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Context

e Applications : Petroleum reservoir and sedimentary basin simulation

‘mlneralgralns ‘61 pore {

e Method : Formulation and discretization of multiphase flow in porous media
e Constraint :

> Anisotropy of the permeability tensor

> Geological layers = heterogeneities on coarse grid

> Simulation time long = efficient method in CPU time



Multiphase flow framework — Discrete balance laws
Simulation of flow with N. miscibles components and N, phases

On each control volume K of the domain :
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bk . porous volume of the control volume K
with | Ak.; :accumulation of i in K per unit pore volume
Mg, ; : upstream mobility of i in a from K to L

and Fg; the Darcy fluxes F = —Fx ~ / V® . nkLdo
KL

ou V& = —A (V[P + Pe.o(S)] — pag)

+ closure equations + thermodynamical equilibrium (phases can appear and disappear)



Which method for the approximation of Fg;?

* conservative %
* accurate *
Aim: the method should be ... * compact *
* consistent *
* convergent *

... for heterogenous anisotropic media and realistic meshes ...
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... generalized polyhedral, non planar faces, faults, local grid refinement ...




Industrial discretization of the Darcy fluxes
Cell Centered, Linear and Conservative

FKL = —FLK ~ fKL —ANVP- I‘IKLdO'

Two Point Flux Approximation (TPFA):

conservative, cheap but

_ Mr|KL|
not accurate and convergent on realistic meshes
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MultiPoint Flux Approximation schemes (MPFA):

conservative, consistent but

Frr = Z ay, P, not always coercive and convergent
MeSkL

transmissivities (aj; ) fonction of A and the mesh M

’ = transmissivities are computed by pre-processing




Today choices for the approximation of diffusive fluxes
An overview of the state of art...

e cell-centered, compact and linear schemes but not symmetric: conditionally
coercive and convergent:
MPFA O [Aavatsmark et al.] [Edwards et al.]
MPFA L [Aavatsmark et al.] and G [Agélas et al.]
Gradcell [Agélas et al.]

e symmetric, centered schemes but not compact (neighbours of the neighbours
stencil)
SUSHI [Eymard, Gallouet, Herbin]
VFSym [Agélas, Di Pietro, Masson]

e symmetric, compact schemes but with additional unknowns at faces or vertices:
VFH [Eymard, Gallouet, Herbin,...]
MFD [Brezzi, Lipnikov,..]
DDFV [Hermeline, Omnes, Boyer, Hubert, Coudiére, ...]
VAG - Vertex Approximate Gradient [Eymard, Guichard, Herbin]

Define a symmetric compact cell centered scheme is still an open problem




VAG scheme — Gradient scheme approximation framework

Continuous model problem of linear diffusion

—div(AVT) = f sur Q
=0 sur 9Q

Variational formulation :

T € Hy(Q), Vv € Hy(Q), /Q A(x)Vu(x) - Vv(x)dx = /Q f(x)v(x)dx

Nonconforming approximation :

u € Xpyo, Vv € Xp o, / A(x)Vpu(x) - Vpv(x)dx = / f(x)Mpv(x)dx
Q Q

Definition of a gradient scheme : ’ D = (Xp,, MNp, VD) ‘

* discrete space | Xpo = R{4>f} | (suited to boundary conditions)

% reconstruction of function ’ Mp : Xpo — L3(Q) ‘ linear mapping

% reconstruction of gradient| Vp : Xpo — L3(Q)? |linear mapping




VAG scheme — definition of D = (Xp o, Mp, Vp)

Xp,o = { discrete value uk at the cell center xx and us at the vertex xs }

e Barycentric cutting of a cell in tetrahedra

1 1
X =) Cardy, = Yo = > Cardy,
s€EV, s€Vs

e Local discrete gradient on each tetrahedra

s
VK;CHS;S,U = § (US - UK)gK,o',s,s/
seEV,

o Piecewise constant gradient in L2(Q)?

’ Vpu=Vk,ssu on each tetrahedra xk, x5, 5, s’ ‘

e Reconstruction operator

’ Mpu(x) = uk on Vk , us on V, ‘

Define the volumes V5, Vi at each vertex s and each cell K s.t. Z Vk + Z Ve =0Q
Kem seV



VAG for multiphase flow — definition of the fluxes

/ A Vpu(x) - Vpv(x)dx = / f(x)Np(v)dx Vv € Xppo
Q Q

<
Z Z Fis(u) (vk —vs) = Z / f(x)dex—i—Z/ f(x)vsdx
KeM seVk Kem’ VK sy’ Vs

with the following linear and conservative fluxes

Fi,s(u) = —Fsk(u) = Z A;’S' (uk — us’)

s'eVk

which lead to the local mass balance equations

Z Fiks(u) = f(x) dx for all K € M,
s€Vk Vk
3" Frs(u)= | f(x) dxforallseV

KeMs Ve

Vv € X’D,O



VAG : Application to multiphase Darcy flows

Advantages

* similar to MPFA scheme in the new system of control volumes M UV
= easily usable in standard industrial codes without any change

* cell-unknowns are eliminated in the linear system using a Schur complement
= compact vertex-centered scheme with a 27-points stencil on hexahedral grids

* really efficient on tetrahedral grids ’ CPU O-scheme = 15 x CPU VAG ‘ (3D)
=-new perspectives to use tetrahedral/pyramidal grids for reservoir simulation

Difficulties

How treat the vertices which are at the interface of heterogeneities ? ‘




VAG for multiphase flow — repartition of the volume

e Repartition of the volume between vertices and cells :
— Conservative redistribution of volume from the cells to the vertices

— Volume has to be taken from the highest permeability cells around the vertex

% Initial volume of K : Vi

v ey BK s
Bk s = AL’ ~ Brs = —t—
* Indicators of the transmissivity : ® S/EZV K ® Z B .
ke 2

LeM,
Vi(w) =w z Bi s Vi forseV
KeM,
*

Vi(w) = Vk(1—w Y Bks) for KeM.
sEVK

for a small w > 0 discussed in the numerical results



High heterogeneity and coarse grid

Geometry : [0,100] x [0,50] x [0,100] m*

Injection of immiscible gas in the water at x =0

e Porous media heterogenous and isotropic

Ratio of permeability between drains and barriers : 10* i

Cartesian grid : 100 x 1 x 5 mesh and layers
drains
barriers



Study of the repartition of the pore volume —

Mass of outgoing gas

’B?K,s relative weight of the transmissivity
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Motivation

Snohvit gas field contains 5 to 8 % of COy
e Reinjection of CO9 in the saline aquifer Tubaen

700 000 tons reinjected since 2008

Unexplained periodic loss of injectivity

e Assumption : near well drying and mineral salt precipitation
= alteration of the porosity

Snohvit

MELKBYA

SNEHVIT:




Injection of miscible CO2 in a saline aquifer — nearwell drying and salt precipitation

3 phases : water (w), gas (g), mineral (m) — 3 components : H20, CO2 and salt

C¥ = {H20,C0O2,salt}, CE = {H20,C02}, C™ = {salt}

9e¢ (p™ S Cio + % S8 Cpo) +div (Ciiao ™ U™ + Cipo 0¥ UB) =0,
Oep (p" S™ Cope +p™ S7) + div (CZ o U™) =0,

O (p& S8 Céoy + p¥ S Clo2) + div(Céo, p# UE + Clop p¥ U™) =0,
SW 4S84 Sm—1,

Clro + Céor + CLy =1 if w present,
Chao + Céop =1 if g present

Us = T2 (VP — o),
w kry, (S w
U” = —Fw SN (T [PE + Pe(S)] - p"8).




Thermodynamical equilibrium

{ phases in presence } = Flash(P, Z)

Cloz = Kcoz C¢p,  if w,g present
Chao = Kuz2o Cio  if w, g present
Cont = Ksate if w, m present

Phase diagram in the space Z at P fixed

Z; : total molar fraction of the component /
038
w+m

i = C02,H20,salt
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3D near well grids — deviated well
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Radial mesh

Hybrid grid

Hexahedral grid



Influence of the parameter w ?

Observations :

Small influence on the accuracy of the numerical solution

But very small pore volumes = very small time steps

Thus if w is too small, the CPU time can increase

Strategy: homogenization of the minimum pore volumes at vertices and cells

Compute wo such that minkem{ Vk(wo) } = minsey{ Vs(wo) }




Data test case

e Homogenous and isotropic porous media

Injection of miscible gaseous CO2 such that S¢ =1, C¢,, =1

e ingoing pressure boundary condition at the well bore P,y is imposed

Aquifer initially composed of water S., =1, Cj,o = 0.84, Ck, = 0.16

e homogeneous Neumann boundary condition at the north and south faces, otherwise
hydrostatic pressure boundary condition

Data are based on a comparison between
laboratory experiment vs. numerical simulation
(joint work of Roland Masson and Yannick Peysson)
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Trajectories in the space (Zco,, Zs.r) of the Zx; for 4 cells K;,
i =1...4, ordered according to their increasing distance to the well axis.




Results at the end of the simulation
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VAG vs O-scheme

Mass of mineral
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Conclusion and perspectives

e VAG scheme is an original vertex centred finite volume approach
for compositional multiphase flows in porous media

e accurate on coarse grid and high heterogeneities thanks to
— the conservation of the cell unknowns in the discretization
— the original distribution of the porous volume at the vertices

e elimination of the cell unknowns in the linear system
= particularly efficient on tetrahedral and pyramidal grids
= open new perspectives for reservoir simulation

On going work... - Roland’s talk

e theoretical framework
- flux interpretation
- convergence of the scheme whatever the value of w

e improved treatment of the heterogeneities
for example : discontinuous capillary pressure field



