mathbf{q}_\ell = -K(x) k_\ell (\mathbf{s}_\ell) (\vec{\nabla} p_\ell - \rho_\ell g \vec{\nabla} z)$$

$$\mathbf{q}_g = -K(x) k_g (1 - \mathbf{s}_\ell) (\vec{\nabla} (p_\ell + p_c(\mathbf{s}_\ell)) - \kappa_g (p_\ell + p_c(\mathbf{s}_\ell)) g \vec{\nabla} z),$$

$$(1 - \mathbf{s}_\ell) \left(H(p_\ell + p_c(\mathbf{s}_\ell)) - C_\ell \chi_h^\ell \right) = 0, \quad 1 - \mathbf{s}_\ell \ge 0, \\ H(p_\ell + p_c(\mathbf{s}_\ell)) - C_\ell \chi_h^\ell \ge 0. \end{split}$$

- 4 ロ > 4 個 > 4 種 > 4 種 > 種 - 釣 Q @

11 / 31

- Motivation
- Problem Formulation
- 3 Discretization and solution method
- Mumerical results
 - Test 1: Homogeneous setting
 - Test 2: Heterogeneous setting
- Conclusion

The discrete problem

Discretized with cell-centered finite volumes : N, the number of cells.

$$\mathbf{x} \in \mathbb{R}^{3N}$$
, vector of unknowns for $\mathbf{s}_{\ell}, \mathbf{p}_{\ell}, \chi_{h}^{\ell}$

$$\mathcal{H}:\mathbb{R}^{3N}\to\mathbb{R}^{2N}$$
 for discrete conservation equations

$$\mathcal{F}: \mathbb{R}^{3N} \to \mathbb{R}^N$$
 for discrete $1 - s_\ell$

$$\mathcal{G}: \mathbb{R}^{3N} \to \mathbb{R}^N$$
 for discrete $H(p_\ell + p_c(s_\ell)) - C_\ell \chi_h^\ell$

Problem in compact form

$$\mathcal{H}(x) = 0,$$

 $\mathcal{F}(x) \top \mathcal{G}(x) = 0, \quad \mathcal{F}(x) \ge 0, \quad \mathcal{G}(x) \ge 0.$

Variational inequalities

Introduce
$$K = \mathbb{R}^n \times \mathbb{R}^p_+$$
.

Find
$$(x, u) \in K$$

$$\begin{pmatrix} \mathcal{H}(x) \\ \mathcal{F}(x) - u \\ \mathcal{G}(x) \end{pmatrix}^{\top} \begin{pmatrix} y - x \\ v - u \end{pmatrix} \geq 0, \quad \forall (y, v) \in K.$$

Reformulation of the Complementarity Conditions

How to solve this nonlinear complementarity problem?

Idea: Replace complementarity conditions by equalities.

Introduce a C-function $\varphi: \mathbb{R}^2 \to \mathbb{R}$ that satisfies

$$\varphi(a,b)=0 \Longleftrightarrow a\geq 0, \quad b\geq 0, \quad ab=0,$$

An efficient choice is the minimum function.

Replace complementarity constraints by $\varphi(x) = \min\{\mathcal{F}(x), \mathcal{G}(x)\} = 0$.

A Nonsmooth system using the Minimum function

The problem is equivalent to

$$\psi(x) = 0$$
, where $\psi(x) := \begin{pmatrix} \mathcal{H}(x) \\ \varphi(x) \end{pmatrix}$.

- The system is nonsmooth due to the min function.
- Apply Newton-min, a nonsmooth Newton method.
- Local convergence of Newton-min.

See I. Ben Gharbia & J. Ch Gilbert (2010), S. Kräutle (2011), P. Knabner et al. (2009), Ito & Kunish (2009) and C. Kanzow (2004)

Newton-min algorithm

For k = 1, 2..., do the following

• Choose complementary index sets A_k and A_k^c , where

$$A_k := \{i : \mathcal{F}_i(x^k) < \mathcal{G}_i(x^k)\},\$$

$$A_k^c := \{i : \mathcal{F}_i(x^k) \ge \mathcal{G}_i(x^k)\}.$$

$$\varphi(x^k) = \min\{\mathcal{F}(x^k), \mathcal{G}(x^k)\} = \begin{cases} \mathcal{F}_i(x^k) & \text{if } i \in A_k, \\ \mathcal{G}_i(x^k) & \text{if } i \in A_k^c. \end{cases}$$

• Select an element $\mathcal{J}_{x^k}^k \in \partial \varphi(x^k)$ such that

$$(\mathcal{J}_{x^k}^k)_i = \begin{cases} \mathcal{F}_i'(x^k) & \text{if } i \in A_k, \\ \mathcal{G}_i'(x^k) & \text{if } i \in A_k^c. \end{cases}$$

• Let x^{k+1} be a solution to

$$\begin{split} \mathcal{H}(x^{k}) + \mathcal{H}'(x^{k})(x^{k+1} - x^{k}) &= 0, \\ \varphi(x^{k}) + \mathcal{J}_{x^{k}}^{k}(x^{k+1} - x^{k}) &= 0. \end{split}$$

A theoretical result - Convergence

Theorem:

Let x^* be a solution of the nonlinear system $\psi(x)=0$ and such that J is nonsingular for all $J\in\partial\psi(x^*)$. Then there exists ϵ such that for every starting point $x^0\in B_\epsilon(x^*)$:

- \triangleright The Newton-min algorithm is well-defined and produces a sequence $\{x^k\}$ that converges to x^* .
- ▶ The rate of convergence is quadratic.

- Motivation
- Problem Formulation
- Oiscretization and solution method
- Mumerical results
 - Test 1: Homogeneous setting
 - Test 2: Heterogeneous setting
- Conclusion

- Motivation
- Problem Formulation
- Discretization and solution method
- Mumerical results
 - Test 1: Homogeneous setting
 - Test 2: Heterogeneous setting
- Conclusion

Homogeneous setting

Test inspired from the Couplex Gas benchmark:

- Inject hydrogen gas on the left of a 1-D porous medium saturated at initial time with liquid ($T_{inj}=5.10^5$ years).
- After a while the hydrogen injection is stopped ($T_{simul} = 10^6$ years).

- Van Genuchten-Mualem model for capillary pressure and relative permeabilities.
- Initial conditions: $p_\ell=10^6$ Pa, $s_\ell=1$ and $\chi_h^\ell=0$.

Numerical results - Homogeneous setting

During injection: $0 < t < 5.10^5$ years

- Period 1: Only Hydrogen density increases.
- Period 2: Gas phase appears and liquid pressure increases.
- \bullet Period 3: Smaller $\vec{\nabla} p_\ell$ and no water injection push down the liquid pressure.

H₂ density

Gas saturation

Liquid pressure

Numerical results - Homogeneous setting After injection is stopped: $t > 5.10^5$ years

- Gas saturation and H₂ density decrease.
- · Liquid pressure increases.
- ullet When $t o \infty$, gas phase disappears and the system reaches a stationary state.

Numerical results - Homogeneous setting

I. Ben Gharbia and J. Jaffré, Gas phase appearance and disappearance as a problem with complementarity constraints, Mathematics and Computers in Simulation (submitted).

- Motivation
- Problem Formulation
- Oiscretization and solution method
- Mumerical results
 - Test 1: Homogeneous setting
 - Test 2: Heterogeneous setting
- Conclusion

Heterogeneous setting

- ➤ The porous medium characteristics and the fluids properties are from http://sources.univ-lyon1.fr/cast_test/multi.mat.pdf.

- \triangleright The characteristics of porous medium (in particular capillary pressure) are different in each subdomain. $\mathcal{L}_x = 200$, $\mathcal{L}_1 = 100$.
- ▶ Boundary and initial conditions
 - At t=0: $p_\ell=10^6$ Pa, $s_\ell=1$ and $\chi_h^\ell=0$,
 - At x = 200: $p_{\ell} = 10^6$ Pa,
 - At x = 0: flux_{hydrogen} = 5.57 mg/m²/yr, flux_{water} = 0.

Interface conditions - Heterogeneous setting

- Liquid pressure should be continous: $p_{\ell}^{(1)} = p_{\ell}^{(2)}$.
- Water flux should be continous: $\mathbf{u}_w^{(1)} = \mathbf{u}_w^{(2)}$.
- Hydrogen flux should be continuous: $\mathbf{u}_h^{(1)} = \mathbf{u}_h^{(2)}$.
- Capillary pressure continuity condition: $p_c^{(1)}(s^{(1)}) = p_c^{(2)}(s^{(2)})$.

> Meshes

- Uniform in space: $\Delta x = 1$ m in each subdomain.
- In time: $\Delta t = 2000$ years.
- \triangleright Convergence criterion: 10^{-8} .

Numerical results - Heterogeneous setting Gas saturation at several times (in years)

- Motivation
- Problem Formulation
- Oiscretization and solution method
- Mumerical results
 - Test 1: Homogeneous setting
 - Test 2: Heterogeneous setting
- Conclusion

Conclusion

- The formulation handles well appearance and disappearance of the gas phase.
- Newton-min is well adapted for our problem.
- Locally quadratic convergence.

Other research topics in Pomdapi

- F. Clément, J. Ch. Gilbert, M. Kern, J. E. Roberts, M. Vohralik, P. Weis, G. Chavent.
 - Mixed finite elements on meshes of deformed cubes.
 - A posteriori error estimates.
 - Time-space domain decomposition.
 - Discrete fracture flow models with matrix-fracture interaction: fractures are modeled as n-1 dimensional interfaces.
 - Solvers and HPC.
 - Some inverse problems from hydrogeology.
 - Safe scientific computing using Ocaml.