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@ Parallel Hybrid solver based on algebraic

domain decomposition

e HIPS solver
e MaPHys solver

@ A geometric full mutigrid solver
@ Block Krylov linear solver
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Hybrid solver: Motivations

Goal: solving Ax = b, where A is large and sparse
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Usual trades off

Direct lterative
@ Robust/prescribed accurate for @ Problem dependent efficiency /
general problems monitored accuracy
@ BLAS-3 based implementations @ Sparse computational kernels
@ Memory/CPU prohibitive for large 3D @ Less memory requirements and
problems possibly faster
@ Limited weak scalability @ Possible high weak scalability
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Governing Ideas in Hybrid Linear Solvers

Develop robust scalable parallel hybrid direct/iterative linear solvers

@ Exploit the efficiency and robustness of the sparse direct solvers
@ Develop robust parallel preconditioners for iterative solvers

@ Take advantage of the natural scalable parallel implementation of
iterative solvers

Domain Decomposition (DD)

@ Natural approach for PDE’s
@ Extend to general sparse matrices

@ Partition the problem into subdomains,
subgraphs

@ Use a direct solver on the subdomains
@ Robust preconditioned iterative solver

311 cut edges.




General partitioning of sparse matrix

Mesh view Matrix view Tree view
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@ Partitioning a matrix using algebraic algorithm based on the adjacency graph of .4

@ 2 ways partitioning:
- Computing an edge separator then finding the best vertex separator
- Computing a vertex separator
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General partitioning of sparse matrix

Mesh view Matrix view Tree view
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@ Partitioning a matrix using algebraic algorithm based on the adjacency graph of .4

@ 2 ways partitioning:
- Computing an edge separator then finding the best vertex separator
- Computing a vertex separator
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General partitioning of sparse matrix
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HIPS : hybrid direct-iterative solver

Based on a domain decomposition : interface one node-wide (no
overlap in DD lingo)

As F
E AC l{;;; * -

B : Interior nodes of subdomains (direct factorization).
C : Interface nodes.

Special decomposition and ordering of the subset C :
Goal : Building a global Schur complement preconditioner (ILU) from
the local domain matrices only.
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HIPS: domain interface based fill-in policy

:‘ || 2356

Robust block incomplete factorization of the Schur complement

@ Hierachy of separators (wirebasket like - faces , edges, vertices)

@ Block incomplete factorization with “geometrical” fill-in policy to
express parallelism
(Global factorization using only local sub-domain matrices)

@ MIS ordering to express parallelism within incomplete
factorisation steps




HIPS: preconditioners

droptol E

droptol 1

Main features
@ lterative or “hybrid” direct/iterative method are implemented.
@ Mix direct supernodal (BLAS-3) and sparse ILUT factorization in
a seamless manner.
@ Memory/Load balancing : distribute the domains on the
processors (domains > processors).




HIPS vs Additive Schwarz (from PETSc)

Experimental conditions

These curves compare HIPS (Hybrid) with Additive Schwarz from
PETSc.
Parameters were tuned to compare the result with a very similar fill-in
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Hybrid solver : Amande up to 2048 cores on SGI Altix

(Jade, CINES)

@ Amandes : N=6,994,683 , NNZ=58,477,383
@ Additive Schwarz, ILUT or ILUk failed
@ 2053 domains of ~ 3770 nodes

| Nbproc [[ Precond. | Solve | Total |

1 803.12 104.87 | 907.99

2 384.12 58.84 | 442.95

4 205.96 46.87 | 252.83

8 129.35 21.00 | 150.35
16 65.50 18.81 84.31
32 35.15 9.42 44.57
64 18.51 4.79 23.31
128 9.84 2.41 12.25
256 5.84 1.41 7.26
512 3.80 0.69 4.49
1024 3.44 0.38 3.82
2048 4.76 0.34 5.10
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Global algebraic view

@ Global hybrid decomposition:

A= (AII Azr)

Arz  Arr
@ Global Schur complement: 4
S = Arr — Arz Az} Azr 1 k
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MaPHyS

@ Local hybrid decomposition:

; Azz, Az,
(I) = ZiZ; I/'rl
A= (2 )

@ Local Schur Complement:

S — Ap’g - AriLAEI_%_AI,-F,-

@ Algebraic Additive Schwarz Preconditioner

4 8 B B & 5 @

M= ZRrT (SR,
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MaPHyS

Algebraic Additive Schwarz Preconditioner

N S0 — (S,((;) Sé@)) — 30 = (Skk SkZ)

M= ZR;—[’,(S(/))71'R¢/ S“ 5“ 2k SU
i=1
local Schur local assembled Schur
where S0 is obtained from pY /
S via neighbor to neighbor > s
comm Jead
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Numerical behaviour of sp

Convergence history

Fuselage 6.5Mdof

Direct calculation

Dense calculation

- - - Sparse with £=5.10"|
Sparse with

- - - Sparse with £=5.10"°|

@ Fuselage problem of 6.5 Mdof dof mapped on 16 processors
@ The sparse preconditioner setup is 4 times faster than the dense one (19.5 v.s. 89 seconds)

@ In term of global computing time, the sparse algorithm is about twice faster

Time history

preconditioners

Direct calculation
Dense calculation
- - - Sparse with £=5.10""
Sparse with £=10°
- - - Sparse with £=5.10°
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@ The attainable accuracy of the hybrid solver is comparable to the one computed with the

direct solver
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Scaled scalability on massively parallel platfo

3D heterogeneous diffusion problem 3D heterogeneous diffusion problem
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@ The solved problem size varies from 2.7 up to 74 Mdof

@ Control the growth in the # of iterations by introducing a coarse space correction

@ The computing time increases slightly when increasing # sub-domains

@ Although the preconditioners do not scale perfectly, the parallel time scalability is acceptable

@ The trend is similar for all variants of the preconditioners using CG Krylov solver
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Multigrid Underlying ideas

@ Stationary iteratve schemes versus the error modes

@ The high frequency modes are damped quickly
e The low frequency modes are damped very slowly

@ The low frequency modes might be viewed as high frequency on
a coarser mesh
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Full-Multigrid

correction ] [ post-smoother ]

[ pre-smoothing ] [resldual calculallon] [

X = S(Ay, br)* xO b= 1 = by — Ap x(V) x® = x() + g B x) = S(Ar, by)”= x®

x(1) = p x(0)

x© = Ag' by

error calculation

@ Factorization of coarse problem performed only once
@ Many forward/backward substitutions on coarsest grid
@ Grid transfer operators to move within hierachical meshes

e Fine — coarse : restriction
e Coarse — fine : prolongation

Parallel algebraic domain decomposition linear solvers
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Refinement/Coarsening strategies

Unstructured mesh refinement

@ Isotropic refinment
+ Preserve aspect ration
- Large number of fine elements
(x12)
- Coupling interface change

@ Anisotropic refinement
+ Coupling interface unchanged
+ Slower increase of mesh size x4
- Bad aspect ratio
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Strong scalability

Table: fine 84.6M — coarse 1.2 M — FMG(2,2) 3 levels

Cores Init. Assemb. Facto. Solve 10V
16 123.98 0.42 79.62 0.55 2285.58
32 118.67 0.23 82.72 0.30 1369.26
64 103.10 0.12 68.18 0.19 710.57
128 102.69 0.06 60.94 0.11 399.23

256  130.32 0.03 75.27 0.21 194 .42
512  170.97 0.01 78.81 0.06 100.17

Haltere - FMG(2,2) 3 levels - 84.6M (coarse : 1.2M)

T
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Validation — Strong scaling

Table: fine 1.3B — coarse 21.1 M — FMG(2,2) 3 levels

Cores Init. Assemb. Facto. Solve 10V
1024 1160.28 0.14 147.73 055 857.69

Haltére 1 milliard d'inconnues (grossier : 21 millions) - FMG 3 niveaux, 20 itérations

1.0e+00 T T T T T
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Block Krylov linear solver

We want to solve
AX = B,

where, A e CN*N ' B ¢ CN*P full rank , and X € CN*P.

@ For large sparse matrices, it might become prohibitive for sparse
direct solvers because of high memory requirement and
operation counts.

@ Suited candidates are Block Krylov approaches:

e The Krylov subspaces associated with each right-hand side are
shared to enlarge the search subspace.

e Matrix-vector products are simultaneously computed.
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Background on Krylov subspace methods

Ax =b.

@ The nested Krylov subspace of dimension m generated by A
from the initial residual vector ry = b — Axy is of the form

Hm(A, ro) = span{r, Ary, A%ry, ..., A" ).

@ Arnoldi’s procedure is used to build an orthonormal basis of the
Krylov subspace.

e Arnoldi equality:
AV = VaHn + [0, wm)

@ Block Arnoldi recurrence formula:
AV = Y + [0, Wi
@ Block Arnoldi with inexact breakdown [ Robbé, Sadkane - 06]

qu/m = ymjfm + [Sm—h Wm]
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Motivation for this work

@ GMRES with deflated restarting-GMRES-DR
o Deflate targeted eigenvalues by combining their harmonic Ritz
vectors at each restart to form the next seed Krylov subspace [R. B.
Morgan. GMRES with deflated restarting. SIAM J. Scientic Computing, 24(1):20-37,
2002.

@ Block variants
@ Block-GMRES-DR method by Morgan [R. B. Morgan, Restarted block
GMRES with deflation of eigenvalues, Appl. Numer. Math., 54 (2005), pp. 222-236].

o Block GMRES method by Robbé and Sadkane [ M. Robbé and M.
Sadkane, Exact and inexact breakdowns in the block GMRES method, Linear Algebra

Appl., 419 (2006), pp. 265-285].
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Preliminary numerical experiments

> Example 1
100 ‘ ‘ : : ‘ ‘
—e— E-EGMRES
ot ——BGMRES-DR ]
—+— B-BGMRES-DR 3
1tk 3
é 10k 3
=
E el 3
=
10°k 1
1%k .
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] 200 400 F00 800 1000 12000 1400
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Block versus “regular” GMRES

Example GMRES GMRES-DR IB-BGMRES BGMRES-DR IB-BGMRES-DR

1 2536 1077 1339 892 587
2 1069 856 787 667 535
3 378 378 372 341 334
4 412 412 444 447 439
5 845 694 617 474 386

6 464 464 357 294 248

7 3154 2003 3291 3090 2104
8 10643 3110 10000* 4426 2197

Table: Comparison results of regular GMRES, GMRES-DR, IB-BGMRES,
BGMRES-DR and IB-BGMRES-DR in terms of matrix-vector products.

HIEPACS - INRIA BORDEAUX SUD-OUEST Parallel algebraic domain decomposition linear solvers



Ongoing work

@ Hybrid solvers

@ http://hips.gforge.inria.fr
@ https://wiki.bordeaux.inria.fr/maphys/doku.php

@ Design and implementation on heterogeneous manycore
plateform
PhD funded by Total/DIP, MORSE Associated team (ICL
Tennessee, Kaust, UC Denver)

@ Exploit H-matrix techniques to reduce computational resource
comsumption
FastLA Associated team (LBNL, Stanford)

HIEPACS - INRIA BORDEAUX SUD-OUEST Parallel algebraic domain decomposition linear solvers



Merci for your attention

Questions ?



