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Ω, bounded polyhedral domain of R3, boundary Γ = Γa ∪ Γm ;
the system of Maxwell’s equation in three space dimensions is given by :

ε
∂E

∂t
− curl(H) = 0,

µ
∂H

∂t
+ curl(E) = 0,

where :

E ≡ t(E1(x, t),E2(x, t),E3(x, t)) & H ≡ t(H1(x, t),H2(x, t),H3(x, t)) are
the electric field and the magnetic field

ε ≡ ε(x), µ ≡ µ(x), are the electric permittivity and the magnetic
permeability, respectively

Metallic boundary condition on Γm : n× E = 0 (n outwards normal to Γ)

Silver-Mller boundary condition on Γa : n× E−
√
µ

ε
n× (H× n) = 0

Pseudo-conservative form : Q(∂tW) +∇ · F (W) = 0 (W = t(E,H) ∈ R6)
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Objective

Objective : Formulate, study and validate a DGTD-PpQk

method to solve Maxwell’s equations :

mesh objects with complex geometry by tetrahedra
(triangles in 2D) for high precision

mesh the surrounding space by square elements
(large size) for simplicity and speed
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Spatial discretization

Ω is discretized by Ch =
N⋃

i=1

ci = Th

⋃
Qh, where ci are tetrahedra (∈ Th)

or hexahedra (∈ Qh) in 3D (triangles or quadrangles in 2D)

For theoritical aspects we consider only metallic boundaries

Pp[ci ] the space of polynomial functions with degree at most p on ci ∈ Th

(ex : form of polynomials P1 in 2D : ξ0 + ξ1x1 + ξ2x2),
Qk [ci ] the space of polynomial functions with degree at most k with
respect to each variable separately on ci ∈ Qh (ex : form of polynomials Q1

in 2D : γ0 + γ1x1 + γ2x2 + γ3x1x2)

φi = (ϕi1, ϕi2, . . . , ϕidi ) local basis of Pp[ci ]
θi = (ϑi1, ϑi2, . . . , ϑibi ) local basis of Qk [ci ]

The discrete solution vector Wh is searched for in the approximation space
V 6

h defined by :

Vh =

{
vh ∈ L2(Ω)

∣∣∣∣∣ ∀ci ∈ Th, vh ci
∈ Pp[ci ]

∀ci ∈ Qh, vh ci
∈ Qk [ci ]

}
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Spatial discretization

Local degrees of freedom denoted by Wil ∈ R6

Wi defines the restriction of the approximate solution to the cell ci (Wh ci
)

ci ∈ Th =⇒Wi ∈ Pp[ci ] : Wi (x) =

di∑
l=1

Wilϕil (x) ∈ R6

ci ∈ Qh =⇒Wi ∈ Qk [ci ] : Wi (x) =

bi∑
l=1

Wilϑil (x) ∈ R6

The local representation of W does not provide any form of continuity from
one element to another. We use a centered numerical flux on aij = ci ∩ cj

Wh aij
=

Wi aij
+ Wj aij

2

If aij on the metallic boundary : t(Ej ,Hj ) = t(−Ei ,Hi )

C. Durochat DGTD method on hybrid & non-conforming meshes for Maxwell 26th Jul. 2012 7 / 34



3D Maxwell’s equations DGTD method on hybrid meshes 3D Convergence and stability 2D Numerical results Conclusion

Spatial discretization

Local degrees of freedom denoted by Wil ∈ R6

Wi defines the restriction of the approximate solution to the cell ci (Wh ci
)

ci ∈ Th =⇒Wi ∈ Pp[ci ] : Wi (x) =

di∑
l=1

Wilϕil (x) ∈ R6

ci ∈ Qh =⇒Wi ∈ Qk [ci ] : Wi (x) =

bi∑
l=1

Wilϑil (x) ∈ R6

The local representation of W does not provide any form of continuity from
one element to another. We use a centered numerical flux on aij = ci ∩ cj

Wh aij
=

Wi aij
+ Wj aij

2

If aij on the metallic boundary : t(Ej ,Hj ) = t(−Ei ,Hi )

C. Durochat DGTD method on hybrid & non-conforming meshes for Maxwell 26th Jul. 2012 7 / 34



3D Maxwell’s equations DGTD method on hybrid meshes 3D Convergence and stability 2D Numerical results Conclusion

Spatial discretization

Case (A) :

ci is a tetrahedron. aij face of ci , is either on boundary, or common to another
tetrahedron, or to a hexahedron (hybrid)

6di semi-discretized equations system :
2Xε,i

dEi

dt
+

3∑
k=1

X xk

i Hi +
∑

aij∈T i
d

XijHj +
∑

aij∈T i
m

XimHi +
∑

aij∈H i
d

AijH̃j = 0,

2Xµ,i
dHi

dt
−

3∑
k=1

X xk

i Ei −
∑

aij∈T i
d

XijEj +
∑

aij∈T i
m

XimEi −
∑

aij∈H i
d

Aij Ẽj = 0,

with :

Ei = t(Ei1,Ei2, · · · ,Eidi ) and Hi = t(Hi1,Hi2, · · · ,Hidi ) ∈ R3di

Ẽj = t(Ej1,Ej2, · · · ,Ejbj ) and H̃j = t(Hj1,Hj2, · · · ,Hjbj ) ∈ R3bj

Xε,i and Xµ,i are mass matrices, X xk

i gradient matrix, Xij surface matrix
=⇒ All have a 3di × 3di size, except Aij , whose size is 3di × 3bj
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Spatial discretization

Case (B) :

ci is an hexahedron. aij face of ci , is either on boundary, or common to another
hexahedron, or to a tetrahedron (hybrid)

6bi semi-discretized equations system :
2Wε,i

dẼi

dt
+

3∑
k=1

Wxk

i H̃i +
∑

aij∈Qi
d

WijH̃j +
∑

aij∈Qi
m

WimH̃i +
∑

aij∈H i
d

BijHj = 0,

2Wµ,i
dH̃i

dt
−

3∑
k=1

Wxk

i Ẽi −
∑

aij∈Qi
d

Wij Ẽj +
∑

aij∈Qi
m

WimẼi −
∑

aij∈H i
d

BijEj = 0,

with :

Ẽi = t(Ei1,Ei2, · · · ,Eibi ) and H̃i = t(Hi1,Hi2, · · · ,Hibi ) ∈ R3bi

Ej = t(Ej1,Ej2, · · · ,Ejdj ) and Hj = t(Hj1,Hj2, · · · ,Hjdj ) ∈ R3dj

Wε,i and Wµ,i are mass matrices, Wxk

i gradient matrix, Wij surface matrix
=⇒ All have a 3bi × 3bi size, except Bij , whose size is 3bi × 3dj
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dẼi

dt
+

3∑
k=1

Wxk

i H̃i +
∑

aij∈Qi
d

WijH̃j +
∑

aij∈Qi
m

WimH̃i +
∑

aij∈H i
d

BijHj = 0,

2Wµ,i
dH̃i

dt
−

3∑
k=1

Wxk

i Ẽi −
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Time discretization

Second order Leap-Frog scheme :

Case (A) :


H

n+ 1
2

i = H
n− 1

2

i +
∆t

2
[Xµ,i ]−1 An

E,i
,

E
n+1

i = E
n

i +
∆t

2
[Xε,i ]−1 An+ 1

2
H,i

Case (B) :


H̃

n+ 1
2

i = H̃
n− 1

2

i +
∆t

2
[Wµ,i ]

−1 Bn
E,i
,

Ẽn+1
i = Ẽn

i +
∆t

2
[Wε,i ]

−1 B
n+ 1

2
H,i
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Stability analysis

We define a discrete energy En

We assume that this is an energy and we check that it is exactly conserved,
i.e. ∆E = En+1 − En = 0

We make hypothesis for fields in to prove that En is a positive definite
quadratic form under a CFL condition :

∀X ∈ (Pp[ci ])
3
, ‖rot(X)‖ci ≤ (ατi pi‖X‖ci ) /|ci |,

∀X ∈ (Pp[ci ])
3
, ‖X‖2

aij
≤
(
βτij ‖nij‖‖X‖2

ci

)
/|ci |

where ατi and βτij (j ∈ {j |ci ∩ cj 6= ∅}) defining the constant parameters

We also admit similar hypothesis ∀X ∈ (Qk [ci ])
3 with constants αq

i and βq
ij

‖.‖ci and ‖.‖aij are L2-norm. ‖nij‖ =
∫

aij
1dσ with nij non-unitary normal

to aij oriented from ci towards cj . |ci | =
∫

ci
1dx and pi =

∑
j∈Vi
‖nij‖
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Stability analysis

For the DGTD-Pp method, the sufficient condition on ∆tτ is [1] :

∀i ,∀j ∈ Vi : ∆tτ

[
2ατi + βτij max

(√
εi

εj
,

√
µi

µj

)]
<

4|ci |
√
εiµi

pi

For DGTD-Qk method, the sufficient condition on ∆tq is :

∀i ,∀j ∈ Vi : ∆tq

[
2αq

i + βq
ij max

(√
εi

εj
,

√
µi

µj

)]
<

4|ci |
√
εiµi

pi

Finally, noting ∆t the global time step for the hybrid method, we have shown
that the sufficient stability condition is defined by :

∆t = min(∆tτ ,∆tq)

Under this condition and hypothesis, En is a positive definite quadratic form

[1] L. Fezoui, S. Lanteri, S. Lohrengel, and S. Piperno
Convergence and stability of a discontinuous Galerkin time-domain method for
the heterogeneous Maxwell equations on unstructured meshes
ESAIM : Math. Model. and Numer. Anal. 39, no. 6, p. 1149-1176 (2005)
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A priori convergence analysis

Two cases for weak formulations (ci ∈ Th / ci ∈ Qh), vector test functions

m(T,T′) = 2

∫
Ω

〈
QT , T′

〉
dx

a(T,T′) =

∫
Ω

(〈
3∑

k=1

∂h
xk
OkT , T′

〉
−

3∑
k=1

〈
∂h

xk
T′ , OkT

〉)
dx

b(T,T′) =

∫
Fd

( 〈
{V} , JU′K

〉
−
〈
{U} , JV′K

〉
−〈

{V′} , JUK
〉

+
〈
{U′} , JVK

〉 )
dσ +∫

Fm

( 〈
U , n̆× V′

〉
+
〈
V , n̆×U′

〉 )
dσ

with :

T = t(U,V), T′ =
t
(U′,V′)

JUhKij =
(
Uj aij

−Ui aij

)
× n̆ij , {Uh}ij =

Ui aij
+ Uj aij

2

Fd set of internal faces, Fm set of metallic boundary faces
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A priori convergence analysis

Summing up weak formulations on each ci , the discrete solution
Wh = t(Eh,Hh) satisfies :

m(∂tWh,T
′) + a(Wh,T

′) + b(Wh,T
′) = 0, ∀T′ ∈ V 6

h

We assume that the exact solution W = t(E,H) ∈ (H(curl,Ω))6. Using the
continuity of the tangential traces of E and H accross aij ∈ Fd , and the
metallic boundary condition E× n̆ = 0 on aij ∈ Fm, we prove :

m(∂tW,T′) + a(W,T′) + b(W,T′) = 0, ∀T′ ∈ V 6
h

Let Wh ∈ C1([0, tf ];V 6
h ) and let W ∈ C0([0, tf ]; (PHs+1(Ω))6) for s ≤ 0

with tf the final time and :

PHs+1(Ω) = {v | ∀j , v Ωj ∈ Hs+1(Ωj )}

Let hτ = max
τi∈Th

(hτi ), hq = max
qi∈Qh

(hqi ) and :

ηh = max
{
hmin{s,p}
τ , hmin{s,k}

q

}
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A priori convergence analysis

Then there is a constant C > 0 independent of h such that :

max
t∈[0,tf ]

(‖Ph(W(t))−Wh(t)‖0,Ω) ≤ C ηh tf ‖W‖C0([0,tf ],PHs+1(Ω))

For the semi-discretized problem, the error w = W −Wh satisfies the
estimate :

‖w‖C0([0,tf ],L2(Ω)) ≤ C ηh tf ‖W‖C0([0,tf ],PHs+1(Ω))

The fully discretized scheme may be seen as the discretization in time of a
system of ODE

Since the Leap-Frog scheme is second-order accurate, we found the
consistency error altogether of order O(∆t2)

Finally, together with the stability result we thus get an error of order (if
the exact solution is regular enough) :

O(∆t2) +O(tf ηh)
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Eigenmode in a unitary PEC square cavity

2D transverse magnetic waves (TMz ) : H ≡ t(Hx ,Hy , 0) et E ≡ t(0, 0,Ez )

2D Maxwell’s equations are given by :

ε
∂Ez

∂t
− ∂Hy

∂x1
+
∂Hx

∂x2
= 0,

µ
∂Hx

∂t
+
∂Ez

∂x2
= 0,

µ
∂Hy

∂t
− ∂Ez

∂x1
= 0.

We compute the evolution of the (1,1) mode in a PEC square cavity, the
exact solution is :

Hx (x1, x2, t) = −(π/ω) sin(πx1) cos(πx2) sin(ωt),

Hy (x1, x2, t) = (π/ω) cos(πx1) sin(πx2) sin(ωt),

Ez (x1, x2, t) = sin(πx1) sin(πx2) cos(ωt),

where ω = 2πf , with f the frequency
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Eigenmode in a unitary PEC square cavity
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Eigenmode in a unitary PEC square cavity
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DGTD−P2
DGTD−P3
DGTD−P4
DGTD−P3Q4
DGTD−P4Q4

CPU time # dof Final L2-error

DGTD-P1 45 s 11334 2.33× 10−2

DGTD-P2 206 s 22668 1.68× 10−4

DGTD-P3 530 s 37780 7.09× 10−5

DGTD-P4 1511 s 56670 2.94× 10−5

DGTD-P1Q4 12 s 3872 4.24× 10−3

DGTD-P2Q3 45 s 6656 3.41× 10−4

DGTD-P3Q4 160 s 11040 8.21× 10−5

DGTD-P4Q4 346 s 16160 5.67× 10−5
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Eigenmode in a unitary PEC square cavity
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Eigenmode in a unitary PEC square cavity

Numerical h-wise convergence for the second-order Leap-Frog scheme :
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DGTD−P1Q4 ; slope = 1.83
DGTD−P2Q3 ; slope = 2.05
DGTD−P3Q4 ; slope = 2.07
DGTD−P4Q4 ; slope = 2.12

Numerical validation of convergence in h. Stable method.
Each time step used in the DGTD-PpQk is the minimum between the limit
time step for DGTD-Pp and the one for DGTD-Qk =⇒ first numerical
validation of the stability analysis
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Eigenmode in a unitary PEC square cavity

Numerical h-wise convergence for the fourth-order Leap-Frog scheme :
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DGTD−P1Q3 ; slope = 1.01

DGTD−P1Q4 ; slope = 1.01

DGTD−P2Q3 ; slope = 2.35

DGTD−P2Q4 ; slope = 2.22

DGTD−P3Q3 ; slope = 3.01

DGTD−P3Q4 ; slope = 2.96

DGTD−P4Q4 ; slope = 4.97

Numerical validation of convergence in h. Stable method.

LF4 more efficient and more accurate than LF2 for this test problem
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Eigenmode in a unitary PEC square cavity

Numerical h-wise convergence for the fourth-order Leap-Frog scheme :
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Numerical validation of convergence in h. Stable method.

LF4 more efficient and more accurate than LF2 for this test problem
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Scattering of a plane wave
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Scattering of a plane wave

Time evolution of component Ez at points (−1.6; 1.6) and (0.5;−0.5) :

Frequency = 200 MHz
# dof CPU time

P3 32760 20.3 s
P1Q3 11040 1.4 s
P1Q4 12495 2.6 s
P2Q3 19008 6.5 s
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Scattering of a plane wave

Contour lines of discret Fourier transform of Hx and Hy components (during the
last period of the simulation) for calculations with DGTD-P3 method :
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Scattering of a plane wave

Contour lines of discret Fourier transform of Hx and Hy components (during the
last period of the simulation) for calculations with DGTD-P2Q3 method :
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Scattering of a plane wave
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Scattering of a plane wave
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Scattering of a plane wave

Contour lines of discret Fourier transform of Ez component (calculated during
the last period of the simulation) for calculations with DGTD-P2Q4 method :
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Scattering of a plane wave

Time evolution of component Hy at point (0.7;−0.7) :
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Frequency = 500 MHz
# dof CPU time

P4 126660 1339 s
P2Q4 73804 200 s
P3Q4 120140 503 s
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Validation of this method

Interesting compromises between accuracy and CPU time

Work in progress :

Fourth order Leap-Frog scheme
Large number of new test cases
Using others basis function (orthogonal basis for Qk on hexahedra)
Local time-stepping strategy
Transition to 3D

q1 q2

t1

t2

t1

 q2

t2
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Thank you for your attention
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